Skip to main content

Advertisement

Log in

Molecular docking and in vitro experiments verified that kaempferol induced apoptosis and inhibited human HepG2 cell proliferation by targeting BAX, CDK1, and JUN

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma, as a common liver cirrhosis complication, has become the sixth most common cancer worldwide, and its increasing incidence has resulted in considerable medical and economic burdens. As a natural polyphenolic compound, kaempferol has exhibits a wide range of antitumor activities against multiple cancer targets. In this study, the Autodock software was used for molecular docking to simulate the interaction process between kaempferol and HCC targets and the PyMOL software was used for visualization. Proliferation of kaempferol HepG2 cells under the effect of kaempferol was detected using Cell Counting Kit-8 (CCK-8) assay, and the apoptosis rate of HepG2 cells was detected using flow cytometry. The expressions of proteins BAX, CDK1, and JUN protein expressions were detected by Western blot. Molecular docking found that the kaempferol ligand has 3 rotatable bonds, 6 nonpolar hydrogen atoms, and 12 aromatic carbon atoms, and can form complexes with the kaempferol targets P53, BAX, AR, CDK1, and JUN through electrostatic energy. GO (Gene Ontology) enrichment analysis suggests that kaempferol regulates the biological function of hepatocellular carcinoma cells and is related to apoptosis. Cell Counting Kit-8 assay suggested that Kaempferol can significantly inhibited HepG2 cell proliferation, and the inhibition rate increased with the increase in drug concentration and incubation time. Moreover, kaempferol can promoted HepG2 cell apoptosis in a dose-dependent manner. This compound upregulated BAX and JUN expression and downregulated CDK1 expression. Thus, Kaempferol can promote HepG2 cell apoptosis, and the regulatory mechanism may be related to the regulation of the expression levels of the apoptosis-related proteins BAX, CDK1, and JUN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Augusto V (2019) Hepatocellular carcinoma. N Engl J Med 380:1450–1462

    Article  Google Scholar 

  2. Torre L, Bray F, Siegel R (2015) Global cancer statistics. CA Cancer J Clin 65(2):87–108. https://doi.org/10.3322/caac.21262

    Article  PubMed  Google Scholar 

  3. World Health Organization. Projections of mortality and causes of death, 2016 to 2060. http://www.who.int/healthinfo/global_burden_disease/projections/en/. Accessed April 2019

  4. Cheng AL, Kang YK, Chen Z et al (2009) Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. https://doi.org/10.1016/S1470-2045(08)70285-7

    Article  PubMed  PubMed Central  Google Scholar 

  5. Arrairaegui M, Melero I, Sangro B (2017) Immunotherapy of hepatocellular carcinoma: facts and hopes. Clin Cancer Res Off J Am Assoc Cancer Res 24(7):1518–1524

    Article  Google Scholar 

  6. Nian Y, Chen Li, Hongliang Li, Ming L, Xiaojun C, Fengjun C, Yibin F, Minglun Li, Xuanbin W (2019) Emodin induced SREBP1-dependent and SREBP1-independent apoptosis in hepatocellular carcinoma cells. Front Pharmacol. https://doi.org/10.3389/fphar.2019.00709

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nassrin B, Nazia AM, Al-Suede Fouad Saleih R, Mansoureh NV, Nelli G, Shah AMAM, Eid Eltayeb EM, Abdullah AM (2020) Cardamonin exerts antitumor effect on human hepatocellular carcinoma xenografts in athymic nude mice through inhibiting NF-κβ pathway. Biomedicines. https://doi.org/10.3390/biomedicines8120586

    Article  Google Scholar 

  8. Schulze K, Nault JC, Villanueva A (2016) Genetic profiling of hepatocellular carcinoma using next-generation sequencing. J Hepatol 65(5):1031–1042. https://doi.org/10.1016/j.jhep.2016.05.035

    Article  CAS  PubMed  Google Scholar 

  9. Yang EJ, Geum-Soog K, Mira J et al (2014) Kaempferol attenuates the glutamate-induced oxidative stress in mouse-derived hippocampal neuronal HT22 cells. Food Funct 5(7):1395–1402. https://doi.org/10.1039/c4fo00068d

    Article  CAS  PubMed  Google Scholar 

  10. Peramaiyan R, Thamaraiselvan R, Natarajan N et al (2014) Kaempferol, a potential cytostatic and cure for inflammatory disorders. Eur J Medchem 86:103–112. https://doi.org/10.1016/j.ejmech.2014.08.011

    Article  CAS  Google Scholar 

  11. Dang Q, Wenbin DS et al (2014) Kaempferol suppresses bladder cancer tumor growth by inhibiting cell proliferation and inducing apoptosis. Mol Carcinog 54(9):831–840. https://doi.org/10.1002/mc.22154

    Article  CAS  PubMed  Google Scholar 

  12. Ping W, Xiaofeng M, Huade Z et al (2018) Kaempferol attenuates ROS-induced hemolysis and the molecular mechanism of its induction of apoptosis on bladder cancer. Molecules. https://doi.org/10.3390/molecules23102592

    Article  PubMed  PubMed Central  Google Scholar 

  13. Li Z, Lijun X (2018) Kaempferol suppresses proliferation and induces cell cycle arrest, apoptosis, and DNA damage in breast cancer cells. Oncol Res 27(6):629–634. https://doi.org/10.3727/096504018X15228018559434

    Article  Google Scholar 

  14. Woo KT, Young LS, Mia K et al (2018) Kaempferol induces autophagic cell death via IRE1-JNK-CHOP pathway and inhibition of G9a in gastric cancer cells. Cell Death Dis 9(9):875. https://doi.org/10.1038/s41419-018-0930-1

    Article  CAS  Google Scholar 

  15. Seung-Hee K, Kyung-A H, Kyung-Chul C et al (2018) Treatment with kaempferol suppresses breast cancer cell growth caused by estrogen and triclosan in cellular and xenograft breast cancer models. J Nutr Biochem 28:70–82. https://doi.org/10.1016/j.jnutbio.2015.09.027

    Article  CAS  Google Scholar 

  16. Lee HS, Han JC, Kwon GT et al (2014) Kaempferol downregulates insulin-like growth factor-I receptor and ErbB3 signaling in HT-29 human colon cancer cells. J Cancer Prev 19(3):161–169

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wen-Wen H, Shih-Chang T, Shu-Fen P et al (2013) Kaempferol induces autophagy through AMPK and AKT signaling molecules and causes G2/M arrest via downregulation of CDK1/cyclin B in SK-HEP-1 human hepatic cancer cells. Int J Oncol 42(6):2069–2077. https://doi.org/10.3892/ijo.2013.1909

    Article  CAS  Google Scholar 

  18. Song H, Bao J, Wei Y et al (2015) Kaempferol inhibits gastric cancer tumor growth: an in vitro and in vivo study. Oncol Rep 33(2):868–874

    Article  CAS  PubMed  Google Scholar 

  19. Neuhouser M (2004) Dietary flavonoids and cancer risk: evidence from human population studies. Nutr Cancer 50(1):1–7. https://doi.org/10.1207/s15327914nc5001_1

    Article  CAS  PubMed  Google Scholar 

  20. Binmowyna MN, Alfaris NA (2021) Kaempferol suppresses acetaminophen-induced liver damage by upregulation/activation of SIRT1. Pharm Biol 59(1):146–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang M, Sun J, Jiang Z et al (2015) Hepatoprotective effect of kaempferol against alcoholic liver injury in mice. Am J Chin Med 43(02):241–254

    Article  PubMed  Google Scholar 

  22. Guo H, Wei L, Zhang X et al (2017) Kaempferol induces hepatocellular carcinoma cell death via endoplasmic reticulum stress-CHOP-autophagy signaling pathway. Oncotarget 8(47):82207–82216

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shuxian Yu, Wenhui G, Puhua Z, Chenglong C, Zhen Z, Zhuo L, Jiyong L (2021) Exploring the effect of Gupi Xiaoji prescription on hepatitis B virus-related liver cancer through network pharmacology and in vitro experiments. Biomed Pharmacother. https://doi.org/10.1016/j.biopha.2021.111612

    Article  Google Scholar 

  24. Zhang Q, Feng Z, Gao M et al (2021) Determining novel candidate anti-hepatocellular carcinoma drugs using interaction networks and molecular docking between drug targets and natural compounds of SiNiSan. Peer J 9(12):e10745

