Skip to main content

Advertisement

Log in

Short-chain fatty acids: possible regulators of insulin secretion

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The benefits of gut microbiota-derived short-chain fatty acids (SCFAs) towards health and metabolism have been emerging since the past decade. Extensive studies have been carried out to understand the mechanisms responsible in initiating the functionalities of these SCFAs towards body tissues, which greatly involves the SCFA-specific receptors free fatty acid receptor 2 (FFAR2) and free fatty acid receptor 3 (FFAR3). This review intends to discuss the potential of SCFAs particularly in regulating insulin secretion in pancreatic β-cells, by explaining the production of SCFAs in the gut, the fate of each SCFAs after their production, involvement of FFAR2 and FFAR3 signalling mechanisms and their impacts on insulin secretion. Increased secretion of insulin after SCFAs treatments were reported in many studies, but contradicting evidence also exist in several other studies. Hence, no clear consensus was achieved in determining the true potential of SCFA in regulating insulin secretion. In this review, we explore how such differences were possible and hopefully be able to shed some perspectives in understanding SCFAs-signalling behaviour and preferences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

All data were included in the manuscript.

References

  1. International Diabetes Federation (2021) IDF Diabetes Atlas, 10th edn. Belgium, Brussels

    Google Scholar 

  2. Kahn BB (1998) Type 2 diabetes: when insulin secretion fails to compensate for insulin resistance. Cell 92:593–596. https://doi.org/10.1016/S0092-8674(00)81125-3

    Article  CAS  PubMed  Google Scholar 

  3. Chen C, Cohrs CM, Stertmann J, Bozsak R, Speier S (2017) Human beta cell mass and function in diabetes: recent advances in knowledge and technologies to understand disease pathogenesis. Mol Metab 6:943–957. https://doi.org/10.1016/j.molmet.2017.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cerf ME (2013) Beta cell dysfunction and insulin resistance. Front Endocrinol (Lausanne) 4:1–12. https://doi.org/10.3389/fendo.2013.00037

    Article  Google Scholar 

  5. Villa SR, Mishra RK, Zapater JL, Priyadarshini M, Gilchrist A, Mancebo H, Schiltz GE, Layden BT (2017) Homology modeling of FFA2 identifies novel agonists that potentiate insulin secretion. J Investig Med 65:1116–1124. https://doi.org/10.1136/jim-2017-000523

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, Cameron J, Grosse J, Reimann F, Gribble FM (2012) Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein—coupled receptor FFAR2. Diabetes. https://doi.org/10.2337/db11-1019

    Article  PubMed  PubMed Central  Google Scholar 

  7. Farino ZJ, Morgenstern TJ, Maffei A, Quick M, De Solis AJ, Wiriyasermkul P, Freyberg RJ, Aslanoglou D, Sorisio D, Inbar BP, Free RB, Donthamsetti P, Mosharov EV, Kellendonk C, Schwartz GJ, Sibley DR, Schmauss C, Zeltser LM, Moore H, Harris PE, Javitch JA, Freyberg Z (2019) New roles for dopamine D2 and D3 receptors in pancreatic beta cell insulin secretion. Mol Psychiatry. https://doi.org/10.1038/s41380-018-0344-6

    Article  PubMed  PubMed Central  Google Scholar 

  8. Luna-Vital DA, De Mejia EG (2018) Anthocyanins from purple corn activate free fatty acid-receptor 1 and glucokinase enhancing in vitro insulin secretion and hepatic glucose uptake. PLoS ONE 13:1–20. https://doi.org/10.1371/journal.pone.0200449

    Article  CAS  Google Scholar 

  9. De Munter JSL, Hu FB, Spiegelman D, Franz M, Van Dam RM (2007) Whole grain, bran, and germ intake and risk of type 2 diabetes: a prospective cohort study and systematic review. PLoS Med 4:1385–1395. https://doi.org/10.1371/journal.pmed.0040261

    Article  Google Scholar 

  10. Den Besten G, Van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54:2325–2340. https://doi.org/10.1194/jlr.R036012

    Article  CAS  Google Scholar 

  11. Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L (2014) The role of short-chain fatty acids in health and disease, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  12. Layden BT, Angueira AR, Brodsky M, Durai V, Lowe WL (2013) Short chain fatty acids and their receptors: new metabolic targets. Transl Res 161:131–140. https://doi.org/10.1016/j.trsl.2012.10.007

    Article  CAS  PubMed  Google Scholar 

  13. Cummings JH, Pomare EW, Branch HWJ, Naylor CPE, MacFarlane GT (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28:1221–1227. https://doi.org/10.1136/gut.28.10.1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Knowles SE, Jarrett IG, Filsell OH, Ballard FJ (1974) Production and utilization of acetate in mammals. Biochem J 142:401–411. https://doi.org/10.1042/bj1420401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Inoue A, Fujimoto D (1969) Enzymatic deacetylation of histone. Biochem Biophys Res Commun 36:1–27

    Article  Google Scholar 

  16. Liu X, Cooper DE, Cluntun AA, Warmoes MO, Zhao S, Reid MA, Liu J, Lund PJ, Lopes M, Garcia BA, Wellen KE, Kirsch DG, Locasale JW (2018) Acetate production from glucose and coupling to mitochondrial metabolism in mammals. Cell 175:502-513.e13. https://doi.org/10.1016/j.cell.2018.08.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Marques FZ, Nelson E, Chu PY, Horlock D, Fiedler A, Ziemann M, Tan JK, Kuruppu S, Rajapakse NW, El-Osta A, Mackay CR, Kaye DM (2017) High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation 135:964–977. https://doi.org/10.1161/CIRCULATIONAHA.116.024545

    Article  CAS  PubMed  Google Scholar 

  18. Liu H, Wang J, He T, Becker S, Zhang G, Li D, