Skip to main content
Log in

Chrysin protects cardiac H9c2 cells against H2O2-induced endoplasmic reticulum stress by up-regulating the Nrf2/PERK pathway

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Oxidative and endoplasmic reticulum (ER) stress-mediated cardiac apoptosis is an essential pathological process in cardiovascular diseases (CVDs). Chrysin (Chy) is a natural flavonoid that exerts several health benefits, particularly anti-oxidative and anti-apoptotic effects. However, its protective effect against CVDs and its mechanism of action at a molecular level remains unclear. Therefore, the present study aimed to investigate the interaction of ER stress response protein with Chy by computational analysis and molecular action in H2O2-induced oxidative and ER stress in cardiomyoblast cells. H9c2 cells were pre-treated with 50 μM of Chy for 24 h and exposed to H2O2 for 1 h. Explore the Chy-mediated Nrf2 signalling on ER stress reduction, H9c2 cell lines were transfected with Nrf2 siRNA for 48 h and further treated with Chy for 24 h and subjected to H2O2 for 1 h. Chy pre-treatment increased the Nrf2-regulated gene expression, reduced the ER stress signalling genes such as CHOP and GRP78, and increased the PERK and AFT6 expression compared to H2O2-treated cells. Chy preincubation down-regulated the expression of PI3K, NF-κB, and caspase-3. Fluorescence staining revealed that Chy reduced intracellular ROS generation, ER stress, apoptosis, and increased MMP. This beneficial effect of Chy was abolished when silencing Nrf2 in H9c2 cells. Overall, the present study confirmed that Chy showed the cardioprotective effect by attenuating ER stress via the activation of Nrf2 signalling. Therefore, the study concluded that improving Nrf2 signalling by Chy supplementation could provide a promising therapeutic target in oxidative and ER stress-mediated CVDs complications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the article and its supplementary information files.

References

  1. McGill HC Jr, McMahan CA, Gidding SS (2008) Preventing heart disease in the 21st century: implications of the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) study. Circulation 117:1216–1227. https://doi.org/10.1161/CIRCULATIONAHA.107.717033

    Article  PubMed  Google Scholar 

  2. Prabhakaran D, Jeemon P, Roy A (2016) Cardiovascular diseases in india: current epidemiology and future directions. Circulation 133:1605–1620. https://doi.org/10.1161/CIRCULATIONAHA.114.008729

    Article  PubMed  Google Scholar 

  3. Bundhun PK, Wu ZJ, Chen MH (2015) Impact of modifiable cardiovascular risk factors on mortality after percutaneous coronary intervention: a systematic review and meta-analysis of 100 studies. Medicine (Baltimore) 94:e2313. https://doi.org/10.1097/MD.0000000000002313

    Article  PubMed  Google Scholar 

  4. Horke S, Witte I, Wilgenbus P, Kruger M, Strand D, Forstermann U (2007) Paraoxonase-2 reduces oxidative stress in vascular cells and decreases endoplasmic reticulum stress-induced caspase activation. Circulation 115:2055–2064. https://doi.org/10.1161/CIRCULATIONAHA.106.681700

    Article  CAS  PubMed  Google Scholar 

  5. Park WJ, Park JW (2020) The role of sphingolipids in endoplasmic reticulum stress. FEBS Lett 594:3632–3651. https://doi.org/10.1002/1873-3468.13863

    Article  CAS  PubMed  Google Scholar 

  6. Stutzmann GE, Mattson MP (2011) Endoplasmic reticulum Ca(2+) handling in excitable cells in health and disease. Pharmacol Rev 63:700–727. https://doi.org/10.1124/pr.110.003814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schroder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789. https://doi.org/10.1146/annurev.biochem.73.011303.074134

    Article  CAS  PubMed  Google Scholar 

  8. Wang M, Kaufman RJ (2016) Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature 529:326–335. https://doi.org/10.1038/nature17041

    Article  CAS  PubMed  Google Scholar 

  9. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529. https://doi.org/10.1038/nrm2199

