Skip to main content
Log in

Involvement of calmodulin-dependent protein kinase I in the regulation of the expression of connexin 43 in MA-10 tumor Leydig cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Connexin 43 (Cx43, also known as Gja1) is the most abundant testicular gap junction protein. It has a crucial role in the support of spermatogenesis by Sertoli cells in the seminiferous tubules as well as in androgen synthesis by Leydig cells. The multifunctional family of Ca2+/calmodulin-dependent protein kinases (CaMK) is composed of CaMK I, II, and IV and each can serve as a mediator of nuclear Ca2+ signals. These kinases can control gene expression by phosphorylation of key regulatory sites on transcription factors. Among these, AP-1 members cFos and cJun are interesting candidates that seem to cooperate with CaMKs to regulate Cx43 expression in Leydig cells. In this study, the Cx43 promoter region important for CaMK-dependent activation is characterized using co-transfection of plasmid reporter-constructs with different plasmids coding for CaMKs and/or AP-1 members in MA-10 Leydig cells. Here we report that the activation of Cx43 expression by cFos and cJun is increased by CaMKI. Furthermore, results from chromatin immunoprecipitation suggest that the recruitment of AP-1 family members to the proximal region of the Cx43 promoter may involve another uncharacterized AP-1 DNA regulatory element and/or protein–protein interactions with other partners. Thus, our data provide new insights into the molecular regulatory mechanisms that control mouse Cx43 transcription in testicular Leydig cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Goodenough DA, Paul DL (2009) Gap junctions. Cold Spring Harb Perspect Biol 1:a002576. https://doi.org/10.1101/cshperspect.a002576

    Article  PubMed  PubMed Central  Google Scholar 

  2. Evans WH, Martin PEM (2002) Gap junctions: structure and function (Review). Mol Membr Biol 19:121–136. https://doi.org/10.1080/09687680210139839

    Article  CAS  PubMed  Google Scholar 

  3. Batias C, Defamie N, Lablack A et al (1999) Modified expression of testicular gap-junction connexin 43 during normal spermatogenic cycle and in altered spermatogenesis. Cell Tissue Res 298:113–121. https://doi.org/10.1007/s004419900076

    Article  CAS  PubMed  Google Scholar 

  4. Sridharan S, Brehm R, Bergmann M, Cooke PS (2007) Role of connexin 43 in sertoli cells of testis. Ann N Y Acad Sci 1120:131–143. https://doi.org/10.1196/annals.1411.004

    Article  CAS  PubMed  Google Scholar 

  5. Kidder GM, Cyr DG (2016) Roles of connexins in testis development and spermatogenesis. Semin Cell Dev Biol 50:22–30. https://doi.org/10.1016/j.semcdb.2015.12.019

    Article  CAS  PubMed  Google Scholar 

  6. Stanley EL, Johnston DS, Fan J et al (2011) Stem Leydig cell differentiation: gene expression during development of the adult rat population of leydig cells1. Biol Reprod 85:1161–1166. https://doi.org/10.1095/biolreprod.111.091850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pointis G, Gilleron J, Carette D, Segretain D (2010) Physiological and physiopathological aspects of connexins and communicating gap junctions in spermatogenesis. Philos Trans R Soc B Biol Sci 365:1607–1620. https://doi.org/10.1098/rstb.2009.0114

    Article  CAS  Google Scholar 

  8. Li D, Sekhon P, Barr KJ et al (2013) Connexins and steroidogenesis in mouse Leydig cells. Can J Physiol Pharmacol 91:157–164. https://doi.org/10.1139/cjpp-2012-0385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Risley MS (2000) Connexin gene expression in seminiferous tubules of the Sprague-Dawley rat. Biol Reprod 62:748–754. https://doi.org/10.1095/biolreprod62.3.748

    Article  CAS  PubMed  Google Scholar 

  10. De Koninck P, Schulman H (1998) Sensitivity of CaM kinase II to the frequency of Ca 2+ oscillations. Science 279:227–230. https://doi.org/10.1126/science.279.5348.227

