Skip to main content
Log in

Berberine inhibits gluconeogenesis in spontaneous diabetic rats by regulating the AKT/MAPK/NO/cGMP/PKG signaling pathway

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

This work was aimed to investigate the action mechanism of berberine (BBR) on gluconeogenesis. The effects of BBR were examined in rat primary hepatocytes and confirmed in vivo in spontaneous diabetic rats. Protein levels were assessed by Western blot. Immunofluorescence staining was utilized for visualizing protein expression, while qRT-PCR helped for the determination of gene expression at the mRNA level. Besides, cGMP concentration was measured using ELISA, whereas NO level was assessed by spectrophotometry. BBR inhibited gluconeogenesis by downregulating G6Pase and PEPCK via inhibition of CREB phosphorylation. Moreover, BBR enhanced NO and cGMP concentrations, leading to the activation of the NO/cGMP/PKG signaling via activating AKT1/MAPK axis. The in vivo experiments were consistent with the findings obtained in vitro. Hence, BBR represents a drug candidate for diabetic patients and its mechanism of action may be driven via the AKT/MAPK/NO/cGMP/PKG pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Costello KR, Schones DE (2018) Chromatin modifications in metabolic disease: potential mediators of long-term disease risk. Wiley Interdiscip Rev Syst Biol Med 10(4):e1416. https://doi.org/10.1002/wsbm.1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Xu X, Yi H, Wu J, Kuang T, Zhang J, Li Q, Du H, Xu T, Jiang G, Fan G (2021) Therapeutic effect of berberine on metabolic diseases: both pharmacological data and clinical evidence. Biomed Pharmacother 133:110984. https://doi.org/10.1016/j.biopha.2020.110984

    Article  CAS  PubMed  Google Scholar 

  3. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, Shaw JE, Bright D, Williams R (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes atlas, 9(th) edition. Diabetes Res Clin Pract 157:107843. https://doi.org/10.1016/j.diabres.2019.107843

    Article  PubMed  Google Scholar 

  4. Beagley J, Guariguata L, Weil C, Motala AA (2014) Global estimates of undiagnosed diabetes in adults. Diabetes Res Clin Pract 103(2):150–160. https://doi.org/10.1016/j.diabres.2013.11.001

    Article  PubMed  Google Scholar 

  5. Punthakee Z, Goldenberg R, Katz P (2018) Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome. Can J Diabetes 42(Suppl 1):S10-s15. https://doi.org/10.1016/j.jcjd.2017.10.003

    Article  PubMed  Google Scholar 

  6. Zhang M, Chen L (2012) Berberine in type 2 diabetes therapy: a new perspective for an old antidiarrheal drug? Acta Pharm Sinica B 2(4):379–386. https://doi.org/10.1016/j.apsb.2012.06.004

    Article  CAS  Google Scholar 

  7. Xu M, Xiao Y, Yin J, Hou W, Yu X, Shen L, Liu F, Wei L, Jia W (2014) Berberine promotes glucose consumption independently of AMP-activated protein kinase activation. PLoS ONE 9(7):e103702. https://doi.org/10.1371/journal.pone.0103702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Patel P (2021) A bird’s eye view on a therapeutically ‘wonder molecule’: Berberine. Phytomed Plus 1(3):100070. https://doi.org/10.1016/j.phyplu.2021.100070

    Article  Google Scholar 

  9. Yin J, Ye J, Jia W (2012) Effects and mechanisms of berberine in diabetes treatment. Acta Pharm Sinica B 2(4):327–334. https://doi.org/10.1016/j.apsb.2012.06.003

    Article  CAS  Google Scholar 

  10. Di S, Han L, An X, Kong R, Gao Z, Yang Y, Wang X, Zhang P, Ding Q, Wu H, Wang H, Zhao L, Tong X (2021) In silico network pharmacology and in vivo analysis of berberine-related mechanisms against type 2 diabetes mellitus and its complications. J Ethnopharmacol 276:114180. https://doi.org/10.1016/j.jep.2021.114180

