Skip to main content

Advertisement

Log in

Circ_0082182 upregulates the NFIB level via sponging miR-326 to promote oxaliplatin resistance and malignant progression of colorectal cancer cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Circular RNAs (circRNAs) are key regulators in tumor metastasis and drug resistance. This study was designed to investigate circ_0082182 function and mechanism in oxaliplatin (OXA) resistance and cancer progression of colorectal cancer (CRC). The circ_0082182, microRNA-326 (miR-326), and nuclear factor I B (NFIB) levels were quantified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Cell sensitization was analyzed by Cell Counting Kit-8 assay. The proliferation ability was determined via EdU assay, and apoptosis was measured by flow cytometry. Transwell assay and wound healing assay were performed to assess cell invasion and migration. The protein level was examined through Western blot. The binding interaction was conducted via dual-luciferase reporter assay. Xenograft tumor assay was used to explore the circ_0082182 function in vivo. The circ_0082182 level was upregulated in OXA-resistant CRC samples and cells. Downregulation of circ_0082182 suppressed OXA resistance, proliferation, invasion, and migration but promoted apoptosis of OXA-resistant CRC cells. Circ_0082182 acted as a sponge for miR-326. The regulatory role of circ_0082182 was ascribed to the miR-326 sponging function. MiR-326 directly targeted NFIB to impede OXA resistance and cancer progression in CRC cells. NFIB level was regulated by circ_0082182 via sponging miR-326. Circ_0082182 promoted tumor growth in OXA-resistant xenograft tumor model through mediating the miR-326/NFIB axis. These data suggested that circ_0082182 elevated the NFIB expression to regulate OXA resistance and CRC progression by absorbing miR-326.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Keum N, Giovannucci E (2019) Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat Rev Gastroenterol Hepatol 16(12):713–732. https://doi.org/10.1038/s41575-019-0189-8

    Article  PubMed  Google Scholar 

  2. Biller LH, Schrag D (2021) Diagnosis and treatment of metastatic colorectal cancer: a review. JAMA 325(7):669–685. https://doi.org/10.1001/jama.2021.0106

    Article  CAS  PubMed  Google Scholar 

  3. Dzunic M, Petkovic I, Cvetanovic A, Vrbic S, Pejcic I (2019) Current and future targets and therapies in metastatic colorectal cancer. J BUON 24(5):1785–1792

    PubMed  Google Scholar 

  4. Van der Jeught K, Xu HC, Li YJ, Lu XB, Ji G (2018) Drug resistance and new therapies in colorectal cancer. World J Gastroenterol 24(34):3834–3848. https://doi.org/10.3748/wjg.v24.i34.3834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bahrami A, Amerizadeh F, Hassanian SM, ShahidSales S, Khazaei M, Maftouh M, Ghayour-Mobarhan M, Ferns GA, Avan A (2018) Genetic variants as potential predictive biomarkers in advanced colorectal cancer patients treated with oxaliplatin-based chemotherapy. J Cell Physiol 233(3):2193–2201. https://doi.org/10.1002/jcp.25966

    Article  CAS  PubMed  Google Scholar 

  6. Piawah S, Venook AP (2019) Targeted therapy for colorectal cancer metastases: a review of current methods of molecularly targeted therapy and the use of tumor biomarkers in the treatment of metastatic colorectal cancer. Cancer 125(23):4139–4147. https://doi.org/10.1002/cncr.32163

    Article  PubMed  Google Scholar 

  7. Oliveres H, Pesantez D, Maurel J (2021) Lessons to learn for adequate targeted therapy development in metastatic colorectal cancer patients. Int J Mol Sci. https://doi.org/10.3390/ijms22095019

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ghafouri-Fard S, Taheri M, Hussen BM, Vafaeimanesh J, Abak A, Vafaee R (2021) Function of circular RNAs in the pathogenesis of colorectal cancer. Biomed Pharmacother. https://doi.org/10.1016/j.biopha.2021.111721

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zeng K, Wang S (2020) Circular RNAs: the crucial regulatory molecules in colorectal cancer. Pathol Res Pract 216(4):152861. https://doi.org/10.1016/j.prp.2020.152861

    Article  CAS  PubMed  Google Scholar 

  10. Ye DX, Wang SS, Huang Y, Chi P (2019) A 3-circular RNA signature as a noninvasive biomarker for diagnosis of colorectal cancer. Cancer Cell Int. https://doi.org/10.1186/s12935-019-0995-7

