Skip to main content

Advertisement

Log in

Cell-intrinsic factors governing quiescence vis-à-vis activation of adult hematopoietic stem cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hematopoiesis is a highly complex process, regulated by both intrinsic and extrinsic factors. Often, these two regulatory arms work in tandem to maintain the steady-state condition of hematopoiesis. However, at times, certain intrinsic attributes of hematopoietic stem cells (HSCs) override the external stimuli and dominate the outcome. These could be genetic events like mutations or environmentally induced epigenetic or transcriptomic changes. Since leukemic stem cells (LSCs) share molecular pathways that also regulate normal HSCs, identifying specific, dominantly acting intrinsic factors could help in the development of novel therapeutic approaches. Here we have reviewed such dominantly acting intrinsic factors governing quiescence vis-à-vis activation of the HSCs in the face of external forces acting on them. For brevity, we have restricted our review to the articles dealing with adult HSCs of human and mouse origin that have been published in the last 10 years.

Graphical abstract

Hematopoietic stem cells (HSCs) are closely associated with various stromal cells in their microenvironment and, thus, constantly receive signaling cues from them. The illustration depicts some dominantly acting intrinsic or cell-autonomous factors operative in the HSCs. These fall into various categories, such as epigenetic regulators, transcription factors, cell cycle regulators, tumor suppressor genes, signaling pathways, and metabolic regulators, which counteract the outcome of extrinsic signaling exerted by the HSC niche.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Van Overstraeten-Schlögel N, Beguin Y, Gothot A (2006) Role of stromal-derived factor-1 in the hematopoietic-supporting activity of human mesenchymal stem cells. Eur J Haematol 76(6):488–493. https://doi.org/10.1111/j.1600-0609.2006.00633.x

    Article  CAS  PubMed  Google Scholar 

  2. Budgude P, Kale V, Vaidya A (2020) Mesenchymal stromal cell-derived extracellular vesicles as cell-free biologics for the ex vivo expansion of Hematopoietic stem cells. Cell Biol Int 44(5):1078–1102. https://doi.org/10.1002/cbin.11313

    Article  CAS  PubMed  Google Scholar 

  3. Kumar S, Geiger H (2017) HSC niche biology and HSC expansion ex vivo. Trends Mol Med 23(9):799–819. https://doi.org/10.1016/j.molmed.2017.07.003

    Article  PubMed  PubMed Central  Google Scholar 

  4. Budgude P, Kale V, Vaidya A (2021) Cryopreservation of mesenchymal stromal cell-derived extracellular vesicles using trehalose maintains their ability to expand hematopoietic stem cells in vitro. Cryobiology 98:152–163. https://doi.org/10.1016/j.cryobiol.2020.11.009

    Article  CAS  PubMed  Google Scholar 

  5. Kulkarni R, Bajaj M, Ghode S, Jalnapurkar S, Limaye L, Kale VP (2018) Intercellular transfer of microvesicles from young mesenchymal stromal cells rejuvenates aged murine hematopoietic stem cells. Stem Cells 36(3):420–433. https://doi.org/10.1002/stem.2756

    Article  CAS  PubMed  Google Scholar 

  6. Singh S, Moirangthem RD, Vaidya A, Jalnapurkar S, Limaye L, Kale V (2016) AKT signaling prevailing in mesenchymal stromal cells modulates the functionality of hematopoietic stem cells via intercellular communication. Stem Cells 34(9):2354–2367. https://doi.org/10.1002/stem.2409

    Article  CAS  PubMed  Google Scholar 

  7. Amari L, Germain M (2021) Mitochondrial extracellular vesicles—origins and roles. Front Mol Neurosci 14:767219. https://doi.org/10.3389/fnmol.2021.767219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Haas S, Trumpp A, Milsom MD (2018) Causes and consequences of hematopoietic stem cell heterogeneity. Cell Stem Cell 22(5):627–638. https://doi.org/10.1016/j.stem.2018.04.003

    Article  CAS  PubMed  Google Scholar 

  9. Muller-Sieburg CE, Sieburg HB, Bernitz JM, Cattarossi G (2012) Stem cell heterogeneity: implications for aging and regenerative medicine. Blood J Am Soc Hematol 119(17):3900–3907. https://doi.org/10.1182/blood-2011-12-376749

    Article  CAS  Google Scholar 

  10. Muller-Sieburg CE, Sieburg HB (2006) Clonal diversity of the stem cell compartment. Curr Opin Hematol 13(4):243–248. https://doi.org/10.1097/01.moh.0000231421.00407.65

    Article  PubMed  Google Scholar 

  11. Kulkarni R, Kale V (2020) Physiological cues involved in the regulation of adhesion mechanisms in hematopoietic stem cell fate decision. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2020.00611

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lu R, Czechowicz A, Seita J, Jiang D, Weissman IL (2019) Clonal-level lineage commitment pathways of hematopoietic stem cells in vivo. Proc Natl Acad Sci USA 116(4):1447–1456. https://doi.org/10.1073/pnas.1801480116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W, Jaworski M, Trumpp A (2008) Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135(6):1118–1129. https://doi.org/10.1016/j.cell.2008.10.048

    Article  CAS  PubMed  Google Scholar 

  14. Seita J, Weissman IL (2010) Hematopoietic stem cell: Self-renewal versus differentiation. Wiley Interdiscip Rev: Syst Biol Med 2(6):640–653. https://doi.org/10.1002/wsbm.86

    Article  CAS  PubMed  Google Scholar 

  15. Mayer IM, Hoelbl-Kovacic A, Sexl V, Doma E (2022) Isolation, maintenance and expansion of adult hematopoietic stem/progenitor cells and leukemic stem cells. Cancers 14(7):1723. https://doi.org/10.3390/cancers14071723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pietras EM, Warr MR, Passegué E (2011) Cell cycle regulation in hematopoietic stem cells. J Cell Biol 195(5):709–720. https://doi.org/10.1083/jcb.201102131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yamada T, Park CS, Lacorazza HD (2013) Genetic control of quiescence in hematopoietic stem cells. Cell Cycle 12(15):2376–2383. https://doi.org/10.4161/cc.25416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cheng T, Scadden DT (2002) Cell cycle entry of hematopoietic stem and progenitor cells controlled by distinct cyclin-dependent kinase inhibitors. Int J Hematol 75(5):460–465. https://doi.org/10.1007/BF02982107

