Skip to main content

Advertisement

Log in

LncRNA GNAS-AS1 knockdown inhibits keloid cells growth by mediating the miR-188-5p/RUNX2 axis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Keloid is a common dermis tumor, occurring repeatedly, affecting the quality of patients’ life. Long non-coding RNAs (lncRNAs) have crucial regulatory capacities in skin scarring formation and subsequent scar carcinogenesis. The intention of this study was to investigate the mechanism and function of GNAS antisense-1 (GNAS-AS1) in keloids. Clinical samples were collected to evaluate the expression of GNAS-AS1, RUNX2, and miR-188-5p by qRT-PCR. The proliferation, migration, and invasion of HKF cells were detected by CCK-8, wound healing, and Transwell assays. The expression levels of mRNA and protein were examined through qRT-PCR and Western blot assay. Luciferase reporter assay was used to identify the binding relationship among GNAS-AS1, miR-188-5p, and Runt-related transcription factor 2 (RUNX2). GNAS-AS1 and RUNX2 expressions were remarkably enhanced, and miR-188-5p expression was decreased in keloid clinical tissues and HKF cells. GNAS-AS1 overexpression promoted cells proliferation, migration, and invasion, while GNAS-AS1 knockdown had the opposite trend. Furthermore, overexpression of GNAS-AS1 reversed the inhibitory effect of 5-FU on cell proliferation, migration, and invasion. MiR-188-5p inhibition or RUNX2 overexpression could enhance the proliferation, migration, and invasion of HKF cells. GNAS-AS1 targeted miR-188-5p to regulate RUNX2 expression. In addition, the inhibition effects of GNAS-AS1 knockdown on HKF cells could be reversed by inhibition of miR-188-5p or overexpression of RUNX2, while RUNX2 overexpression eliminated the suppressive efficaciousness of miR-188-5p mimics on HKF cells growth. GNAS-AS1 knockdown could regulate the miR-188-5p/RUNX2 signaling axis to inhibit the growth and migration in keloid cells. It is suggested that GNAS-AS1 may become a new target for the prevention and treatment of keloid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article. The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Huang Y, Wang Y, Lin L, Wang P, Jiang L, Liu J, Wang X (2020) Overexpression of miR-133a-3p inhibits fibrosis and proliferation of keloid fibroblasts by regulating IRF5 to inhibit the TGF-beta/Smad2 pathway. Mol Cell Probes 52:101563. https://doi.org/10.1016/j.mcp.2020.101563

    Article  CAS  PubMed  Google Scholar 

  2. Cui J, Li Z, Jin C, Jin Z (2020) Knockdown of fibronectin extra domain B suppresses TGF-beta1-mediated cell proliferation and collagen deposition in keloid fibroblasts via AKT/ERK signaling pathway. Biochem Biophys Res Commun 526:1131–1137. https://doi.org/10.1016/j.bbrc.2020.04.021

    Article  CAS  PubMed  Google Scholar 

  3. Naylor MC, Brissett AE (2012) Current concepts in the etiology and treatment of keloids. Facial Plast Surg 28:504–512. https://doi.org/10.1055/s-0032-1325644

    Article  CAS  PubMed  Google Scholar 

  4. Andrews JP, Marttala J, Macarak E, Rosenbloom J, Uitto J (2016) Keloids: the paradigm of skin fibrosis—pathomechanisms and treatment. Matrix Biol 51:37–46. https://doi.org/10.1016/j.matbio.2016.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Marttala J, Andrews JP, Rosenbloom J, Uitto J (2016) Keloids: animal models and pathologic equivalents to study tissue fibrosis. Matrix Biol 51:47–54. https://doi.org/10.1016/j.matbio.2016.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bock O, Schmid-Ott G, Malewski P, Mrowietz U (2006) Quality of life of patients with keloid and hypertrophic scarring. Arch Dermatol Res 297:433–438. https://doi.org/10.1007/s00403-006-0651-7

    Article  PubMed  Google Scholar 

  7. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914. https://doi.org/10.1016/j.molcel.2011.08.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kretz M, Webster DE, Flockhart RJ, Lee CS, Zehnder A, Lopez-Pajares V, Qu K, Zheng GX, Chow J, Kim GE, Rinn JL, Chang HY, Siprashvili Z, Khavari PA (2012) Suppression of progenitor differentiation requires the long noncoding RNA ANCR. Genes Dev 26:338–343. https://doi.org/10.1101/gad.182121.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bernard JJ, Cowing-Zitron C, Nakatsuji T, Muehleisen B, Muto J, Borkowski AW, Martinez L, Greidinger EL, Yu BD, Gallo RL (2012) Ultraviolet radiation damages self noncoding RNA and is detected by TLR3. Nat Med 18:1286–1290. https://doi.org/10.1038/nm.2861

    Article  CAS  PubMed  Google Scholar 

  10. Khaitan D, Dinger ME, Mazar J, Crawford J, Smith MA, Mattick JS, Perera RJ (2011) The melanoma-upregulated long noncoding RNA SPRY4-IT1 modulates apoptosis and invasion. Cancer Res 71:3852–3862. https://doi.org/10.1158/0008-5472.CAN-10-4460

    Article  CAS  PubMed  Google Scholar 

  11. Weinstein LS, Liu J, Sakamoto A, Xie T, Chen M (2004) Minireview: GNAS: normal and abnormal functions. Endocrinology 145:5459–5464. https://doi.org/10.1210/en.2004-0865

    Article  CAS  PubMed  Google Scholar 

  12. Liu J, Yu S, Litman D, Chen W, Weinstein LS (2000) Identification of a methylation imprint mark within the mouse Gnas locus. Mol Cell Biol 20:5808–5817. https://doi.org/10.1128/MCB.20.16.5808-5817.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Williamson CM, Ball ST, Dawson C, Mehta S, Beechey CV, Fray M, Teboul L, Dear TN, Kelsey G, Peters J (2011) Uncoupling antisense-mediated silencing and DNA methylation in the imprinted Gnas cluster. PLoS Genet 7:e1001347. https://doi.org/10.1371/journal.pgen.1001347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Regard JB, Cherman N, Palmer D, Kuznetsov SA, Celi FS, Guettier JM, Chen M, Bhattacharyya N, Wess J, Coughlin SR, Weinstein LS, Collins MT, Robey PG, Yang Y (2011) Wnt/beta-catenin signaling is differentially regulated by Galpha proteins and contributes to fibrous dysplasia. Proc Natl Acad Sci USA 108:20101–20106. https://doi.org/10.1073/pnas.1114656108

    Article  PubMed  PubMed Central  Google Scholar 

  15. Regard JB, Malhotra D, Gvozdenovic-Jeremic J, Josey M, Chen M, Weinstein LS, Lu J, Shore EM, Kaplan FS, Yang Y (2013) Activation of Hedgehog signaling by loss of GNAS causes heterotopic ossification. Nat Med 19:1505–1512. https://doi.org/10.1038/nm.3314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu SQ, Zhou ZY, Dong X, Guo L, Zhang KJ (2020) LncRNA GNAS-AS1 facilitates ER+ breast cancer cells progression by promoting M2 macrophage polarization via regulating miR-433-3p/GATA3 axis. Biosci Rep. https://doi.org/10.1042/BSR20200626

  17. Li Z, Feng C, Guo J, Hu X, Xie D (2020) GNAS-AS1/miR-4319/NECAB3 axis promotes migration and invasion of non-small cell lung cancer cells by altering macrophage polarization. Funct Integr Genomics 20:17–28. https://doi.org/10.1007/s10142-019-00696-x

    Article  CAS  PubMed  Google Scholar 

  18. Wang XQ, Xu H, Wang CH, Xie H (2020) Long non-coding RNA GNAS-AS1 promotes cell migration and invasion via regulating Wnt/beta-catenin pathway in nasopharyngeal carcinoma. Eur Rev Med Pharmacol Sci 24:3077–3084. https://doi.org/10.26355/eurrev_202003_20672

    Article  PubMed  Google Scholar 

  19. Liang X, Ma L, Long X, Wang X (2015) LncRNA expression profiles and validation in keloid and normal skin tissue. Int J Oncol 47:1829–1838. https://doi.org/10.3892/ijo.2015.3177

    Article  CAS  PubMed  Google Scholar 

  20. Hessam S, Sand M, Skrygan M, Gambichler T, Bechara FG (2017) Expression of miRNA-155, miRNA-223, miRNA-31, miRNA-21, miRNA-125b, and miRNA-146a in the Inflammatory pathway of Hidradenitis suppurativa. Inflammation 40:464–472. https://doi.org/10.1007/s10753-016-0492-2

    Article  CAS  PubMed  Google Scholar 

  21. Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16:203–222. https://doi.org/10.1038/nrd.2016.246

    Article  CAS  PubMed  Google Scholar 

  22. An G, Liang S, Sheng C, Liu Y, Yao W (2017) Upregulation of microRNA-205 suppresses vascular endothelial growth factor expression-mediated PI3K/Akt signaling transduction in human keloid fibroblasts. Exp Biol Med (Maywood) 242:275–285. https://doi.org/10.1177/1535370216669839