    Article  PubMed  PubMed Central  Google Scholar 

  11. Liu R, Deng P, Zhang Y, Wang Y, Peng C (2021) Circ_0082182 promotes oncogenesis and metastasis of colorectal cancer in vitro and in vivo by sponging miR-411 and miR-1205 to activate the Wnt/beta-catenin pathway. World J Surg Oncol 19(1):51. https://doi.org/10.1186/s12957-021-02164-y

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pan S, Liu Y, Liu Q, Xiao Y, Liu B, Ren X, Qi X, Zhou H, Zeng C, Jia L (2019) HOTAIR/miR-326/FUT6 axis facilitates colorectal cancer progression through regulating fucosylation of CD44 via PI3K/AKT/mTOR pathway. Biochim Biophys Acta Mol Cell Res 1866(5):750–760. https://doi.org/10.1016/j.bbamcr.2019.02.004

    Article  CAS  PubMed  Google Scholar 

  13. Liu J, Huang S, Liao X, Chen Z, Li L, Yu L, Zhan W, Li R (2021) LncRNA EWSAT1 promotes colorectal cancer progression through sponging miR-326 to modulate FBXL20 expression. Onco Targets Ther. https://doi.org/10.2147/OTT.S272895

    Article  PubMed  PubMed Central  Google Scholar 

  14. Weldon Furr J, Morales-Scheihing D, Manwani B, Lee J, McCullough LD (2019) Cerebral amyloid angiopathy, Alzheimer’s disease and microRNA: miRNA as diagnostic biomarkers and potential therapeutic targets. Neuromolecular Med 21(4):369–390. https://doi.org/10.1007/s12017-019-08568-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu L, Hui H, Wang LJ, Wang H, Liu QF, Han SX (2015) MicroRNA-326 functions as a tumor suppressor in colorectal cancer by targeting the nin one binding protein. Oncol Rep 33(5):2309–2318. https://doi.org/10.3892/or.2015.3840

    Article  CAS  PubMed  Google Scholar 

  16. Bao Z, Gao S, Tang Q, Zhang B, Shi W, Tian Q (2021) A novel role of miR-326 in colorectal carcinoma by regulating E2F1 expression. J BUON 26(2):528–535

    PubMed  Google Scholar 

  17. Sun L, Fang Y, Wang X, Han Y, Du F, Li C, Hu H, Liu H, Liu Q, Wang J, Liang J, Chen P, Yang H, Nie Y, Wu K, Fan D, Coffey RJ, Lu Y, Zhao X, Wang X (2019) miR-302a inhibits metastasis and cetuximab resistance in colorectal cancer by targeting NFIB and CD44. Theranostics 9(26):8409–8425. https://doi.org/10.7150/thno.36605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu W, Chen B, Ke D, Chen X (2020) MicroRNA-138–5p targets the NFIB-Snail1 axis to inhibit colorectal cancer cell migration and chemoresistance. Cancer Cell Int. https://doi.org/10.1186/s12935-020-01573-5

    Article  PubMed  PubMed Central  Google Scholar 

  19. Panda AC (2018) Circular RNAs Act as miRNA Sponges. Adv Exp Med Biol. https://doi.org/10.1007/978-981-13-1426-1_6

    Article  PubMed  Google Scholar 

  20. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247

    Article  CAS  PubMed  Google Scholar 

  21. Song W, Qian Y, Zhang MH, Wang H, Wen X, Yang XZ, Dai WJ (2020) The long non-coding RNA DDX11-AS1 facilitates cell progression and oxaliplatin resistance via regulating miR-326/IRS1 axis in gastric cancer. Eur Rev Med Pharmacol Sci 24(6):3049–3061

    CAS  PubMed  Google Scholar 

  22. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  23. Zhou D, Lin X, Wang P, Yang Y, Zheng J, Zhou D (2021) Circular RNA circ_0001162 promotes cell proliferation and invasion of glioma via the miR-936/ERBB4 axis. Bioengineered 12(1):2106–2118. https://doi.org/10.1080/21655979.2021.1932221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li P, Song R, Yin F, Liu M, Liu H, Ma S, Jia X, Lu X, Zhong Y, Yu L, Li X, Li X (2021) circMRPS35 promotes malignant progression and cisplatin resistance in hepatocellular carcinoma. Mol Ther. https://doi.org/10.1016/j.ymthe.2021.08.027