    Article  PubMed  PubMed Central  Google Scholar 

  25. Xue Q, Liu X, Russell P, Li J, Pan W, Fu J, Zhang A (2022) Evaluation of the binding performance of flavonoids to estrogen receptor alpha by Autodock, Autodock Vina and Surflex-Dock. Ecotoxicol Environ Saf 233:113323. https://doi.org/10.1016/j.ecoenv.2022.113323

    Article  CAS  PubMed  Google Scholar 

  26. Rigsby RE, Parker AB (2016) Using the PyMOL application to reinforce visual understanding of protein structure. Biochem Mol Biol Educ 44(5):433–437. https://doi.org/10.1002/bmb.20966

    Article  CAS  PubMed  Google Scholar 

  27. Zhao J, Han SX, Ma JL et al (2013) The role of CDK1 in apoptin-induced apoptosis in hepatocellular carcinoma cells. Oncol Rep 30(1):253–259

    Article  CAS  PubMed  Google Scholar 

  28. Wisdom R, Johnson RS, Moore C et al (1999) c-Jun regulates cell cycle progression and apoptosis by distinct mechanisms. EMBO J 18(1):188–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Genglong Z, Xialei L, Haijing Li, Yang Y, Xiaopeng H, Zhidong L (2018) Kaempferol inhibits proliferation, migration, and invasion of liver cancer HepG2 cells by down-regulation of microRNA-21. Int J Immunopathol Pharmacol. https://doi.org/10.1177/2058738418814341

    Article  Google Scholar 

  30. Haiqing G, Feng R, Li Z, Xiangying Z, Rongrong Y, Bangxiang X, Zhuo Li, Zhongjie Hu, Zhongping D, Jing Z (2016) Kaempferol induces apoptosis in HepG2 cells via activation of the endoplasmic reticulum stress pathway. Mol Med Rep 13(3):2791–2800. https://doi.org/10.3892/mmr.2016.4845

    Article  CAS  Google Scholar 

  31. Yang E, Korsmeyer SJ (1996) Molecular thanatopsis: a discourse on the BCL2 family and cell death. Blood 88(2):386–401

    Article  CAS  PubMed  Google Scholar 

  32. Kang MH, Reynolds CP (2009) Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res 15:1126–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lohmann CM, League AA, Clark WS et al (2000) Bcl-2: bax and bcl-2: Bcl-x ratios by image cytometric quantitation of immunohistochemical expression in ovarian carcinoma: correlation with prognosis. Cytometry 42(1):61–66

    Article  CAS  PubMed  Google Scholar 

  34. Friess H, Lu Z, Graber HU et al (1998) Bax, but notbcl-2, influences the prognosis of human pancreatic cancer. Gut 43(3):414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tai YT, Lee S, Niloff E et al (1998) BAX protein expression and clinical outcome in epithelial ovarian cancer. J Clin Oncol 16(8):2583–2590

    Article  CAS  PubMed  Google Scholar 

  36. Gai X, Tu K, Li C et al (2015) Histone acetyltransferase PCAF accelerates apoptosis by repressing a GLI1/BCL2/BAX axis in hepatocellular carcinoma. Cell Death Dis. https://doi.org/10.1038/cddis.2015.76

    Article  PubMed  PubMed Central  Google Scholar 

  37. Garcia EJ, Lawson D, Cotsonis G et al (2015) Hepatocellular carcinoma and markers of apoptosis (bcl-2, bax, bcl-x): prognostic significance. Appl Immunohistochem Mol Morphol 10(3):210

    Article  Google Scholar 

  38. Wu CX, Wang XQ, Ho CS et al (2018) Blocking CDK1/PDK1/β-catenin signaling by CDK1 inhibitor RO3306 increased the efficacy of sorafenib treatment by targeting cancer stem cells in a preclinical model of hepatocellular carcinoma. Theranostics 8(14):3737–3750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Charles B, Nguyen H et al (2016) (Z)-3,5,4′-Trimethoxystilbene limits hepatitis C and cancer pathophysiology by blocking microtubule dynamics and cell-cycle progression. Cancer Res 76(16):4887–4896

    Article  Google Scholar 

  40. Xiang X, Sadeesh K et al (2016) Iron uptake via DMT1 integrates cell cycle with JAK-STAT3 signaling to promote colorectal tumorigenesis. Cell Metab 24:447–461