    Article  CAS  PubMed  Google Scholar 

  19. Cheng T, Rodrigues N, Dombkowski D, Stier S, Scadden DT (2000) Stem cell repopulation efficiency but not pool size is governed by p27kip1. Nat Med 6(11):1235–1240. https://doi.org/10.1038/81335

    Article  CAS  PubMed  Google Scholar 

  20. Zou P, Yoshihara H, Hosokawa K, Tai I, Shinmyozu K, Tsukahara F, Suda T (2011) p57Kip2 and p27Kip1 Cooperate to Maintain Hematopoietic Stem Cell Quiescence through Interactions with Hsc70. Cell Stem Cell 9(3):247–261. https://doi.org/10.1016/j.stem.2011.07.003

    Article  CAS  PubMed  Google Scholar 

  21. Yamazaki S, Iwama A, Takayanagi S, Morita Y, Eto K, Ema H, Nakauchi H (2006) Cytokine signals modulated via lipid rafts mimic niche signals and induce hibernation in hematopoietic stem cells. EMBO J 25(15):3515–3523. https://doi.org/10.1038/sj.emboj.7601236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Matsumoto A, Takeishi S, Kanie T, Susaki E, Onoyama I, Tateishi Y, Nakayama KI (2011) p57 is required for quiescence and maintenance of adult hematopoietic stem cells. Cell Stem Cell 9(3):262–271. https://doi.org/10.1016/j.stem.2011.06.014

    Article  CAS  PubMed  Google Scholar 

  23. Hilpert M, Legrand C, Bluteau D, Balayn N, Betems A, Bluteau O, Debili N (2014) p19INK4d controls hematopoietic stem cells in a cell-autonomous manner during genotoxic stress and through the microenvironment during aging. Stem Cell Rep 3(6):1085–1102. https://doi.org/10.1016/j.stemcr.2014.10.005

    Article  CAS  Google Scholar 

  24. Laurenti E, Frelin C, Xie S, Ferrari R, Dunant CF, Zandi S, Chen J (2015) CDK6 levels regulate quiescence exit in human hematopoietic stem cells. Cell Stem Cell 16(3):302–313. https://doi.org/10.1016/j.stem.2015.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bogunia-Kubik K (2001) Cytokine production by adult and cord blood (CB) cells–comparison and explanation of differences. Postepy Higieny i Medycyny Doswiadczalnej 55(5):629–641

    CAS  PubMed  Google Scholar 

  26. Scheicher R, Hoelbl-Kovacic A, Bellutti F, Tigan A-S, Prchal-Murphy M, Heller G, Zuber J (2015) CDK6 as a key regulator of hematopoietic and leukemic stem cell activation. Blood J Am Soc Hematol 125(1):90–101. https://doi.org/10.1182/blood-2014-06-584417

    Article  CAS  Google Scholar 

  27. Maurer B, Brandstoetter T, Kollmann S, Sexl V, Prchal-Murphy M (2021) Inducible deletion of CDK4 and CDK6–deciphering CDK4/6 inhibitor effects in the hematopoietic system. Haematologica 106(10):2624. https://doi.org/10.3324/haematol.2020.256313

    Article  CAS  PubMed  Google Scholar 

  28. Chen JY, Miyanishi M, Wang SK, Yamazaki S, Sinha R, Kao KS, Weissman IL (2016) Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature 530(7589):223–227. https://doi.org/10.1038/nature16943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sakamaki T, Kao KS, Nishi K, Chen JY, Sadaoka K, Fujii M, Miyanishi M (2021) Hoxb5 defines the heterogeneity of self-renewal capacity in the hematopoietic stem cell compartment. Biochem Biophys Res Commun 539:34–41. https://doi.org/10.1016/j.bbrc.2020.12.077

    Article  CAS  PubMed  Google Scholar 

  30. Miyake N, Brun ACM, Magnusson M, Miyake K, Scadden DT, Karlsson S (2006) HOXB4-induced self-renewal of hematopoietic stem cells is significantly enhanced by p21 deficiency. Stem Cells 24(3):653–661. https://doi.org/10.1634/stemcells.2005-0328

    Article  CAS  PubMed  Google Scholar 

  31. Wilson A, Laurenti E, Trumpp A (2009) Balancing dormant and self-renewing hematopoietic stem cells. Curr Opin Genet Dev 19(5):461–468. https://doi.org/10.1016/j.gde.2009.08.005

    Article  CAS  PubMed  Google Scholar 

  32. Ezoe S, Matsumura I, Satoh Y, Tanaka H, Kanakura Y (2004) Cell cycle regulation in hematopoietic stem/progenitor cells. Cell Cycle 3(3):312–316. https://doi.org/10.4161/cc.3.3.710

    Article  Google Scholar 

  33. Hock H, Hamblen MJ, Rooke HM, Schindler JW, Saleque S, Fujiwara Y, Orkin SH (2004) Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature 431(7011):1002–1007. https://doi.org/10.1038/nature02994

    Article  CAS  PubMed  Google Scholar 

  34. Lacorazza HD, Yamada T, Liu Y, Miyata Y, Sivina M, Nunes J, Nimer SD (2006) The transcription factor MEF/ELF4 regulates the quiescence of primitive hematopoietic cells. Cancer Cell 9(3):175–187. https://doi.org/10.1016/j.ccr.2006.02.017

    Article  CAS  PubMed  Google Scholar 

  35. Ficara F, Murphy MJ, Lin M, Cleary ML (2008) Pbx1 regulates self-renewal of long-term hematopoietic stem cells by maintaining their quiescence. Cell Stem Cell 2(5):484–496. https://doi.org/10.1016/j.stem.2008.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Laurenti E, Varnum-Finney B, Wilson A, Ferrero I, Blanco-Bose WE, Ehninger A, Eisenman RN (2008) Hematopoietic stem cell function and survival depend on c-Myc and N-Myc activity. Cell Stem Cell 3(6):611–624. https://doi.org/10.1016/j.stem.2008.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li J (2011) Quiescence regulators for hematopoietic stem cell. Exp Hematol 39(5):511–520. https://doi.org/10.1016/j.exphem.2011.01.008

    Article  CAS  PubMed  Google Scholar 

  38. Ye M, Zhang H, Amabile G, Yang H, Staber PB, Zhang P, Kawasaki A (2013) C/EBPa controls acquisition and maintenance of adult haematopoietic stem cell quiescence. Nat Cell Biol 15(4):385–394. https://doi.org/10.1038/ncb2698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rodriguez-Fraticelli AE, Weinreb C, Wang S-W, Migueles RP, Jankovic M, Usart M, Camargo FD (2020) Single-cell lineage tracing unveils a role for TCF15 in haematopoiesis. Nature 583(7817):585–589. https://doi.org/10.1038/s41586-020-2503-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ariki R, Morikawa S, Mabuchi Y, Suzuki S, Nakatake M, Yoshioka K, Nakamura T (2014) Homeodomain transcription factor Meis1 is a critical regulator of adult bone marrow hematopoiesis. PLoS ONE 9(2):e87646. https://doi.org/10.1371/journal.pone.0087646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Eliasson P, Rehn M, Hammar P, Larsson P, Sirenko O, Flippin LA, Jönsson J-I (2010) Hypoxia mediates low cell-cycle activity and increases the proportion of long-term–reconstituting hematopoietic stem cells during in vitro culture. Exp Hematol 38(4):301-310.e2. https://doi.org/10.1016/j.exphem.2010.01.005

    Article  CAS  PubMed  Google Scholar 

  42. Singh RP, Franke K, Kalucka J, Mamlouk S, Muschter A, Gembarska A, Anastassiadis K (2013) HIF prolyl hydroxylase 2 (PHD2) is a critical regulator of hematopoietic stem cell maintenance during steady-state and stress. Blood J Am Soc Hematol 121(26):5158–5166. https://doi.org/10.1182/blood-2012-12-471185

    Article  CAS  Google Scholar 

  43. Forristal CE, Winkler IG, Nowlan B, Barbier V, Walkinshaw G, Levesque J-P (2013) Pharmacologic stabilization of HIF-1α increases hematopoietic stem cell quiescence in vivo and accelerates blood recovery after severe irradiation. Blood J Am Soc Hematol 121(5):759–769. https://doi.org/10.1182/blood-2012-02-408419

    Article  CAS  Google Scholar 

  44. Bisht K, Brunck ME, Matsumoto T, McGirr C, Nowlan B, Fleming W, Davies J (2019) HIF prolyl hydroxylase inhibitor FG-4497 enhances mouse hematopoietic stem cell mobilization via VEGFR2/KDR. Blood Adv 3(3):406–418. https://doi.org/10.1182/bloodadvances.2018017566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chavez JS, Rabe JL, Loeffler D, Higa KC, Hernandez G, Mills TS, Idler BM (2021) PU. 1 enforces quiescence and limits hematopoietic stem cell expansion during inflammatory stress. J Exp Med 218(6):e20201169. https://doi.org/10.1084/jem.20201169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Benyoucef A, Calvo J, Renou L, Arcangeli M, van den Heuvel A, Amsellem S, Naguibneva I (2015) The SCL/TAL1 transcription factor represses the stress protein DDiT4/REDD1 in human hematopoietic stem/progenitor cells. Stem Cells 33(7):2268–2279. https://doi.org/10.1002/stem.2028

    Article  CAS  PubMed  Google Scholar 

  47. Lu Y, Zhang Z, Wang S, Qi Y, Chen F, Xu Y, Yang L (2022) Srebf1c preserves hematopoietic stem cell function and survival as a switch of mitochondrial metabolism. Stem Cell Rep 17(3):599–615. https://doi.org/10.1016/j.stemcr.2022.01.011

    Article  CAS  Google Scholar 

  48. Lu Z, Hong CC, Kong G, Assumpção ALFV, Ong IM, Bresnick EH, Pan X (2018) Polycomb group protein YY1 is an essential regulator of hematopoietic stem cell quiescence. Cell Rep 22(6):1545–1559. https://doi.org/10.1016/j.celrep.2018.01.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gudmundsson KO, Nguyen N, Oakley K, Han Y, Gudmundsdottir B, Liu P, Du Y (2020) Prdm16 is a critical regulator of adult long-term hematopoietic stem cell quiescence. Proc Natl Acad Sci USA 117(50):31945–31953. https://doi.org/10.1073/pnas.2017626117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bond HM, Mesuraca M, Carbone E, Bonelli P, Agosti V, Amodio N, Venuta S (2004) Early hematopoietic zinc finger protein (EHZF), the human homolog to mouse Evi3, is highly expressed in primitive human hematopoietic cells. Blood 103(6):2062–2070. https://doi.org/10.1182/blood-2003-07-2388

    Article  CAS  PubMed  Google Scholar 

  51. Garrison BS, Rybak AP, Beerman I, Heesters B, Mercier FE, Scadden DT, Rossi DJ (2017) ZFP521 regulates murine hematopoietic stem cell function and facilitates MLL-AF9 leukemogenesis in mouse and human cells. Blood 130(5):619–624. https://doi.org/10.1182/blood-2016-09-738591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li Z, Fu X, Wu W, Liu Z, Chen Z, Zhou C, Hou Y (2021) Zfp521 is essential for the quiescence and maintenance of adult hematopoietic stem cells under stress. iScience 24(2):102039. https://doi.org/10.1016/j.isci.2021.102039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yu S, Cui K, Jothi R, Zhao D-M, Jing X, Zhao K, Xue H-H (2011) GABP controls a critical transcription regulatory module that is essential for maintenance and differentiation of hematopoietic stem/progenitor cells. Blood 117(7):2166–2178. https://doi.org/10.1182/blood-2010-09-306563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Will B, Vogler TO, Bartholdy B, Garrett-Bakelman F, Mayer J, Barreyro L, Steidl U (2013) Satb1 regulates the self-renewal of hematopoietic stem cells by promoting quiescence and repressing differentiation commitment. Nat Immunol 14(5):437–445. https://doi.org/10.1038/ni.2572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hou Y, Li W, Sheng Y, Li L, Huang Y, Zhang Z, Qian Z (2015) The transcription factor Foxm1 is essential for the quiescence and maintenance of hematopoietic stem cells. Nat Immunol 16(8):810–818. https://doi.org/10.1038/ni.3204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Antoniani C, Romano O, Miccio A (2017) Concise review: epigenetic regulation of hematopoiesis: biological insights and therapeutic applications. Stem Cells Transl Med 6(12):2106–2114. https://doi.org/10.1002/sctm.17-0192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Maher M, Diesch J, Le Pannérer MM, Buschbeck M (2021) Epigenetics in a spectrum of myeloid diseases and its exploitation for therapy. Cancers 13(7):1746. https://doi.org/10.3390/cancers13071746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chattopadhyaya S, Ghosal S (2022) DNA methylation: a saga of genome maintenance in hematological perspective. Hum Cell 35(2):448–461. https://doi.org/10.1007/s13577-022-00674-9

    Article  CAS  PubMed  Google Scholar 

  59. Oh I, Humphries RK (2012) Concise review: multidimensional regulation of the hematopoietic stem cell state. Stem Cells 30(1):82–88. https://doi.org/10.1002/stem.776

    Article  CAS  PubMed  Google Scholar 

  60. Yang Z, Jiang H (2020) A chromatin perspective on metabolic and genotoxic impacts on hematopoietic stem and progenitor cells. Cell Mol Life Sci 77(20):4031–4047. https://doi.org/10.1007/s00018-020-03522-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Challen GA, Sun D, Mayle A, Jeong M, Luo M, Rodriguez B, Goodell MA (2014) Dnmt3a and Dnmt3b have overlapping and distinct functions in hematopoietic stem cells. Cell Stem Cell 15(3):350–364. https://doi.org/10.1016/j.stem.2014.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kunimoto H, Fukuchi Y, Sakurai M, Takubo K, Okamoto S, Nakajima H (2014) Tet2-mutated myeloid progenitors possess aberrant in vitro self-renewal capacity. Blood 123(18):2897–2899. https://doi.org/10.1182/blood-2014-01-552471

    Article  CAS  PubMed  Google Scholar 

  63. Izzo F, Lee SC, Poran A, Chaligne R, Gaiti F, Gross B, Landau DA (2020) DNA methylation disruption reshapes the hematopoietic differentiation landscape. Nat Genet 52(4):378–387. https://doi.org/10.1038/s41588-020-0595-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Han L, Madan V, Mayakonda A, Dakle P, Woon TW, Shyamsunder P, Koeffler HP (2019) Chromatin remodeling mediated by ARID1A is indispensable for normal hematopoiesis in mice. Leukemia 33(9):2291–2305. https://doi.org/10.1038/s41375-019-0438-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Krasteva V, Buscarlet M, Diaz-Tellez A, Bernard M-A, Crabtree GR, Lessard JA (2012) The BAF53a subunit of SWI/SNF-like BAF complexes is essential for hemopoietic stem cell function. Blood 120(24):4720–4732. https://doi.org/10.1182/blood-2012-04-427047

    Article  CAS  PubMed  Google Scholar 

  66. Krasteva V, Crabtree GR, Lessard JA (2017) The BAF45a/PHF10 subunit of SWI/SNF-like chromatin remodeling complexes is essential for hematopoietic stem cell maintenance. Exp Hematol 48:58-71.e15. https://doi.org/10.1016/j.exphem.2016.11.008

    Article  CAS  PubMed  Google Scholar 

  67. Naidu SR, Capitano M, Ropa J, Cooper S, Huang X, Broxmeyer HE (2022) Chromatin remodeling subunit BRM and valine regulate hematopoietic stem/progenitor cell function and self-renewal via intrinsic and extrinsic effects. Leukemia 36(3):821–833. https://doi.org/10.1038/s41375-021-01426-8

    Article  CAS  PubMed  Google Scholar 

  68. Sun S, Jiang N, Jiang Y, He Q, He H, Wang X, Zhao B (2020) Chromatin remodeler Znhit1 preserves hematopoietic stem cell quiescence by determining the accessibility of distal enhancers. Leukemia 34(12):3348–3358. https://doi.org/10.1038/s41375-020-0988-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nita A, Muto Y, Katayama Y, Matsumoto A, Nishiyama M, Nakayama KI (2021) The autism-related protein CHD8 contributes to the stemness and differentiation of mouse hematopoietic stem cells. Cell Rep 34(5):108688. https://doi.org/10.1016/j.celrep.2021.108688

    Article  CAS  PubMed  Google Scholar 

  70. Chen Z, Huo D, Li L, Liu Z, Li Z, Xu S, Hou Y (2021) Nuclear DEK preserves hematopoietic stem cells potential via NCoR1/HDAC3-Akt1/2-mTOR axis. J Exp Med 218(5):e20201974. https://doi.org/10.1084/jem.20201974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Serrano-Lopez J, Nattamai K, Pease NA, Shephard MS, Wellendorf AM, Sertorio M, Privette Vinnedge LM (2018) Loss of DEK induces radioresistance of murine restricted hematopoietic progenitors. Exp Hematol 59:40-50.e3. https://doi.org/10.1016/j.exphem.2017.12.009

    Article  CAS  PubMed  Google Scholar 

  72. Takayama N, Murison A, Takayanagi S, Arlidge C, Zhou S, Garcia-Prat L, Lupien M (2021) The transition from quiescent to activated states in human hematopoietic stem cells is governed by dynamic 3D genome reorganization. Cell Stem Cell 28(3):488-501.e10. https://doi.org/10.1016/j.stem.2020.11.001

    Article  CAS  PubMed  Google Scholar 

  73. Zhou Y, Yan X, Feng X, Jiachen B, Dong Y, Lin P, Huang G (2018) Setd2 regulates quiescence and differentiation of adult hematopoietic stem cells by restricting RNA polymerase II elongation. Haematologica 103(7):1110–1123. https://doi.org/10.3324/haematol.2018.187708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jones M, Chase J, Brinkmeier M, Xu J, Weinberg DN, Schira J, Maillard I (2015) Ash1l controls quiescence and self-renewal potential in hematopoietic stem cells. J Clin Investig 125(5):2007–2020. https://doi.org/10.1172/JCI78124

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hidalgo I, Herrera-Merchan A, Ligos JM, Carramolino L, Nuñez J, Martinez F, Gonzalez S (2012) Ezh1 is required for hematopoietic stem cell maintenance and prevents senescence-like cell cycle arrest. Cell Stem Cell 11(5):649–662. https://doi.org/10.1016/j.stem.2012.08.001

    Article  CAS  PubMed  Google Scholar 

  76. Yang Y, Kueh AJ, Grant ZL, Abeysekera W, Garnham AL, Wilcox S, Thomas T (2022) The histone lysine acetyltransferase HBO1 (KAT7) regulates hematopoietic stem cell quiescence and self-renewal. Blood 139(6):845–858. https://doi.org/10.1182/blood.2021013954

    Article  CAS  PubMed  Google Scholar 

  77. Iwama A, Oguro H, Negishi M, Kato Y, Morita Y, Tsukui H, Koseki H (2004) Enhanced self-renewal of hematopoietic stem cells mediated by the polycomb gene product Bmi-1. Immunity 21(6):843–851. https://doi.org/10.1016/j.immuni.2004.11.004Freearticle

    Article  CAS  PubMed  Google Scholar 

  78. Kinkel SA, Galeev R, Flensburg C, Keniry A, Breslin K, Gilan O, Gearing LJ (2015) Jarid2 regulates hematopoietic stem cell function by acting with polycomb repressive complex 2. Blood J Am Soc Hematol 125(12):1890–1900. https://doi.org/10.1182/blood-2014-10-603969

    Article  CAS  Google Scholar 

  79. Xie H, Xu J, Hsu JH, Nguyen M, Fujiwara Y, Peng C, Orkin SH (2014) Polycomb repressive complex 2 regulates normal hematopoietic stem cell function in a developmental-stage-specific manner. Cell Stem Cell 14(1):68–80. https://doi.org/10.1016/j.stem.2013.10.001

    Article  CAS  PubMed  Google Scholar 

  80. Lee SCW, Miller S, Hyland C, Kauppi M, Lebois M, Di Rago L, Blewitt ME (2015) Polycomb repressive complex 2 component Suz12 is required for hematopoietic stem cell function and lymphopoiesis. Blood J Am Soc Hematol 126(2):167–175. https://doi.org/10.1182/blood-2014-12-615898

    Article  CAS  Google Scholar 

  81. Huang XF, Nandakumar V, Tumurkhuu G, Wang T, Jiang X, Hong B, Chen S-Y (2016) Mysm1 is required for interferon regulatory factor expression in maintaining HSC quiescence and thymocyte development. Cell Death Dis 7(6):e2260–e2260. https://doi.org/10.1038/cddis.2016.162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Huo Y, Li B-Y, Lin Z-F, Wang W, Jiang X-X, Chen X, Wang T (2018) MYSM1 is essential for maintaining hematopoietic stem cell (HSC) quiescence and survival. Med Sci Monit 24:2541–2549. https://doi.org/10.12659/MSM.906876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang T, Nandakumar V, Jiang X-X, Jones L, Yang A-G, Huang XF, Chen S-Y (2013) The control of hematopoietic stem cell maintenance, self-renewal, and differentiation by Mysm1-mediated epigenetic regulation. Blood 122(16):2812–2822. https://doi.org/10.1182/blood-2013-03-489641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lechman ER, Gentner B, van Galen P, Giustacchini A, Saini M, Boccalatte FE, Naldini L (2012) Attenuation of miR-126 activity expands HSC in vivo without exhaustion. Cell Stem Cell 11(6):799–811. https://doi.org/10.1016/j.stem.2012.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Haetscher N, Feuermann Y, Wingert S, Rehage M, Thalheimer FB, Weiser C, Rieger MA (2015) STAT5-regulated microRNA-193b controls haematopoietic stem and progenitor cell expansion by modulating cytokine receptor signalling. Nat Commun 6(1):8928. https://doi.org/10.1038/ncomms9928

    Article  CAS  PubMed  Google Scholar 

  86. Mengjia H, Yukai L, Zeng H, Zhang Z, Chen S, Qi Y, Wang J (2021) MicroRNA-21 maintains hematopoietic stem cell homeostasis through sustaining the NF-κB signaling pathway in mice. Haematologica 106(2):412–423. https://doi.org/10.3324/haematol.2019.236927

    Article  CAS  Google Scholar 

  87. Khalaj M, Woolthuis CM, Hu W, Durham BH, Chu SH, Qamar S, Park CY (2017) miR-99 regulates normal and malignant hematopoietic stem cell self-renewal. J Exp Med 214(8):2453–2470. https://doi.org/10.1084/jem.20161595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hu W, Dooley J, Chung SS, Chandramohan D, Cimmino L, Mukherjee S, Park CY (2015) miR-29a maintains mouse hematopoietic stem cell self-renewal by regulating Dnmt3a. Blood 125(14):2206–2216. https://doi.org/10.1182/blood-2014-06-585273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Venkatraman A, He XC, Thorvaldsen JL, Sugimura R, Perry JM, Tao F, Li L (2013) Maternal imprinting at the H19–Igf2 locus maintains adult haematopoietic stem cell quiescence. Nature 500(7462):345–349. https://doi.org/10.1038/nature12303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cheng Y, Luo H, Izzo F, Pickering BF, Nguyen D, Myers R, Kharas MG (2019) m6A RNA methylation maintains hematopoietic stem cell identity and symmetric commitment. Cell Rep 28(7):1703-1716.e6. https://doi.org/10.1016/j.celrep.2019.07.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yao QJ, Sang L, Lin M, Yin X, Dong W, Gong Y, Zhou BO (2018) Mettl3–Mettl14 methyltransferase complex regulates the quiescence of adult hematopoietic stem cells. Cell Res 28(9):952–954. https://doi.org/10.1038/s41422-018-0062-2

    Article  PubMed  PubMed Central  Google Scholar 

  92. Yankova E, Blackaby W, Albertella M, Rak J, De Braekeleer E, Tsagkogeorga G, Kouzarides T (2021) Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature 593(7860):597–601. https://doi.org/10.1038/s41586-021-03536-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang H, Zuo H, Liu J, Wen F, Gao Y, Zhu X, Ju Z (2018) Loss of YTHDF2-mediated m6A-dependent mRNA clearance facilitates hematopoietic stem cell regeneration. Cell Res 28(10):1035–1038. https://doi.org/10.1038/s41422-018-0082-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yilmaz ÖH, Valdez R, Theisen BK, Guo W, Ferguson DO, Wu H, Morrison SJ (2006) Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441(7092):475–482. https://doi.org/10.1038/nature04703

