Skip to main content
Log in

Luteoloside pretreatment attenuates anoxia-induced damage in cardiomyocytes by regulating autophagy mediated by 14-3-3η and the AMPKα-mTOR/ULK1 pathway

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The relation between ischemia and heart failure is well demonstrated, and several studies suggested that realizing the physiological role of autophagy will be of great importance. Luteoloside (Lut) is one of the main components of Lonicera japonica flos and exhibits antioxidant, anti-inflammatory, and cardioprotective properties. To determine if Lut pretreatment enhanced autophagy by 14-3-3η expression and the AMPKα-mTOR/ULK1 pathway and protected the neonatal rat cardiomyocytes (NRCMs) against anoxia damage, NRCMs were treated using 20 μM Lut for 36 h, and the anoxia damage model was established using NRCMs. The indexes reflecting the condition of NRCMs, oxidative stress level, and mitochondrial function were evaluated. In addition, the expression and phosphorylation of 14-3-3η and AMPKα/mTOR/ULK1, and autophagy markers (LC3II, P62) and the abundance of autophagy lysosomes were detected. Results revealed that Lut pretreatment alleviated anoxia- induced damage in NRCMs, that is, Lut pretreatment could increase cell viability, decrease LDH activity and apoptosis, suppressed ROS generation and oxidative stress, restored intracellular ATP levels, stabilized MMP levels, and inhibited mPTP opening. Furthermore, Lut pretreatment could enhance autophagy via upregulating 14-3-3η, LC3II expression and increasing p-AMPKα/AMPKα and p-ULK1/ULK1 level, whereas P62 expression and p-mTOR/mTOR level decreased; the fluorescence intensity of autolysosomes also increased. However, in the NRCMs treated with pAD/14-3-3η RNAi or incubated with 3-MA (an autophagy inhibitor), the abovementioned effects of Lut pretreatment were reduced. Taken together, Lut pretreatment could enhance autophagy by upregulating 14-3-3η expression to influence the AMPKα-mTOR/ ULK1 pathway against anoxia-induced damage in NRCMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used and/or analyzed in the current study are available from the corresponding author upon reasonable request.

References

  1. Rashed E, Depre C (2006) Cardiac cell survival and reversibility of myocardial ischemia. Arch Mal Coeur Vaiss 99(12):1236–1243

    CAS  PubMed  Google Scholar 

  2. Rzymski T, Milani M, Singleton DC, Harris AL (2009) Role of ATF4 in regulation of autophagy and resistance to drugs and hypoxia. Cell Cycle 8(23):3838–3847. https://doi.org/10.4161/cc.8.23.10086

    Article  CAS  PubMed  Google Scholar 

  3. Ma X, Liu H, Foyil SR, Godar RJ, Weinheimer CJ, Hill JA, Diwan A (2012) Impaired autophagosome clearance contributes to cardiomyocyte death in ischemia/reperfusion injury. Circulation 125(25):3170–3181. https://doi.org/10.1161/CIRCULATIONAHA.111.041814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Takagi H, Matsui Y, Hirotani S, Sakoda H, Asano T, Sadoshima J (2007) AMPK mediates autophagy during myocardial ischemia in vivo. Autophagy 3(4):405–407. https://doi.org/10.4161/auto.4281

    Article  CAS  PubMed  Google Scholar 

  5. Su B, Wang X, Sun Y, Long M, Zheng J, Wu W, Li L (2020) miR-30e-3p promotes cardiomyocyte autophagy and inhibits apoptosis via regulating Egr-1 during ischemia/hypoxia. Biomed Res Int 2020:7231243. https://doi.org/10.1155/2020/7231243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pozuelo-Rubio M (2012) 14-3-3 proteins are regulators of autophagy. Cells 1(4):754–773. https://doi.org/10.3390/cells1040754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee JW, Park S, Takahashi Y, Wang HG (2010) The association of AMPK with ULK1 regulates autophagy. PLoS ONE 5(11):e15394. https://doi.org/10.1371/journal.pone.0015394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu Z, Yang L, Huang J, Xu P, Zhang Z, Yin D, Liu J, He H, He M (2018) Luteoloside attenuates anoxia/reoxygenation-induced cardiomyocytes injury via mitochondrial pathway mediated by 14-3-3η protein. Phytother Res 32(6):1126–1134. https://doi.org/10.1002/ptr.6053