    Article  CAS  PubMed  Google Scholar 

  10. Ren J, Bi Y, Sowers JR, Hetz C, Zhang Y (2021) Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat Rev Cardiol 18:499–521. https://doi.org/10.1038/s41569-021-00511-w

    Article  PubMed  Google Scholar 

  11. Gotoh T, Endo M, Oike Y (2011) Endoplasmic reticulum stress-related inflammation and cardiovascular diseases. Int J Inflam 2011:259462. https://doi.org/10.4061/2011/259462

    Article  PubMed  PubMed Central  Google Scholar 

  12. Groenendyk J, Sreenivasaiah PK, Kim DH, Agellon LB, Michalak M (2010) Biology of endoplasmic reticulum stress in the heart. Circ Res 107:1185–1197. https://doi.org/10.1161/CIRCRESAHA.110.227033

    Article  CAS  PubMed  Google Scholar 

  13. Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J (2016) Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci 73:3221–3247. https://doi.org/10.1007/s00018-016-2223-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dludla PV, Muller CJ, Joubert E, Louw J, Essop MF, Gabuza KB, Ghoor S, Huisamen B, Johnson R (2017) Aspalathin protects the heart against hyperglycemia-induced oxidative damage by up-regulating Nrf2 expression. Molecules. https://doi.org/10.3390/molecules22010129

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ramprasath T, Vasudevan V, Sasikumar S, Puhari SS, Saso L, Selvam GS (2015) Regression of oxidative stress by targeting eNOS and Nrf2/ARE signaling: a guided drug target for cardiovascular diseases. Curr Top Med Chem 15:857–871. https://doi.org/10.2174/1568026615666150220114417

    Article  CAS  PubMed  Google Scholar 

  16. Cullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ, Diehl JA (2003) Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol 23:7198–7209. https://doi.org/10.1128/MCB.23.20.7198-7209.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cominacini L, Mozzini C, Garbin U, Pasini A, Stranieri C, Solani E, Vallerio P, Tinelli IA, Fratta Pasini A (2015) Endoplasmic reticulum stress and Nrf2 signaling in cardiovascular diseases. Free Radic Biol Med 88:233–242. https://doi.org/10.1016/j.freeradbiomed.2015.05.027

    Article  CAS  PubMed  Google Scholar 

  18. Reuland DJ, McCord JM, Hamilton KL (2013) The role of Nrf2 in the attenuation of cardiovascular disease. Exerc Sport Sci Rev 41:162–168. https://doi.org/10.1097/JES.0b013e3182948a1e

    Article  PubMed  Google Scholar 

  19. Sivandzade F, Bhalerao A, Cucullo L (2019) Cerebrovascular and neurological disorders: protective role of NRF2. Int J Mol Sci. https://doi.org/10.3390/ijms20143433

    Article  PubMed  PubMed Central  Google Scholar 

  20. Naz S, Imran M, Rauf A, Orhan IE, Shariati MA, Iahtisham Ul H, IqraYasmin SM, Qaisrani TB, Shah ZA, Plygun S, Heydari M (2019) Chrysin: pharmacological and therapeutic properties. Life Sci 235:116797. https://doi.org/10.1016/j.lfs.2019.116797

    Article  CAS  PubMed  Google Scholar 

  21. Cho H, Yun CW, Park WK, Kong JY, Kim KS, Park Y, Lee S, Kim BK (2004) Modulation of the activity of pro-inflammatory enzymes, COX-2 and iNOS, by chrysin derivatives. Pharmacol Res 49:37–43. https://doi.org/10.1016/s1043-6618(03)00248-2

    Article  CAS  PubMed  Google Scholar 

  22. Dhawan K, Kumar S, Sharma A (2002) Beneficial effects of chrysin and benzoflavone on virility in 2-year-old male rats. J Med Food 5:43–48. https://doi.org/10.1089/109662002753723214

    Article  CAS  PubMed  Google Scholar 

  23. Mantawy EM, Esmat A, El-Bakly WM, Salah ElDin RA, El-Demerdash E (2017) Mechanistic clues to the protective effect of chrysin against doxorubicin-induced cardiomyopathy: plausible roles of p53 MAPK and AKT pathways. Sci Rep 7:4795. https://doi.org/10.1038/s41598-017-05005-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang M, Xiong J, Zou Q, Wang DD, Huang CX (2018) Chrysin attenuates interstitial fibrosis and improves cardiac function in a rat model of acute myocardial infarction. J Mol Histol 49:555–565. https://doi.org/10.1007/s10735-018-9793-0