    Article  PubMed  Google Scholar 

  11. Cyr DG (2011) Connexins and pannexins. Spermatogenesis 1:325–338. https://doi.org/10.4161/spmg.1.4.18948

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rivas M, Naranjo JR (2013) Calcium in the regulation of gene expression. Encyclopedia of biological chemistry. Elsevier, Amsterdam, pp 310–315

    Chapter  Google Scholar 

  13. Wayman GA, Tokumitsu H, Davare MA, Soderling TR (2011) Analysis of CaM-kinase signaling in cells. Cell Calcium 50:1–8. https://doi.org/10.1016/j.ceca.2011.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bagur R, Hajnóczky G (2017) Intracellular Ca2+ sensing: its role in calcium homeostasis and signaling. Mol Cell 66:780–788. https://doi.org/10.1016/j.molcel.2017.05.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Masquilier D, Sassone-Corsi P (1992) Transcriptional cross-talk: nuclear factors CREM and CREB bind to AP-1 sites and inhibit activation by Jun. J Biol Chem 267:22460–22466. https://doi.org/10.1016/S0021-9258(18)41694-8

    Article  CAS  PubMed  Google Scholar 

  16. Hai T, Curran T (1991) Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc Natl Acad Sci 88:3720–3724. https://doi.org/10.1073/pnas.88.9.3720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. O’Shea EK, Rutkowski R, Kim PS (1992) Mechanism of specificity in the Fos-Jun oncoprotein heterodimer. Cell 68:699–708. https://doi.org/10.1016/0092-8674(92)90145-3

    Article  PubMed  Google Scholar 

  18. Milde-Langosch K (2005) The Fos family of transcription factors and their role in tumourigenesis. Eur J Cancer Oxf Engl 1990 41:2449–2461. https://doi.org/10.1016/j.ejca.2005.08.008

    Article  CAS  Google Scholar 

  19. Hernandez JM, Floyd DH, Weilbaecher KN et al (2008) Multiple facets of junD gene expression are atypical among AP-1 family members. Oncogene 27:4757–4767. https://doi.org/10.1038/onc.2008.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mechta-Grigoriou F, Gerald D, Yaniv M (2001) The mammalian Jun proteins: redundancy and specificity. Oncogene 20:2378–2389. https://doi.org/10.1038/sj.onc.1204381

    Article  CAS  PubMed  Google Scholar 

  21. Picciotto MR, Zoli M, Bertuzzi G, Nairn AC (1995) Immunochemical localization of calcium/calmodulin-dependent protein kinase I. Synap N Y N 20:75–84. https://doi.org/10.1002/syn.890200111

    Article  CAS  Google Scholar 

  22. Martin LJ, Boucher N, Brousseau C, Tremblay JJ (2008) The orphan nuclear receptor NUR77 regulates hormone-induced StAR transcription in Leydig cells through cooperation with Ca2+/calmodulin-dependent protein kinase I. Mol Endocrinol Baltim Md 22:2021–2037. https://doi.org/10.1210/me.2007-0370

    Article  CAS  Google Scholar 

  23. Ghouili F, Roumaud P, Martin LJ (2018) Gja1 expression is regulated by cooperation between SOX8/SOX9 and cJUN transcription factors in TM4 and 15P–1 Sertoli cell lines. Mol Reprod Dev 85:875–886. https://doi.org/10.1002/mrd.23049

    Article  CAS  PubMed  Google Scholar 

  24. Ghouili F, Martin LJ (2017) Cooperative regulation of Gja1 expression by members of the AP-1 family cJun and cFos in TM3 Leydig and TM4 Sertoli cells. Gene 635:24–32. https://doi.org/10.1016/j.gene.2017.09.017

    Article  CAS  PubMed  Google Scholar 

  25. Wayman GA, Kaech S, Grant WF et al (2004) Regulation of axonal extension and growth cone motility by calmodulin-dependent protein kinase I. J Neurosci 24:3786–3794. https://doi.org/10.1523/JNEUROSCI.3294-03.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu H, Sidiropoulos P, Song G et al (2000) TNF-alpha gene expression in macrophages: regulation by NF-kappa B is independent of c-Jun or C/EBP beta. J Immunol Baltim Md 1950 164:4277–4285. https://doi.org/10.4049/jimmunol.164.8.4277

    Article  CAS  Google Scholar 

  27. Mayr B, Montminy M (2001) Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2:599–609. https://doi.org/10.1038/35085068