    Article  CAS  PubMed  Google Scholar 

  9. Huang J, Liu Z, Xu P, Zhang Z, Yin D, Liu J, He H, He M (2018) Capsaicin prevents mitochondrial damage, protects cardiomyocytes subjected to anoxia/ reoxygenation injury mediated by 14-3-3η/Bcl-2. Eur J Pharmacol 819:43–50. https://doi.org/10.1016/j.ejphar.2017.11.028

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Z, He H, Qiao Y, Huang J, Wu Z, Xu P, Yin D, He M (2018) Tanshinone IIA pretreatment protects H9c2 cells against anoxia/reoxygenation injury: involvement of the translocation of Bcl-2 to mitochondria mediated by 14-3-3η. Oxid Med Cell Longev 2018:3583921. https://doi.org/10.1155/2018/3583921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Qiao Y, Hu T, Yang B, Li H, Chen T, Yin D, He H, He M (2020) Capsaicin alleviates the deteriorative mitochondrial function by upregulating 14-3-3η in anoxic or anoxic/reoxygenated cardiomyocytes. Oxid Med Cell Longev 2020:1750289. https://doi.org/10.1155/2020/1750289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xu T, Li D, Jiang D (2012) Targeting cell signaling and apoptotic pathways by luteolin: cardioprotective role in rat cardiomyocytes following ischemia/reperfusion. Nutrients 4(12):2008–2019. https://doi.org/10.3390/nu4122008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yao H, Shang Z, Wang P, Li S, Zhang Q, Tian H, Ren D, Han X (2016) Protection of Luteolin-7-O-glucoside against doxorubicin-induced injury through PTEN/Akt and ERK pathway in H9c2 cells. Cardiovasc Toxicol 16(2):101–110. https://doi.org/10.1007/s12012-015-9317-z

    Article  CAS  PubMed  Google Scholar 

  14. Li Q, Tian Z, Wang M, Kou J, Wang C, Rong X, Li J, Xie X, Pang X (2019) Luteoloside attenuates neuroinflammation in focal cerebral ischemia in rats via regulation of the PPARγ/Nrf2/NF-κB signaling pathway. Int Immunopharmacol 66:309–316. https://doi.org/10.1016/j.intimp.2018.11.044

    Article  CAS  PubMed  Google Scholar 

  15. Yao H, Zhou L, Tang L, Guan Y, Chen S, Zhang Y, Han X (2017) Protective effects of luteolin-7-O-glucoside against starvation-induced injury through upregulation of autophagy in H9c2 Cells. Biosci Trends 11(5):557–564. https://doi.org/10.5582/bst.2017.01111

    Article  CAS  PubMed  Google Scholar 

  16. Zhou M, Shen S, Zhao X, Gong X (2017) Luteoloside induces G0/G1 arrest and pro-death autophagy through the ROS-mediated AKT/mTOR/p70S6K signalling pathway in human non-small cell lung cancer cell lines. Biochem Biophys Res Commun 494(1–2):263–269. https://doi.org/10.1016/j.bbrc.2017.10.042

    Article  CAS  PubMed  Google Scholar 

  17. He H, Wang L, Qiao Y, Yang B, Yin D, He M (2021) Epigallocatechin-3- gallate pretreatment alleviates doxorubicin-induced ferroptosis and cardiotoxicity by upregulating AMPKα2 and activating adaptive autophagy. Redox Biol 48:102185. https://doi.org/10.1016/j.redox.2021.102185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Qiao Y, Wang L, Hu T, Yin D, He H, He M (2021) Capsaicin protects cardiomyocytes against lipopolysaccharide-induced damage via 14-3-3γ- mediated autophagy augmentation. Front Pharmacol 12:659015. https://doi.org/10.3389/fphar.2021.659015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Khan S, Salloum F, Das A, Xi L, Vetrovec GW, Kukreja RC (2006) Rapamycin confers preconditioning-like protection against ischemia-reperfusion injury in isolated mouse heart and cardiomyocytes. J Mol Cell Cardiol 41(2):256–264. https://doi.org/10.1016/j.yjmcc.2006.04.014

    Article  CAS  PubMed  Google Scholar 

  20. Kwong JC, Schwartz KL, Campitelli MA, Chung H, Crowcroft NS, Karnauchow T, Katz K, Ko DT, McGeer AJ, McNally D, Richardson DC, Rosella LC, Simor A, Smieja M, Zahariadis G, Gubbay JB (2018) Acute myocardial infarction after laboratory-confirmed influenza infection. N Engl J Med 378(4):345–353. https://doi.org/10.1056/NEJMoa1702090

    Article  PubMed  Google Scholar 

  21. Tibaut M, Mekis D, Petrovic D (2017) Pathophysiology of myocardial infarction and acute management strategies. Cardiovasc Hematol Agents Med Chem 14(3):150–159. https://doi.org/10.2174/1871525714666161216100553

    Article  CAS  PubMed  Google Scholar 

  22. Heusch G (2020) Myocardial ischaemia-reperfusion injury and cardioprotection in perspective. Nat Rev Cardiol 17(12):773–789. https://doi.org/10.1038/s41569-020-0403-y

    Article  PubMed  Google Scholar 

  23. Butnariu M, Quispe C, Herrera-Bravo J, Sharifi-Rad J, Singh L, Aborehab NM, Bouyahya A, Venditti A, Sen S, Acharya K, Bashiry M, Ezzat SM, Setzer WN, Martorell M, Mileski KS, Bagiu IC, Docea AO, Calina D, Cho WC (2022) The pharmacological activities of Crocus sativus L.: a review based on the mechanisms and therapeutic opportunities of its phytoconstituents. Oxid Med Cell Longev. https://doi.org/10.1155/2022/8214821

    Article  PubMed  PubMed Central  Google Scholar 

  24. Salehi B, Sharopov F, Boyunegmez Tumer T, Ozleyen A, Rodríguez-Pérez C, Ezzat SM, Azzini E, Hosseinabadi T, Butnariu M, Sarac I, Bostan C, Acharya K, Sen S, Nur Kasapoglu K, Daşkaya-Dikmen C, Özçelik B, Baghalpour N, Sharifi-Rad J, Valere Tsouh Fokou P, Cho WC, Martins N (2019) Symphytum speciess: a comprehensive review on chemical composition. Food Appl Phytopharm Mol 24(12):2272. https://doi.org/10.3390/molecules24122272

    Article  CAS  Google Scholar 

  25. Liao Z, He H, Zeng G, Liu D, Tang L, Yin D, Chen D, He M (2017) Delayed protection of Ferulic acid in isolated hearts and cardiomyocytes: upregulation of heat-shock protein 70 via NO-ERK1/2 pathway. J Func Foods 34:18–27. https://doi.org/10.1016/j.jff.2017.04.012

    Article  CAS  Google Scholar 

  26. Liao Z, Liu D, Tang L, Yin D, Yin S, Lai S, Yao J, He M (2015) Long-term oral resveratrol intake provides nutritional preconditioning against myocardial ischemia/reperfusion injury: involvement of VDAC1 downregulation. Mol Nutr Food Res 59(3):454–464. https://doi.org/10.1002/mnfr.201400730