    Article  PubMed  PubMed Central  Google Scholar 

  25. Huang W, Lu Y, Wang F, Huang X, Yu Z (2020) Circular RNA circRNA_103809 accelerates bladder cancer progression and enhances chemo-resistance by activation of miR-516a-5p/FBXL18 axis. Cancer Manag Res. https://doi.org/10.2147/CMAR.S263083

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liu YY, Zhang LY, Du WZ (2019) Circular RNA circ-PVT1 contributes to paclitaxel resistance of gastric cancer cells through the regulation of ZEB1 expression by sponging miR-124-3p. Biosci Rep. https://doi.org/10.1042/BSR20193045

  27. Shen Z, Zhou L, Zhang C, Xu J (2020) Reduction of circular RNA Foxo3 promotes prostate cancer progression and chemoresistance to docetaxel. Cancer Lett. https://doi.org/10.1016/j.canlet.2019.10.006

    Article  PubMed  Google Scholar 

  28. Li A, Wang WC, McAlister V, Zhou Q, Zheng X (2021) Circular RNA in colorectal cancer. J Cell Mol Med 25(8):3667–3679. https://doi.org/10.1111/jcmm.16380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu Y, Qiu A, Peng F, Tan X, Wang J, Gong X (2021) Exosomal transfer of circular RNA FBXW7 ameliorates the chemoresistance to oxaliplatin in colorectal cancer by sponging miR-18b-5p. Neoplasma 68(1):108–118. https://doi.org/10.4149/neo_2020_200417N414

    Article  CAS  PubMed  Google Scholar 

  30. Li S, Zheng S (2020) Down-regulation of Circ_0032833 sensitizes colorectal cancer to 5-fluorouracil and oxaliplatin partly depending on the regulation of miR-125–5p and MSI1. Cancer Manag Res. https://doi.org/10.2147/CMAR.S270123

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lai M, Liu G, Li R, Bai H, Zhao J, Xiao P, Mei J (2020) Hsa_circ_0079662 induces the resistance mechanism of the chemotherapy drug oxaliplatin through the TNF-alpha pathway in human colon cancer. J Cell Mol Med 24(9):5021–5027. https://doi.org/10.1111/jcmm.15122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhao K, Cheng X, Ye Z, Li Y, Peng W, Wu Y, Xing C (2021) Exosome-mediated transfer of circ_0000338 enhances 5-fluorouracil resistance in colorectal cancer through regulating MicroRNA 217 (miR-217) and miR-485–3p. Mol Cell Biol. https://doi.org/10.1128/MCB.00517-20

    Article  PubMed  PubMed Central  Google Scholar 

  33. He X, Ma J, Zhang M, Cui J, Yang H (2020) Circ_0007031 enhances tumor progression and promotes 5-fluorouracil resistance in colorectal cancer through regulating miR-133b/ABCC5 axis. Cancer Biomark 29(4):531–542. https://doi.org/10.3233/CBM-200023

    Article  CAS  Google Scholar 

  34. Jian X, He H, Zhu J, Zhang Q, Zheng Z, Liang X, Chen L, Yang M, Peng K, Zhang Z, Liu T, Ye Y, Jiao H, Wang S, Zhou W, Ding Y, Li T (2020) Hsa_circ_001680 affects the proliferation and migration of CRC and mediates its chemoresistance by regulating BMI1 through miR-340. Mol Cancer 19(1):20. https://doi.org/10.1186/s12943-020-1134-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None

Funding

This study does not receive any financial support as well as any role of funding bodies.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have been involved in the management of the patient and in the conception of the manuscript. The specific authors’ contribution is as follows: WZF and LJM were involved in writing the drafting of the manuscript; YT collected data; WQQ performed analysis and interpretation; LR provided software; and TJL contributed to reviewing and editing.

Corresponding author

Correspondence to Jinliang Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This study was permitted by the Ethics Committee of Shanxi Provincial People’s Hospital, and the approval number is 2019JS124.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Liu, J., Yang, T. et al. Circ_0082182 upregulates the NFIB level via sponging miR-326 to promote oxaliplatin resistance and malignant progression of colorectal cancer cells. Mol Cell Biochem 478, 1045–1057 (2023). https://doi.org/10.1007/s11010-022-04551-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04551-9

Keywords

Navigation