    Article  CAS  PubMed  Google Scholar 

  28. Daems C, Martin LJ, Brousseau C, Tremblay JJ (2014) MEF2 is restricted to the male gonad and regulates expression of the orphan nuclear receptor NR4A1. Mol Endocrinol Baltim Md 28:886–898. https://doi.org/10.1210/me.2013-1407

    Article  CAS  Google Scholar 

  29. Teyssier C, Belguise K, Galtier F, Chalbos D (2001) Characterization of the physical interaction between estrogen receptor alpha and JUN proteins. J Biol Chem 276:36361–36369. https://doi.org/10.1074/jbc.M101806200

    Article  CAS  PubMed  Google Scholar 

  30. Ascoli M (1981) Characterization of several clonal lines of cultured Leydig tumor cells: gonadotropin receptors and steroidogenic responses. Endocrinology 108:88–95

    Article  CAS  PubMed  Google Scholar 

  31. Kilgore MW, Stocco DM (1989) Initial characterization of a subclone of the MA-10 mouse Leydig tumor cell line*. Endocrinology 124:1210–1216. https://doi.org/10.1210/endo-124-3-1210

    Article  CAS  PubMed  Google Scholar 

  32. Martin LJ, Boucher N, El-Asmar B, Tremblay JJ (2009) cAMP-induced expression of the orphan nuclear receptor Nur77 in MA-10 Leydig cells involves a CaMKI pathway. J Androl 30:134–145. https://doi.org/10.2164/jandrol.108.006387

    Article  CAS  PubMed  Google Scholar 

  33. Dobin A, Davis CA, Schlesinger F et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21. https://doi.org/10.1093/bioinformatics/bts635

    Article  CAS  PubMed  Google Scholar 

  34. Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930. https://doi.org/10.1093/bioinformatics/btt656

    Article  CAS  PubMed  Google Scholar 

  35. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cruzalegui FH, Means AR (1993) Biochemical characterization of the multifunctional Ca2+/calmodulin-dependent protein kinase type IV expressed in insect cells. J Biol Chem 268:26171–26178. https://doi.org/10.1016/S0021-9258(19)74296-3

    Article  CAS  PubMed  Google Scholar 

  37. Impey S, Fong AL, Wang Y et al (2002) Phosphorylation of CBP mediates transcriptional activation by neural activity and CaM kinase IV. Neuron 34:235–244. https://doi.org/10.1016/s0896-6273(02)00654-2

    Article  CAS  PubMed  Google Scholar 

  38. Jang MK, Goo YH, Sohn YC et al (2001) Ca2+/calmodulin-dependent protein kinase IV stimulates nuclear factor-kappa B transactivation via phosphorylation of the p65 subunit. J Biol Chem 276:20005–20010. https://doi.org/10.1074/jbc.M010211200

    Article  CAS  PubMed  Google Scholar 

  39. Mochizuki H, Ito T, Hidaka H (1993) Purification and characterization of Ca2+/calmodulin-dependent protein kinase V from rat cerebrum. J Biol Chem 268:9143–9147. https://doi.org/10.1016/S0021-9258(18)52989-6

    Article  CAS  PubMed  Google Scholar 

  40. Enslen H, Sun P, Brickey D et al (1994) Characterization of Ca2+/calmodulin-dependent protein kinase IV. Role in transcriptional regulation. J Biol Chem 269:15520–15527. https://doi.org/10.1016/S0021-9258(17)40710-1

    Article  CAS  PubMed  Google Scholar 

  41. Ledoux J, Chartier D, Leblanc N (1999) Inhibitors of calmodulin-dependent protein kinase are nonspecific blockers of voltage-dependent K+ channels in vascular myocytes. J Pharmacol Exp Ther 290:1165–1174

    CAS  PubMed  Google Scholar 

  42. Hidaka H, Yokokura H (1996) Molecular and cellular pharmacology of a calcium/calmodulin-dependent protein kinase II (CaM kinase II) inhibitor, KN-62, and proposal of CaM kinase phosphorylation cascades. Adv Pharmacol San Diego Calif 36:193–219. https://doi.org/10.1016/s1054-3589(08)60583-9

    Article  CAS  Google Scholar 

  43. Tokumitsu H, Chijiwa T, Hagiwara M et al (1990) KN-62, 1-[N, O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazi ne, a specific inhibitor of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 265:4315–4320. https://doi.org/10.1016/S0021-9258(19)39565-1

    Article  CAS  PubMed  Google Scholar 

  44. Wong MH, Samal AB, Lee M et al (2019) The KN-93 molecule inhibits calcium/calmodulin-dependent protein kinase II (CaMKII) activity by binding to Ca2+/CaM. J Mol Biol 431:1440–1459. https://doi.org/10.1016/j.jmb.2019.02.001

    Article  CAS  PubMed  Google Scholar 

  45. Pellicena P, Schulman H (2014) CaMKII inhibitors: from research tools to therapeutic agents. Front Pharmacol. https://doi.org/10.3389/fphar.2014.00021

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sumi M, Kiuchi K, Ishikawa T et al (1991) The newly synthesized selective Ca2+calmodulin dependent protein kinase II inhibitor KN-93 reduces dopamine contents in PC12h cells. Biochem Biophys Res Commun 181:968–975. https://doi.org/10.1016/0006-291X(91)92031-E

    Article  CAS  PubMed  Google Scholar 

  47. Corcoran EE, Joseph JD, MacDonald JA et al (2003) Proteomic analysis of calcium/calmodulin-dependent protein kinase I and IV in vitro substrates reveals distinct catalytic preferences *. J Biol Chem 278:10516–10522. https://doi.org/10.1074/jbc.M210642200

    Article  CAS  PubMed  Google Scholar 

  48. Lee JC, Kwon YG, Lawrence DS, Edelman AM (1994) A requirement of hydrophobic and basic amino acid residues for substrate recognition by Ca2+/calmodulin-dependent protein kinase Ia. Proc Natl Acad Sci USA 91:6413–6417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schmitt JM, Guire ES, Saneyoshi T, Soderling TR (2005) Calmodulin-dependent kinase kinase/calmodulin kinase I activity gates extracellular-regulated kinase-dependent long-term potentiation. J Neurosci 25:1281–1290. https://doi.org/10.1523/JNEUROSCI.4086-04.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ahmed BY, Yamaguchi F, Tsumura T et al (2000) Expression and subcellular localization of multifunctional calmodulin-dependent protein kinases-I, -II and -IV are altered in rat hippocampal CA1 neurons after induction of long-term potentiation. Neurosci Lett 290:149–153. https://doi.org/10.1016/S0304-3940(00)01347-1

    Article  CAS  PubMed  Google Scholar 

  51. Uezu A, Fukunaga K, Kasahara J, Miyamoto E (2002) Activation of Ca2+/calmodulin-dependent protein kinase I in cultured rat hippocampal neurons. J Neurochem 82:585–593. https://doi.org/10.1046/j.1471-4159.2002.00984.x

    Article  CAS  PubMed  Google Scholar 

  52. Kasahara J, Fukunaga K, Miyamoto E (2001) Activation of calcium/calmodulin-dependent protein kinase IV in long term potentiation in the rat hippocampal CA1 region *. J Biol Chem 276:24044–24050. https://doi.org/10.1074/jbc.M100247200

    Article  CAS  PubMed  Google Scholar 

  53. Wang SL, Ribar TJ, Means AR (2001) Expression of Ca2+/calmodulin-dependent protein kinase IV (CaMKIV) messenger RNA during murine embryogenesis. Cell Growth Differ 12:351–361

    CAS  PubMed  Google Scholar 

  54. Kitsos CM, Sankar U, Illario M et al (2005) Calmodulin-dependent protein kinase IV regulates hematopoietic stem cell maintenance *♦. J Biol Chem 280:33101–33108. https://doi.org/10.1074/jbc.M505208200

    Article  CAS  PubMed  Google Scholar 

  55. Lawson ND, Zain M, Zibello T et al (1999) Modulation of a calcium/calmodulin-dependent protein kinase cascade by retinoic acid during neutrophil maturation. Exp Hematol 27:1682–1690. https://doi.org/10.1016/S0301-472X(99)00108-3

    Article  CAS  PubMed  Google Scholar 

  56. Chen Z-Q, Lefebvre D, Bai X-H et al (1995) Identification of two regulatory elements within the promoter region of the mouse connexin 43 gene (∗). J Biol Chem 270:3863–3868. https://doi.org/10.1074/jbc.270.8.3863

    Article  CAS  PubMed  Google Scholar 

  57. Mitchell JA, Ou C-W, Chen Z-Q et al (2001) Parathyroid hormone-induced up-regulation of connexin-43 messenger ribonucleic acid (mRNA) Is mediated by sequences within both the promoter and the 3′untranslated region of the mRNA. Endocrinology 142:907–915. https://doi.org/10.1210/endo.142.2.7930

    Article  CAS  PubMed  Google Scholar 

  58. Mathelier A, Fornes O, Arenillas DJ et al (2016) JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Res 44:D110–D115. https://doi.org/10.1093/nar/gkv1176

    Article  CAS  PubMed  Google Scholar 

  59. Kreft Ł, Soete A, Hulpiau P et al (2017) ConTra v3: a tool to identify transcription factor binding sites across species, update 2017. Nucleic Acids Res 45:W490–W494. https://doi.org/10.1093/nar/gkx376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Landry DA, Sormany F, Haché J et al (2017) Steroidogenic genes expressions are repressed by high levels of leptin and the JAK/STAT signaling pathway in MA-10 Leydig cells. Mol Cell Biochem 433:79–95. https://doi.org/10.1007/s11010-017-3017-x

    Article  CAS  PubMed  Google Scholar 

  61. Mitchell JA, Lye SJ (2005) Differential activation of the connexin 43 promoter by dimers of activator protein-1 transcription factors in myometrial cells. Endocrinology 146:2048–2054. https://doi.org/10.1210/en.2004-1066

    Article  CAS  PubMed  Google Scholar 

  62. Jochum W, Passegué E, Wagner EF (2001) AP-1 in mouse development and tumorigenesis. Oncogene 20:2401–2412. https://doi.org/10.1038/sj.onc.1204389

    Article  CAS  PubMed  Google Scholar 

  63. Eferl R, Wagner EF (2003) AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3:859–868. https://doi.org/10.1038/nrc1209

    Article  CAS  PubMed  Google Scholar 

  64. Hess J, Angel P, Schorpp-Kistner M (2004) AP-1 subunits: quarrel and harmony among siblings. J Cell Sci 117:5965–5973. https://doi.org/10.1242/jcs.01589

    Article  CAS  PubMed  Google Scholar 

  65. Hirai SL, Yaniv M (1989) Jun DNA-binding is modulated by mutations between the leucines or by direct interaction of fos with the TGACTCA sequence. New Biol 1:181–191

    CAS  PubMed  Google Scholar 

  66. Louiset E, Duparc C, Lenglet S et al (2017) Role of cAMP/PKA pathway and T-type calcium channels in the mechanism of action of serotonin in human adrenocortical cells. Mol Cell Endocrinol 441:99–107. https://doi.org/10.1016/j.mce.2016.10.008

    Article  CAS  PubMed  Google Scholar 

  67. You S, Li W, Lin T (2000) Expression and regulation of connexin43 in rat Leydig cells. J Endocrinol 166:447

    Article  CAS  PubMed  Google Scholar 

  68. Goldenberg R, Fortes F, Cristancho J et al (2003) Modulation of gap junction mediated intercellular communication in TM3 Leydig cells. J Endocrinol 177:327–335. https://doi.org/10.1677/joe.0.1770327

    Article  CAS  PubMed  Google Scholar 

  69. Carafoli E (2002) Calcium signaling: a tale for all seasons. Proc Natl Acad Sci 99:1115–1122. https://doi.org/10.1073/pnas.032427999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Montminy MR, Bilezikjian LM (1987) Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene. Nature 328:175–178. https://doi.org/10.1038/328175a0

    Article  CAS  PubMed  Google Scholar 

  71. Sheng M, Thompson MA, Greenberg ME (1991) CREB: a Ca(2+)-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science 252:1427–1430. https://doi.org/10.1126/science.1646483

    Article  CAS  PubMed  Google Scholar 

  72. Manna PR, Dyson MT, Eubank DW et al (2002) Regulation of steroidogenesis and the steroidogenic acute regulatory protein by a member of the cAMP response-element binding protein family. Mol Endocrinol 16:184–199. https://doi.org/10.1210/mend.16.1.0759

    Article  CAS  PubMed  Google Scholar 

  73. Ionta M, Rosa MC, Almeida RB et al (2012) Retinoic acid and cAMP inhibit rat hepatocellular carcinoma cell proliferation and enhance cell differentiation. Braz J Med Biol Res 45:721–729. https://doi.org/10.1590/S0100-879X2012007500087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ginty DD (1997) Calcium regulation of gene expression: isn’t that spatial? Neuron 18:183–186. https://doi.org/10.1016/S0896-6273(00)80258-5

    Article  CAS  PubMed  Google Scholar 

  75. Fang W-L, Lai S-Y, Lai W-A et al (2015) CRTC2 and Nedd4 ligase involvement in FSH and TGFβ1 upregulation of connexin43 gap junction. J Mol Endocrinol 55:263–275. https://doi.org/10.1530/JME-15-0076

    Article  CAS  PubMed  Google Scholar 

  76. Sun P, Lou L, Maurer RA (1996) Regulation of activating transcription factor-1 and the cAMP response element-binding protein by Ca/Calmodulin-dependent protein kinases Type I, II, and IV. J Biol Chem 271:3066–3073. https://doi.org/10.1074/jbc.271.6.3066

    Article  CAS  PubMed  Google Scholar 

  77. Lonze BE, Ginty DD (2002) Function and regulation of CREB family transcription factors in the nervous system. Neuron 35:605–623. https://doi.org/10.1016/S0896-6273(02)00828-0

    Article  CAS  PubMed  Google Scholar 

  78. Martin LJ, Tremblay JJ (2009) The nuclear receptors NUR77 and SF1 play additive roles with c-JUN through distinct elements on the mouse Star promoter. J Mol Endocrinol 42:119–129. https://doi.org/10.1677/JME-08-0095

    Article  CAS  PubMed  Google Scholar 

  79. Abdou HS, Robert NM, Tremblay JJ (2016) Calcium-dependent Nr4a1 expression in mouse Leydig cells requires distinct AP1/CRE and MEF2 elements. J Mol Endocrinol 56:151–161. https://doi.org/10.1530/JME-15-0202

    Article  CAS  PubMed  Google Scholar 

  80. Sugawara T, Saito M, Fujimoto S (2000) Sp1 and SF-1 interact and cooperate in the regulation of human steroidogenic acute regulatory protein gene expression*. Endocrinology 141:2895–2903. https://doi.org/10.1210/endo.141.8.7602

    Article  CAS  PubMed  Google Scholar 

  81. Tremblay JJ, Hamel F, Viger RS (2002) Protein kinase A-dependent cooperation between GATA and CCAAT/Enhancer-binding protein transcription factors regulates steroidogenic acute regulatory protein promoter activity. Endocrinology 143:3935–3945. https://doi.org/10.1210/en.2002-220413

    Article  CAS  PubMed  Google Scholar 

  82. Manna PR, Eubank DW, Stocco DM (2004) Assessment of the role of activator protein-1 on transcription of the mouse steroidogenic acute regulatory protein gene. Mol Endocrinol 18:558–573. https://doi.org/10.1210/me.2003-0223

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Current work was funded by the New Brunswick Innovation Foundation (NBIF) (#RAI-2018-063 to L.J.M.) and the Natural Sciences and Engineering Research Council (NSERC) of Canada (#386557 to L.J.M).

Author information

Authors and Affiliations

Authors

Contributions

MN and LJM contributed to the experimental design. MN and HTN performed the experiments and statistical analyses. MN wrote the first draft of the manuscript. LJM and HTN revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Luc J. Martin.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest that would prejudice their impartiality.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najih, M., Nguyen, H.T. & Martin, L.J. Involvement of calmodulin-dependent protein kinase I in the regulation of the expression of connexin 43 in MA-10 tumor Leydig cells. Mol Cell Biochem 478, 791–805 (2023). https://doi.org/10.1007/s11010-022-04553-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04553-7

Keywords

Navigation