    Article  CAS  PubMed  Google Scholar 

  27. Luo Y, Wan Q, Xu M, Zhou Q, Chen X, Yin D, He H, He M (2019) Nutritional preconditioning induced by astragaloside IV on isolated hearts and cardiomyocytes against myocardial ischemia injury via improving Bcl-2- mediated mitochondrial function. Chem Biol Interact 309:108723. https://doi.org/10.1016/j.cbi.2019.06.036

    Article  CAS  PubMed  Google Scholar 

  28. Chinese Pharmacopoeia Commission (2015) Chinese pharmacopoeia of the People’s Republic of China, vol 1. China Medical Science Press, Beijing, p 221

    Google Scholar 

  29. He H, Zhang D, Gao J, Andersen TR, Mou Z (2019) Identification and evaluation of Lonicera japonica flos introduced to the Hailuogou area based on ITS sequences and active compounds. PeerJ 7:e7636. https://doi.org/10.7717/peerj.7636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mhawech P (2005) 14-3-3 proteins–an update. Cell Res 15(4):228–236. https://doi.org/10.1038/sj.cr.7290291

    Article  CAS  PubMed  Google Scholar 

  31. Jia H, Liang Z, Zhang X, Wang J, Xu W, Qian H (2017) Proteins: an important regulator of autophagy in diseases. Am J Transl Res 9(11):4738–4746

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P, Sardiello M, Rubinsztein DC, Ballabio A (2011) TFEB links autophagy to lysosomal biogenesis. Science 332(6036):1429–1433. https://doi.org/10.1126/science.1204592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Heras-Sandoval D, Pérez-Rojas JM, Hernández-Damián J, Pedraza-Chaverri J (2014) The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell Signal 26(12):2694–2701. https://doi.org/10.1016/j.cellsig.2014.08.019

    Article  CAS  PubMed  Google Scholar 

  34. Kolwicz SC Jr, Purohit S, Tian R (2013) Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res 113(5):603–616. https://doi.org/10.1161/CIRCRESAHA.113.302095

    Article  CAS  PubMed  Google Scholar 

  35. Chen X, Li H, Wang Z, Zhou Q, Chen S, Yang B, Yin D, He H, He M (2020) Quercetin protects the vascular endothelium against iron overload damages via ROS/ADMA/DDAHII/eNOS/NO pathway. Eur J Pharmacol 868:172885. https://doi.org/10.1016/j.ejphar.2019.172885

    Article  CAS  PubMed  Google Scholar 

  36. Lee J, Giordano S, Zhang J (2012) Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J 441(2):523–540. https://doi.org/10.1042/BJ20111451

    Article  CAS  PubMed  Google Scholar 

  37. Morales CR, Pedrozo Z, Lavandero S, Hill JA (2014) Oxidative stress and autophagy in cardiovascular homeostasis. Antioxid Redox Signal 20(3):507–518. https://doi.org/10.1089/ars.2013.5359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.cn) for English language editing.

Funding

This research was supported by grants from the Natural Science Foundation of China (82160685, 81803534, 81673431, 82160073).

Author information

Authors and Affiliations

Authors

Contributions

TH, LW and LW contributed equally to this work. HH and MH designed the research study. THH, LW, LW, XC and QGF performed the research. THH and SQL analysed the data. HH and THH wrote the manuscript. MH revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Huan He or Ming He.

Ethics declarations

Competing interests

No potential conflict of interest was reported by the authors.

Ethical approval

The experimental procedures abided by the NIH (USA) guidelines and were authorized by the ethics committee of Nanchang University (No. 2020-0096).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, T., Wen, L., Wang, L. et al. Luteoloside pretreatment attenuates anoxia-induced damage in cardiomyocytes by regulating autophagy mediated by 14-3-3η and the AMPKα-mTOR/ULK1 pathway. Mol Cell Biochem 478, 1475–1486 (2023). https://doi.org/10.1007/s11010-022-04611-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04611-0

Keywords

Navigation