    Article  CAS  PubMed  Google Scholar 

  25. Farkhondeh T, Abedi F, Samarghandian S (2019) Chrysin attenuates inflammatory and metabolic disorder indices in aged male rat. Biomed Pharmacother 109:1120–1125. https://doi.org/10.1016/j.biopha.2018.10.059

    Article  CAS  PubMed  Google Scholar 

  26. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  28. Baskic D, Popovic S, Ristic P, Arsenijevic NN (2006) Analysis of cycloheximide-induced apoptosis in human leukocytes: fluorescence microscopy using annexin V/propidium iodide versus acridin orange/ethidium bromide. Cell Biol Int 30:924–932. https://doi.org/10.1016/j.cellbi.2006.06.016

    Article  CAS  PubMed  Google Scholar 

  29. Abhishek A, Benita S, Kumari M, Ganesan D, Paul E, Sasikumar P, Mahesh A, Yuvaraj S, Ramprasath T, Selvam GS (2017) Molecular analysis of oxalate-induced endoplasmic reticulum stress mediated apoptosis in the pathogenesis of kidney stone disease. J Physiol Biochem 73:561–573. https://doi.org/10.1007/s13105-017-0587-8

    Article  CAS  PubMed  Google Scholar 

  30. Chen J, Guo R, Yan H, Tian L, You Q, Li S, Huang R, Wu K (2014) Naringin inhibits ROS-activated MAPK pathway in high glucose-induced injuries in H9c2 cardiac cells. Basic Clin Pharmacol Toxicol 114:293–304. https://doi.org/10.1111/bcpt.12153

    Article  CAS  PubMed  Google Scholar 

  31. Wang Y, Zhao X, Gao X, Nie X, Yang Y, Fan X (2011) Development of fluorescence imaging-based assay for screening cardioprotective compounds from medicinal plants. Anal Chim Acta 702:87–94. https://doi.org/10.1016/j.aca.2011.06.020

    Article  CAS  PubMed  Google Scholar 

  32. Warleta F, Quesada CS, Campos M, Allouche Y, Beltran G, Gaforio JJ (2011) Hydroxytyrosol protects against oxidative DNA damage in human breast cells. Nutrients 3:839–857. https://doi.org/10.3390/nu3100839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chazotte B (2011) Mounting live cells onto microscope slides. Cold Spring Harb Protoc 2011:pdb prot5554. https://doi.org/10.1101/pdb.prot5554

    Article  PubMed  Google Scholar 

  34. Hosoi T, Ozawa K (2009) Endoplasmic reticulum stress in disease: mechanisms and therapeutic opportunities. Clin Sci (Lond) 118:19–29. https://doi.org/10.1042/CS20080680

    Article  PubMed  Google Scholar 

  35. Hotamisligil GS (2010) Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140:900–917. https://doi.org/10.1016/j.cell.2010.02.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang K, Kaufman RJ (2008) From endoplasmic-reticulum stress to the inflammatory response. Nature 454:455–462. https://doi.org/10.1038/nature07203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Thuerauf DJ, Marcinko M, Gude N, Rubio M, Sussman MA, Glembotski CC (2006) Activation of the unfolded protein response in infarcted mouse heart and hypoxic cultured cardiac myocytes. Circ Res 99:275–282. https://doi.org/10.1161/01.RES.0000233317.70421.03

    Article  CAS  PubMed  Google Scholar 

  38. Kang MK, Park SH, Kim YH, Lee EJ, Antika LD, Kim DY, Choi YJ, Kang YH (2017) Chrysin ameliorates podocyte injury and slit diaphragm protein loss via inhibition of the PERK-eIF2alpha-ATF-CHOP pathway in diabetic mice. Acta Pharmacol Sin 38:1129–1140. https://doi.org/10.1038/aps.2017.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yuvaraj S, Ramprasath T, Saravanan B, Vasudevan V, Sasikumar S, Selvam GS (2021) Chrysin attenuates high-fat-diet-induced myocardial oxidative stress via upregulating eNOS and Nrf2 target genes in rats. Mol Cell Biochem 476:2719–2727. https://doi.org/10.1007/s11010-021-04105-5