    Article  CAS  PubMed  Google Scholar 

  11. Zhang B, Pan Y, Xu L, Tang D, Dorfman RG, Zhou Q, Yin Y, Li Y, Zhou L, Zhao S, Zou X, Wang L, Zhang M (2018) Berberine promotes glucose uptake and inhibits gluconeogenesis by inhibiting deacetylase SIRT3. Endocrine 62(3):576–587. https://doi.org/10.1007/s12020-018-1689-y

    Article  CAS  PubMed  Google Scholar 

  12. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129(7):1261–1274. https://doi.org/10.1016/j.cell.2007.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kousteni S (2012) FoxO1, the transcriptional chief of staff of energy metabolism. Bone 50(2):437–443. https://doi.org/10.1016/j.bone.2011.06.034

    Article  CAS  PubMed  Google Scholar 

  14. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378(6559):785–789. https://doi.org/10.1038/378785a0

    Article  CAS  PubMed  Google Scholar 

  15. Huang X, Liu G, Guo J, Su Z (2018) The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci 14(11):1483–1496. https://doi.org/10.7150/ijbs.27173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bengal E, Aviram S, Hayek T (2020) p38 MAPK in glucose metabolism of skeletal muscle: beneficial or harmful? Int J Mol Sci 21(18):6480. https://doi.org/10.3390/ijms21186480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fang P, Sun Y, Gu X, Shi M, Bo P, Zhang Z, Bu L (2019) Baicalin ameliorates hepatic insulin resistance and gluconeogenic activity through inhibition of p38 MAPK/PGC-1α pathway. Phytomedicine 64:153074. https://doi.org/10.1016/j.phymed.2019.153074

    Article  CAS  PubMed  Google Scholar 

  18. Tian X, Liu F, Li Z, Lin Y, Liu H, Hu P, Chen M, Sun Z, Xu Z, Zhang Y, Han L, Zhang Y, Pan G, Huang C (2019) Enhanced anti-diabetic effect of berberine combined with timosaponin B2 in Goto-Kakizaki rats, associated with increased variety and exposure of effective substances through intestinal absorption. Front Pharmacol 10:19–19. https://doi.org/10.3389/fphar.2019.00019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Almani SA, Memon IA, Shaikh TZ, Khoharo HK, Ujjan I (2017) Berberine protects against metformin-associated lactic acidosis in induced diabetes mellitus. Iran J Basic Med Sci 20(5):511–515. https://doi.org/10.22038/IJBMS.2017.8675

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mata-Torres G, Andrade-Cetto A, Espinoza-Hernández FA, Cárdenas-Vázquez R (2020) Hepatic glucose output inhibition by Mexican plants used in the treatment of type 2 diabetes. Front Pharmacol 11:215. https://doi.org/10.3389/fphar.2020.00215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xie W, Ye Y, Feng Y, Xu T, Huang S, Shen J, Leng Y (2018) Linderane suppresses hepatic gluconeogenesis by inhibiting the cAMP/PKA/CREB pathway through indirect activation of PDE 3 via ERK/STAT3. Front Pharmacol 9:476. https://doi.org/10.3389/fphar.2018.00476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang Y, Zhou X, Zhao D, Wang X, Gurley EC, Liu R, Li X, Hylemon PB, Chen W, Zhou H (2020) Berberine inhibits free fatty acid and LPS-induced inflammation via modulating ER stress response in macrophages and hepatocytes. PLoS ONE 15(5):e0232630–e0232630. https://doi.org/10.1371/journal.pone.0232630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li M, Dang Y, Li Q, Zhou W, Zuo J, Yao Z, Zhang L, Ji G (2019) Berberine alleviates hyperglycemia by targeting hepatic glucokinase in diabetic db/db mice. Sci Rep 9(1):8003. https://doi.org/10.1038/s41598-019-44576-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kalyanaraman H, Schwaerzer G, Ramdani G, Castillo F, Scott BT, Dillmann W, Sah RL, Casteel DE, Pilz RB (2018) Protein kinase G activation reverses oxidative stress and restores osteoblast function and bone formation in male mice with type 1 diabetes. Diabetes 67(4):607–623. https://doi.org/10.2337/db17-0965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hu X, Feng Y, Liu X, Zhao XF, Yu JH, Yang YS, Sydow-Bäckman M, Hörling J, Zierath JR, Leng Y (2007) Effect of a novel non-thiazolidinedione peroxisome proliferator-activated receptor alpha/gamma agonist on glucose uptake. Diabetologia 50(5):1048–1057. https://doi.org/10.1007/s00125-007-0622-3