    Article  CAS  PubMed  Google Scholar 

  23. Yao X, Cui X, Wu X, Xu P, Zhu W, Chen X, Zhao T (2018) Tumor suppressive role of miR-1224-5p in keloid proliferation, apoptosis and invasion via the TGF-beta1/Smad3 signaling pathway. Biochem Biophys Res Commun 495:713–720. https://doi.org/10.1016/j.bbrc.2017.10.070

    Article  CAS  PubMed  Google Scholar 

  24. Wang M, Qiu R, Gong Z, Zhao X, Wang T, Zhou L, Lu W, Shen B, Zhu W, Xu W (2019) miR-188-5p emerges as an oncomiRNA to promote gastric cancer cell proliferation and migration via upregulation of SALL4. J Cell Biochem 120:15027–15037. https://doi.org/10.1002/jcb.28764

    Article  CAS  PubMed  Google Scholar 

  25. Wang M, Zhang H, Yang F, Qiu R, Zhao X, Gong Z, Yu W, Zhou B, Shen B, Zhu W (2020) miR-188-5p suppresses cellular proliferation and migration via IL6ST: a potential noninvasive diagnostic biomarker for breast cancer. J Cell Physiol 235:4890–4901. https://doi.org/10.1002/jcp.29367

    Article  CAS  PubMed  Google Scholar 

  26. Yang X, Wang P (2019) MiR-188-5p and MiR-141-3p influence prognosis of bladder cancer and promote bladder cancer synergistically. Pathol Res Pract 215:152598. https://doi.org/10.1016/j.prp.2019.152598

    Article  CAS  PubMed  Google Scholar 

  27. Zhang H, Qi S, Zhang T, Wang A, Liu R, Guo J, Wang Y, Xu Y (2015) miR-188-5p inhibits tumour growth and metastasis in prostate cancer by repressing LAPTM4B expression. Oncotarget 6:6092–6104. https://doi.org/10.18632/oncotarget.3341

    Article  PubMed  PubMed Central  Google Scholar 

  28. Peng Y, Shen X, Jiang H, Chen Z, Wu J, Zhu Y, Zhou Y, Li J (2018) miR-188-5p suppresses gastric cancer cell proliferation and invasion via targeting ZFP91. Oncol Res 27:65–71. https://doi.org/10.3727/096504018X15191223015016

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhu W, Wu X, Yang B, Yao X, Cui X, Xu P, Chen X (2019) Corrigendum to: miR-188-5p regulates proliferation and invasion via PI3K/Akt/MMP-2/9 signaling in keloids. Acta Biochim Biophys Sin (Shanghai) 51:980. https://doi.org/10.1093/abbs/gmz060

    Article  PubMed  Google Scholar 

  30. Xu Z, Guo B, Chang P, Hui Q, Li W, Tao K (2019) The differential expression of miRNAs and a preliminary study on the mechanism of miR-194-3p in keloids. Biomed Res Int 2019:8214923. https://doi.org/10.1155/2019/8214923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li JH, Liu S, Zhou H, Qu LH, Yang JH (2014) starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42:D92–D97. https://doi.org/10.1093/nar/gkt1248

    Article  CAS  PubMed  Google Scholar 

  32. Macarak EJ, Wermuth PJ, Rosenbloom J, Uitto J (2021) Keloid disorder: fibroblast differentiation and gene expression profile in fibrotic skin diseases. Exp Dermatol 30:132–145. https://doi.org/10.1111/exd.14243

    Article  CAS  PubMed  Google Scholar 

  33. Shih B, Bayat A (2010) Genetics of keloid scarring. Arch Dermatol Res 302:319–339. https://doi.org/10.1007/s00403-009-1014-y

    Article  CAS  PubMed  Google Scholar 

  34. Sun XJ, Wang Q, Guo B, Liu XY, Wang B (2017) Identification of skin-related lncRNAs as potential biomarkers that involved in Wnt pathways in keloids. Oncotarget 8:34236–34244. https://doi.org/10.18632/oncotarget.15880

    Article  PubMed  PubMed Central  Google Scholar 

  35. Si L, Zhang M, Guan E, Han Q, Liu Y, Long X, Long F, Zhao RC, Huang J, Liu Z, Zhao R, Zhang H, Wang X (2020) Resveratrol inhibits proliferation and promotes apoptosis of keloid fibroblasts by targeting HIF-1alpha. J Plast Surg Hand Surg 54:290–296. https://doi.org/10.1080/2000656X.2020.1771719

    Article  PubMed  Google Scholar 

  36. Shi J, Yao S, Chen P, Yang Y, Qian M, Han Y, Wang N, Zhao Y, He Y, Lyu L, Lu D (2020) The integrative regulatory network of circRNA and microRNA in keloid scarring. Mol Biol Rep 47:201–209. https://doi.org/10.1007/s11033-019-05120-y