    Article  CAS  PubMed  Google Scholar 

  40. Hao E, Lang F, Chen Y, Zhang H, Cong X, Shen X, Su G (2013) Resveratrol alleviates endotoxin-induced myocardial toxicity via the Nrf2 transcription factor. PLoS ONE 8:e69452. https://doi.org/10.1371/journal.pone.0069452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shinjo T, Tanaka T, Okuda H, Kawaguchi AT, Oh-Hashi K, Terada Y, Isonishi A, Morita-Takemura S, Tatsumi K, Kawaguchi M, Wanaka A (2018) Propofol induces nuclear localization of Nrf2 under conditions of oxidative stress in cardiac H9c2 cells. PLoS ONE 13:e0196191. https://doi.org/10.1371/journal.pone.0196191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sozen E, Ozer NK (2017) Impact of high cholesterol and endoplasmic reticulum stress on metabolic diseases: an updated mini-review. Redox Biol 12:456–461. https://doi.org/10.1016/j.redox.2017.02.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen J, Deng X, Liu N, Li M, Liu B, Fu Q, Qu R, Ma S (2016) Quercetin attenuates tau hyperphosphorylation and improves cognitive disorder via suppression of ER stress in a manner dependent on AMPK pathway. J Funct Foods 22:463–476

    Article  CAS  Google Scholar 

  44. Mozaffari MS, Liu JY, Schaffer SW (2010) Effect of pressure overload on cardioprotection via PI3K-Akt: comparison of postconditioning, insulin, and pressure unloading. Am J Hypertens 23:668–674. https://doi.org/10.1038/ajh.2010.43

    Article  CAS  PubMed  Google Scholar 

  45. Roos WP, Kaina B (2006) DNA damage-induced cell death by apoptosis. Trends Mol Med 12:440–450. https://doi.org/10.1016/j.molmed.2006.07.007

    Article  CAS  PubMed  Google Scholar 

  46. Tsujimoto Y (1998) Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria? Genes Cells 3:697–707. https://doi.org/10.1046/j.1365-2443.1998.00223.x

    Article  CAS  PubMed  Google Scholar 

  47. Nakaso K, Yano H, Fukuhara Y, Takeshima T, Wada-Isoe K, Nakashima K (2003) PI3K is a key molecule in the Nrf2-mediated regulation of antioxidative proteins by hemin in human neuroblastoma cells. FEBS Lett 546:181–184. https://doi.org/10.1016/s0014-5793(03)00517-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.Yuvaraj expresses his gratitude to the Council of Scientific and Industrial Research Human Resource Development Group, New Delhi, India- for CSIR Senior Research Fellowship and financial support. The authors also thank UGC-CEGS, UGC-CAS, UGC-NRCBS, DST-FIST, and DST-PURSE program for the central instrumentation facility at SBS, MKU.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization—SY; Methodology—SY, AKA, SSMP, VV, NV; Formal analysis –SY, TR; Investigation—SY, SSMP, GSS; Writing—Original draft-SY, SSMP; Review and Editing-SY, AA, SSMP, VV, and GSS; Funding acquisition-GSS.

Corresponding author

Correspondence to Govindan Sadasivam Selvam.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

The experimental procedure was approved by the Internal Research and Review Board, Ethical Clearance, Biosafety and Animal Welfare Committee of Madurai Kamaraj University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuvaraj, S., Ajeeth, A.K., Puhari, S.S.M. et al. Chrysin protects cardiac H9c2 cells against H2O2-induced endoplasmic reticulum stress by up-regulating the Nrf2/PERK pathway. Mol Cell Biochem 478, 539–553 (2023). https://doi.org/10.1007/s11010-022-04531-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04531-z

Keywords

Navigation