    Article  CAS  PubMed  Google Scholar 

  95. Liu Y, Elf SE, Miyata Y, Sashida G, Liu Y, Huang G, Menendez S (2009) p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell 4(1):37–48. https://doi.org/10.1016/j.stem.2008.11.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Viatour P, Somervaille TC, Venkatasubrahmanyam S, Kogan S, McLaughlin ME, Weissman IL, Sage J (2008) Hematopoietic stem cell quiescence is maintained by compound contributions of the retinoblastoma gene family. Cell Stem Cell 3(4):416–428. https://doi.org/10.1016/j.stem.2008.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ito K, Bernardi R, Morotti A, Matsuoka S, Saglio G, Ikeda Y, Pandolfi PP (2008) PML targeting eradicates quiescent leukaemia-initiating cells. Nature 453(7198):1072–1078. https://doi.org/10.1038/nature07016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Qian Z, Chen L, Fernald AA, Williams BO, Le Beau MM (2008) A critical role for Apc in hematopoietic stem and progenitor cell survival. J Exp Med 205(9):2163–2175. https://doi.org/10.1084/jem.20080578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Thompson BJ, Jankovic V, Gao J, Buonamici S, Vest A, Lee JM, Aifantis I (2008) Control of hematopoietic stem cell quiescence by the E3 ubiquitin ligase Fbw7. J Exp Med 205(6):1395–1408. https://doi.org/10.1084/jem.20080277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Krug U, Ganser A, Koeffler HP (2002) Tumor suppressor genes in normal and malignant hematopoiesis. Oncogene 21(21):3475–3495. https://doi.org/10.1038/sj.onc.1205322

    Article  CAS  PubMed  Google Scholar 

  101. Asai T, Liu Y, Di Giandomenico S, Bae N, Ndiaye-Lobry D, Deblasio A, Nimer SD (2012) Necdin, a p53 target gene, regulates the quiescence and response to genotoxic stress of hematopoietic stem/progenitor cells. Blood 120(8):1601–1612. https://doi.org/10.1182/blood-2011-11-393983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yamashita M, Nitta E, Suda T (2015) Aspp1 preserves hematopoietic stem cell pool integrity and prevents malignant transformation. Cell Stem Cell 17(1):23–34. https://doi.org/10.1016/j.stem.2015.05.013

    Article  CAS  PubMed  Google Scholar 

  103. Baba M, Toyama H, Sun L, Takubo K, Suh H-C, Hasumi H, Nakagata N (2016) Loss of folliculin disrupts hematopoietic stem cell quiescence and homeostasis resulting in bone marrow failure. Stem Cells 34(4):1068–1082. https://doi.org/10.1002/stem.2293

    Article  CAS  PubMed  Google Scholar 

  104. Asai T, Liu Y, Bae N, Nimer SD (2011) The p53 tumor suppressor protein regulates hematopoietic stem cell fate. J Cell Physiol 226(9):2215–2221. https://doi.org/10.1002/jcp.22561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ito K, Bonora M, Ito K (2019) Metabolism as master of hematopoietic stem cell fate. Int J Hematol 109(1):18–27. https://doi.org/10.1007/s12185-018-2534-z

    Article  PubMed  Google Scholar 

  106. Hsu P, Qu C-K (2013) Metabolic plasticity and hematopoietic stem cell biology. Curr Opin Hematol. https://doi.org/10.1097/MOH.0b013e328360ab4d

    Article  PubMed  PubMed Central  Google Scholar 

  107. Hu M, Wang J (2019) Mitochondrial metabolism and the maintenance of hematopoietic stem cell quiescence. Curr Opin Hematol. https://doi.org/10.1097/MOH.0000000000000507

    Article  PubMed  Google Scholar 

  108. Liang R, Arif T, Kalmykova S, Kasianov A, Lin M, Menon V, Ghaffari S (2020) Restraining lysosomal activity preserves hematopoietic stem cell quiescence and potency. Cell Stem Cell 26(3):359–376. https://doi.org/10.1016/j.stem.2020.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Takubo K, Nagamatsu G, Kobayashi CI, Nakamura-Ishizu A, Kobayashi H, Ikeda E, Suda T (2013) Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell 12(1):49–61. https://doi.org/10.1016/j.stem.2012.10.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ho TT, Warr MR, Adelman ER, Lansinger OM, Flach J, Verovskaya EV, Passegué E (2017) Autophagy maintains the metabolism and function of young and old stem cells. Nature 543(7644):205–210. https://doi.org/10.1038/nature21388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Maryanovich M, Oberkovitz G, Niv H, Vorobiyov L, Zaltsman Y, Brenner O, Gross A (2012) The ATM–BID pathway regulates quiescence and survival of haematopoietic stem cells. Nat Cell Biol 14(5):535–541. https://doi.org/10.1038/ncb2468

    Article  CAS  PubMed  Google Scholar 

  112. Maryanovich M, Zaltsman Y, Ruggiero A, Goldman A, Shachnai L, Zaidman SL, Gross A (2015) An MTCH2 pathway repressing mitochondria metabolism regulates haematopoietic stem cell fate. Nat Commun 6(1):7901. https://doi.org/10.1038/ncomms8901

    Article  CAS  PubMed  Google Scholar 

  113. Ito K, Carracedo A, Weiss D, Arai F, Ala U, Avigan DE, Pandolfi PP (2012) A PML–PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat Med 18(9):1350–1358. https://doi.org/10.1038/nm.2882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Stein SJ, Baldwin AS (2013) Deletion of the NF-κB subunit p65/RelA in the hematopoietic compartment leads to defects in hematopoietic stem cell function. Blood 121(25):5015–5024. https://doi.org/10.1182/blood-2013-02-486142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Fang J, Muto T, Kleppe M, Bolanos LC, Hueneman KM, Walker CS, Starczynowski DT (2018) TRAF6 mediates basal activation of NF-Kba; B necessary for hematopoietic stem cell homeostasis. Cell Rep 22(5):1250–1262. https://doi.org/10.1016/j.celrep.2018.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nakagawa MM, Thummar K, Mandelbaum J, Pasqualucci L, Rathinam CV (2015) Lack of the ubiquitin-editing enzyme A20 results in loss of hematopoietic stem cell quiescence. J Exp Med 212(2):203–216. https://doi.org/10.1084/jem.20132544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tesio M, Tang Y, Müdder K, Saini M, von Paleske L, Macintyre E, Trumpp A (2015) Hematopoietic stem cell quiescence and function are controlled by the CYLD–TRAF2–p38MAPK pathway. J Exp Med 212(4):525–538. https://doi.org/10.1084/jem.20141438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Baumgartner C, Toifl S, Farlik M, Halbritter F, Scheicher R, Fischer I, Baccarini M (2018) An ERK-dependent feedback mechanism prevents hematopoietic stem cell exhaustion. Cell Stem Cell 22(6):879-892.e6. https://doi.org/10.1016/j.stem.2018.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lin KK, Rossi L, Boles NC, Hall BE, George TC, Goodell MA (2011) CD81 is essential for the re-entry of hematopoietic stem cells to quiescence following stress-induced proliferation via deactivation of the Akt pathway. PLOS Biol 9(9):e1001148. https://doi.org/10.1371/journal.pbio.1001148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Höpner SS, Raykova A, Radpour R, Amrein MA, Koller D, Baerlocher GM, Ochsenbein AF (2021) LIGHT/LTβR signaling regulates self-renewal and differentiation of hematopoietic and leukemia stem cells. Nat Commun 12(1):1065. https://doi.org/10.1038/s41467-021-21317-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Fukushima T, Tanaka Y, Hamey FK, Chang C-H, Oki T, Asada S, Kitamura T (2019) Discrimination of dormant and active hematopoietic stem cells by G0 marker reveals dormancy regulation by cytoplasmic calcium. Cell Rep 29(12):4144-4158.e7. https://doi.org/10.1016/j.celrep.2019.11.061

    Article  CAS  PubMed  Google Scholar 

  122. Thomas DD, Sommer AG, Balazs AB, Beerman I, Murphy GJ, Rossi D, Mostoslavsky G (2016) Insulin-like growth factor 2 modulates murine hematopoietic stem cell maintenance through upregulation of p57. Exp Hematol 44(5):422-433.e1. https://doi.org/10.1016/j.exphem.2016.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tsai JJ, Dudakov JA, Takahashi K, Shieh J-H, Velardi E, Holland AM, van den Brink MRM (2013) Nrf2 regulates haematopoietic stem cell function. Nat Cell Biol 15(3):309–316. https://doi.org/10.1038/ncb2699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Liu M-H, Zhang X-C, Chen J, Yang Y-S, Wang Y-Q, Zheng J-K, Huang Y (2021) FAM122A is required for hematopoietic stem cell function. Leukemia 35(7):2130–2134. https://doi.org/10.1038/s41375-020-01099-9

    Article  PubMed  Google Scholar 

  125. Saito-Reis CA, Marjon KD, Pascetti EM, Floren M, Gillette JM (2018) The tetraspanin CD82 regulates bone marrow homing and engraftment of hematopoietic stem and progenitor cells. Mol Biol Cell 29(24):2946–2958. https://doi.org/10.1091/mbc.E18-05-0305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hu M, Lu Y, Wang S, Zhang Z, Qi Y, Chen N, Wang J (2022) CD63 acts as a functional marker in maintaining hematopoietic stem cell quiescence through supporting TGFβ signaling in mice. Cell Death Differ 29(1):178–191. https://doi.org/10.1038/s41418-021-00848-2

    Article  CAS  PubMed  Google Scholar 

  127. Termini CM, Pang A, Li M, Fang T, Chang VY, Chute JP (2022) Syndecan-2 enriches for hematopoietic stem cells and regulates stem cell repopulating capacity. Blood 139(2):188–204. https://doi.org/10.1182/blood.2020010447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Rodgers JT, King KY, Brett JO, Cromie MJ, Charville GW, Maguire KK, Rando TA (2014) mTORC1 controls the adaptive transition of quiescent stem cells from G0 to GAlert. Nature 510(7505):393–396. https://doi.org/10.1038/nature13255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kale VP (2022) A chimeric feeder comprising transforming growth factor beta 1- and basic fibroblast growth factor-primed bone marrow-derived mesenchymal stromal cells suppresses the expansion of hematopoietic stem and progenitor cells. Cell Biol Int. https://doi.org/10.1002/cbin.11904

    Article  PubMed  Google Scholar 

  130. Pessoa Rodrigues C, Akhtar A (2021) Differential H4K16ac levels ensure a balance between quiescence and activation in hematopoietic stem cells. Sci Adv 7(32):5987. https://doi.org/10.1126/sciadv.abi5987

    Article  CAS  Google Scholar 

  131. Zhang Z, Lu Y, Qi Y, Xu Y, Wang S, Chen F, Yang L (2022) CDK19 regulates the proliferation of hematopoietic stem cells and acute myeloid leukemia cells by suppressing p53-mediated transcription of p21. Leukemia 36(4):956–969. https://doi.org/10.1038/s41375-022-01512-5

    Article  CAS  PubMed  Google Scholar 

  132. Ku C-J, Hosoya T, Maillard I, Engel JD (2012) GATA-3 regulates hematopoietic stem cell maintenance and cell-cycle entry. Blood J Am Soc Hematol 119(10):2242–2251. https://doi.org/10.1182/blood-2011-07-366070

    Article  CAS  Google Scholar 

  133. Frelin C, Herrington R, Janmohamed S, Barbara M, Tran G, Paige CJ, Busslinger M (2013) GATA-3 regulates the self-renewal of long-term hematopoietic stem cells. Nat Immunol 14(10):1037–1044. https://doi.org/10.1038/ni.2692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Karigane D, Kobayashi H, Morikawa T, Ootomo Y, Sakai M, Nagamatsu G, Takubo K (2016) p38α activates purine metabolism to initiate hematopoietic stem/progenitor cell cycling in response to stress. Cell Stem Cell 19(2):192–204. https://doi.org/10.1016/j.stem.2016.05.013