    Article  CAS  PubMed  Google Scholar 

  37. Zhu HY, Bai WD, Li C, Zheng Z, Guan H, Liu JQ, Yang XK, Han SC, Gao JX, Wang HT, Hu DH (2016) Knockdown of lncRNA-ATB suppresses autocrine secretion of TGF-beta2 by targeting ZNF217 via miR-200c in keloid fibroblasts. Sci Rep 6:24728. https://doi.org/10.1038/srep24728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pang Q, Wang Y, Xu M, Xu J, Xu S, Shen Y, Xu J, Lei R (2019) MicroRNA-152-5p inhibits proliferation and migration and promotes apoptosis by regulating expression of Smad3 in human keloid fibroblasts. BMB Rep 52:202–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu Y, Yang D, Xiao Z, Zhang M (2012) miRNA expression profiles in keloid tissue and corresponding normal skin tissue. Aesthetic Plast Surg 36:193–201. https://doi.org/10.1007/s00266-011-9773-1

    Article  PubMed  Google Scholar 

  40. Kashiyama K, Mitsutake N, Matsuse M, Ogi T, Saenko VA, Ujifuku K, Utani A, Hirano A, Yamashita S (2012) miR-196a downregulation increases the expression of type I and III collagens in keloid fibroblasts. J Investig Dermatol 132:1597–1604. https://doi.org/10.1038/jid.2012.22

    Article  CAS  PubMed  Google Scholar 

  41. Duan X, Wu Y, Zhang Z, Lu Z (2020) Identification and analysis of dysregulated lncRNA and associated ceRNA in the pathogenesis of keloid. Ann Transl Med 8:222. https://doi.org/10.21037/atm.2020.01.07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cheng N, Wu J, Yin M, Xu J, Wang Y, Chen X, Nie Z, Yin J (2019) LncRNA CASC11 promotes cancer cell proliferation in hepatocellular carcinoma by inhibiting miRNA-188-5p. Biosci Rep. https://doi.org/10.1042/BSR20190251

  43. Yan S, Yue Y, Wang J, Li W, Sun M, Gu C, Zeng L (2019) LINC00668 promotes tumorigenesis and progression through sponging miR-188-5p and regulating USP47 in colorectal cancer. Eur J Pharmacol 858:172464. https://doi.org/10.1016/j.ejphar.2019.172464

    Article  CAS  PubMed  Google Scholar 

  44. Kaptan E, Sancar Bas S, Sancakli A, Aktas HG, Bayrak BB, Yanardag R, Bolkent S (2017) Runt-related transcription factor 2 (Runx2) is responsible for galectin-3 overexpression in human thyroid carcinoma. J Cell Biochem 118:3911–3919. https://doi.org/10.1002/jcb.26043

    Article  CAS  PubMed  Google Scholar 

  45. Hsu CK, Lin HH, Harn HI, Ogawa R, Wang YK, Ho YT, Chen WR, Lee YC, Lee JY, Shieh SJ, Cheng CM, McGrath JA, Tang MJ (2018) Caveolin-1 controls hyperresponsiveness to mechanical stimuli and fibrogenesis-associated RUNX2 activation in keloid fibroblasts. J Investig Dermatol 138:208–218. https://doi.org/10.1016/j.jid.2017.05.041

    Article  CAS  PubMed  Google Scholar 

  46. Lv W, Wu M, Ren Y, Luo X, Hu W, Zhang Q, Wu Y (2021) Treatment of keloids through Runx2 siRNAinduced inhibition of the PI3K/AKT signaling pathway. Mol Med Rep. https://doi.org/10.3892/mmr.2020.11693

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to give our sincere gratitude to the reviewers for their constructive comments and the support of Hainan Natural Science Foundation for this project.

Funding

This work was supported by Hainan Provincial Natural Science Foundation of China (822MS173).

Author information

Authors and Affiliations

Authors

Contributions

YL: conceptualization; funding acquisition; LL: writing—original draft; JYW: data curation; resources; FG: methodology; XL: formal analysis; SSL: investigation; software; visualization; ZYQ: project administration; supervision; ZHL: validation; writing—review AND editing. All authors have read and approved the final version of this manuscript to be published.

Corresponding author

Correspondence to Zun-Hong Liang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

All patients and their families had informed consent. These experiments in our research were countenanced by the Ethics Committee of Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University.

Consent to participate

All patients and their families had informed consent.

Consent for publication

All patients and their families had informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Li, L., Wang, JY. et al. LncRNA GNAS-AS1 knockdown inhibits keloid cells growth by mediating the miR-188-5p/RUNX2 axis. Mol Cell Biochem 478, 707–719 (2023). https://doi.org/10.1007/s11010-022-04538-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04538-6

Keywords

Navigation