    Article  CAS  PubMed  Google Scholar 

  26. Chen QM, Xie MZ (1986) Studies on the hypoglycemic effect of Coptis chinensis and berberine. Yao Xue Xue Bao 21(6):401–406

    CAS  PubMed  Google Scholar 

  27. Quinn PG, Yeagley D (2005) Insulin regulation of PEPCK gene expression: a model for rapid and reversible modulation. Curr Drug Targets Immune Endocr Metabol Disord 5(4):423–437. https://doi.org/10.2174/156800805774912962

    Article  CAS  PubMed  Google Scholar 

  28. Mues C, Zhou J, Manolopoulos KN, Korsten P, Schmoll D, Klotz LO, Bornstein SR, Klein HH, Barthel A (2009) Regulation of glucose-6-phosphatase gene expression by insulin and metformin. Horm Metab Res 41(10):730–735. https://doi.org/10.1055/s-0029-1225360

    Article  CAS  PubMed  Google Scholar 

  29. Hill MJ, Suzuki S, Segars JH, Kino T (2016) CRTC2 is a coactivator of GR and couples GR and CREB in the regulation of hepatic gluconeogenesis. Mol Endocrinol 30(1):104–117. https://doi.org/10.1210/me.2015-1237

    Article  CAS  PubMed  Google Scholar 

  30. Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz G, Yoon C, Puigserver P, Spiegelman B, Montminy M (2001) CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413(6852):179–183. https://doi.org/10.1038/35093131

    Article  CAS  PubMed  Google Scholar 

  31. He L, Sabet A, Djedjos S, Miller R, Sun X, Hussain MA, Radovick S, Wondisford FE (2009) Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell 137(4):635–646. https://doi.org/10.1016/j.cell.2009.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bassot A, Chauvin MA, Bendridi N, Ji-Cao J, Vial G, Monnier L, Bartosch B, Alves A, Cottet-Rousselle C, Gouriou Y, Rieusset J, Morio B (2019) Regulation of mitochondria-associated membranes (MAMs) by NO/sGC/PKG participates in the control of hepatic insulin response. Cells 8(11):1319. https://doi.org/10.3390/cells8111319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang N, Liu X, Zhuang L, Liu X, Zhao H, Shan Y, Liu Z, Li F, Wang Y, Fang J (2020) Berberine decreases insulin resistance in a PCOS rats by improving GLUT4: dual regulation of the PI3K/AKT and MAPK pathways. Regul Toxicol Pharmacol 110:104544. https://doi.org/10.1016/j.yrtph.2019.104544

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Budget projects of Shanghai University of traditional Chinese medicine [Grant Number 18LK063], the Shanghai Key Medical Specialities [Grant Number ZK2019B16] and the Clinical Characteristics of Health System in Putuo District, Shanghai [Grant Number 2020tszk01].

Author information

Authors and Affiliations

Authors

Contributions

ML, YW and YJ contributed to the manuscript writing, study design and data analysis. CZ, HW, WS and LC contributed to the drafting of the manuscript. TL and LL supervised the work and designed the study and manuscript writing. All the authors have read and approved the final version to be published.

Corresponding authors

Correspondence to Tao Lei or Limei Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Competing interest

The authors have no relevant financial or non-financial interest to disclose.

Ethical approval

All procedures involving animal studies were carried out with respect to the animal care guidelines and ethical committee approval from Shanghai Putuo Hospital affiliated to Shanghai University of Traditional Chinese Medicine.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, M., Wang, Y., Jiang, Y. et al. Berberine inhibits gluconeogenesis in spontaneous diabetic rats by regulating the AKT/MAPK/NO/cGMP/PKG signaling pathway. Mol Cell Biochem 478, 2013–2027 (2023). https://doi.org/10.1007/s11010-022-04604-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04604-z

Keywords

Navigation