    Article  CAS  PubMed  Google Scholar 

  135. Murakami S, Suzuki T, Harigae H, Romeo P-H, Yamamoto M, Motohashi H (2017) NRF2 activation impairs quiescence and bone marrow reconstitution capacity of hematopoietic stem cells. Mol Cell Biol 37(19):e00086-e117. https://doi.org/10.1128/MCB.00086-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Merchant AA, Singh A, Matsui W, Biswal S (2011) The redox-sensitive transcription factor Nrf2 regulates murine hematopoietic stem cell survival independently of ROS levels. Blood J Am Soc Hematol 118(25):6572–6579. https://doi.org/10.1182/blood-2011-05-355362

    Article  CAS  Google Scholar 

  137. Kim J-H, Thimmulappa RK, Kumar V, Cui W, Kumar S, Kombairaju P, Macvittie T (2014) NRF2-mediated Notch pathway activation enhances hematopoietic reconstitution following myelosuppressive radiation. J Clin Investig 124(2):730–741. https://doi.org/10.1172/JCI70812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. García-Prat L, Kaufmann KB, Schneiter F, Voisin V, Murison A, Chen J, Smith SA (2021) TFEB-mediated endolysosomal activity controls human hematopoietic stem cell fate. Cell Stem Cell 28(10):1838–1850. https://doi.org/10.1016/j.stem.2021.07.003

    Article  CAS  PubMed  Google Scholar 

  139. Lagadinou ED, Sach A, Callahan K, Rossi RM, Neering SJ, Minhajuddin M, Jordan CT (2013) BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 12(3):329–341. https://doi.org/10.1016/j.stem.2012.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Sheng Y, Yu C, Liu Y, Hu C, Ma R, Lu X, Qian Z (2020) FOXM1 regulates leukemia stem cell quiescence and survival in MLL-rearranged AML. Nat Commun 11(1):928. https://doi.org/10.1038/s41467-020-14590-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Yuan H, Wang Z, Li L, Zhang H, Modi H, Horne D, Chen W (2012) Activation of stress response gene SIRT1 by BCR-ABL promotes leukemogenesis. Blood J Am Soc Hematol 119(8):1904–1914. https://doi.org/10.1182/blood-2011-06-361691

    Article  CAS  Google Scholar 

  142. Li L, Wang L, Li L, Wang Z, Ho Y, McDonald T, Bhatia R (2012) Activation of p53 by SIRT1 inhibition enhances elimination of CML leukemia stem cells in combination with imatinib. Cancer Cell 21(2):266–281. https://doi.org/10.1016/j.ccr.2011.12.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Li L, Osdal T, Ho Y, Chun S, McDonald T, Agarwal P, Li L (2014) SIRT1 activation by a c-MYC oncogenic network promotes the maintenance and drug resistance of human FLT3-ITD acute myeloid leukemia stem cells. Cell Stem Cell 15(4):431–446. https://doi.org/10.1016/j.stem.2014.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wang Z, Yuan H, Roth M, Stark JM, Bhatia R, Chen W (2013) SIRT1 deacetylase promotes acquisition of genetic mutations for drug resistance in CML cells. Oncogene 32(5):589–598. https://doi.org/10.1038/onc.2012.83

    Article  CAS  PubMed  Google Scholar 

  145. Wang Z, Chen W (2013) Emerging roles of SIRT1 in cancer drug resistance. Genes Cancer 4(3–4):82–90. https://doi.org/10.1177/1947601912473826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Abraham A, Qiu S, Chacko BK, Li H, Paterson A, He J, Darley-Usmar VM (2019) SIRT1 regulates metabolism and leukemogenic potential in CML stem cells. J Clin Investig 129(7):2685–2701. https://doi.org/10.1172/JCI127080

    Article  PubMed  PubMed Central  Google Scholar 

  147. Sasca D, Hähnel PS, Szybinski J, Khawaja K, Kriege O, Pante SV, Theobald M (2014) SIRT1 prevents genotoxic stress-induced p53 activation in acute myeloid leukemia. Blood J Am Soc Hematol 124(1):121–133. https://doi.org/10.1182/blood-2013-11-538819

    Article  CAS  Google Scholar 

  148. Vaidya AA, Sharma MB, Kale VP (2008) Suppression of p38-stress kinase sensitizes quiescent leukemic cells to anti-mitotic drugs by inducing proliferative responses in them. Cancer Biol Ther 7(8):1232–1240. https://doi.org/10.4161/cbt.7.8.6262

    Article  CAS  PubMed  Google Scholar 

  149. Grey W, Rio-Machin A, Casado P, Grönroos E, Ali S, Miettinen JJ, Swanton C (2022) CKS1 inhibition depletes leukemic stem cells and protects healthy hematopoietic stem cells in acute myeloid leukemia. Sci Transl Med 14(650):3248. https://doi.org/10.1126/scitranslmed.abn3248

    Article  CAS  Google Scholar 

  150. Volk A, Liang K, Suraneni P, Li X, Zhao J, Bulic M, Taub J (2018) A CHAF1B-dependent molecular switch in hematopoiesis and leukemia pathogenesis. Cancer Cell 34(5):707–723. https://doi.org/10.1016/j.ccell.2018.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Monaco S, Rusciano MR, Maione AS, Soprano M, Gomathinayagam R, Todd LR, Leggiero E (2015) A novel crosstalk between calcium/calmodulin kinases II and IV regulates cell proliferation in myeloid leukemia cells. Cell Signal 27(2):204–214. https://doi.org/10.1016/j.cellsig.2014.11.007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Symbiosis Center for Research & Innovation (SCRI) and Symbiosis International (Deemed University) (SIU), Pune, India for providing Senior Research Fellowship (SRF) to PB and infrastructural support.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

PB wrote the manuscript, AV wrote and edited the manuscript, and VK conceptualized, wrote, edited, and finalized the manuscript.

Corresponding author

Correspondence to Vaijayanti Kale.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budgude, P., Vaidya, A. & Kale, V. Cell-intrinsic factors governing quiescence vis-à-vis activation of adult hematopoietic stem cells. Mol Cell Biochem 478, 1361–1382 (2023). https://doi.org/10.1007/s11010-022-04594-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04594-y

Keywords

Navigation