    Article  Google Scholar 

  41. Castedo M, Perfettini JL, Roumier T et al (2002) Cyclin-dependent kinase-1: linking apoptosis to cell cycle and mitotic catastrophe. Cell Death Differ 9(12):1287

    Article  CAS  PubMed  Google Scholar 

  42. Chen C, Guo Q, Song Y et al (2020) SKA1/2/3 serves as a biomarker for poor prognosis in human lung adenocarcinoma. Transl Lung Cancer Res 9(2):218–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fang L, Du WW, Awan FM et al (2019) The circular RNA circ-Ccnb1 dissociates Ccnb1/Cdk1 complex suppressing cell invasion and tumorigenesis. Cancer Lett. https://doi.org/10.1016/j.canlet.2019.05.036

    Article  PubMed  Google Scholar 

  44. Cheng W, Shan P, Pilié GP (2021) PARP and CDK4/6 inhibitor combination therapy induces apoptosis and suppresses neuroendocrine differentiation in prostate cancer. Mol Cancer Ther 20:1680–1691

    Article  Google Scholar 

  45. Valenciaga A, Saji M, Yu L et al (2018) Transcriptional targeting of oncogene addiction in medullary thyroid cancer. JCI Insight. https://doi.org/10.1172/jci.insight.122225

    Article  PubMed  PubMed Central  Google Scholar 

  46. Spagnoletti G, Bergolis VL, Piscazzi A et al (2018) Cyclin-dependent kinase 1 targeting improves sensitivity to radiation in BRAF V600E colorectal carcinoma cells. Tumor Biol 40(4):568728601

    Article  Google Scholar 

  47. Liu R, Fan M, Candas D et al (2015) CDK1-mediated SIRT3 activation enhances mitochondrial function and tumor radioresistance. Mol Cancer The 14(9):2090–2102

    Article  CAS  Google Scholar 

  48. Deng YR, Chen XJ, Chen W et al (2019) Sp1 contributes to radioresistance of cervical cancer through targeting G2/M cell cycle checkpoint CDK1. Cancer Manag Res 11:5835–5844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang S, Liu J, Macgibbon G et al (2002) Increased expression and activation of c-Jun contributes to human amylin-induced apoptosis in pancreatic islet beta-cells. J Mol Blol 324(2):271–285

    Article  CAS  Google Scholar 

  50. Wang N, Verna L, Hardy S et al (1999) c-Jun triggers apoptosis in human vascular endothelial cells. Circ Res 85(5):387–393

    Article  CAS  PubMed  Google Scholar 

  51. Bossy-Wetzel E (2014) Induction of apoptosis by the transcription factor c-Jun. Embo J 16(7):1695–1709

    Article  Google Scholar 

  52. Hilberg F, Aguzzi A, Howells N et al (1993) C-Jun is essential for normal mouse development and hepatogenesis. Nature 365(6442):179–181

    Article  CAS  PubMed  Google Scholar 

  53. Eferl R (1999) Functions of c-jun in liver and heart development. J Cell Biol 145(5):1049–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Behrens A, Sibilia M, David JP et al (2002) Impaired postnatal hepatocyte proliferation and liver regeneration in mice lacking c-jun in the liver. Embo J 21(7):1782–1790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Stepniak E (2006) c-Jun/AP-1 controls liver regeneration by repressing p53/p21 and p38 MAPK activity. Gene Dev 20(16):2306–2314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Hebei Provincial Department of Finance [Project (2018) No.674] for financial assistance. They are grateful to the Institute of Oncology, Fourth Hospital of Hebei Medical University for their experimental technical support for this study.

Funding

This study was supported by Hebei Provincial Department of Finance (Project [2018] No. 674).

Author information

Authors and Affiliations

Authors

Contributions

ZQ in is responsible for completing the bioinformatics, experimental operation and thesis writing. CL and GM participate in data collection and provide experimental suggestions, ML provides technical support, and GL provides the overall direction and writing guidance of this research.

Corresponding author

Correspondence to Liru Guo.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Chen, L., Gao, M. et al. Molecular docking and in vitro experiments verified that kaempferol induced apoptosis and inhibited human HepG2 cell proliferation by targeting BAX, CDK1, and JUN. Mol Cell Biochem 478, 767–780 (2023). https://doi.org/10.1007/s11010-022-04546-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04546-6

Keywords

Navigation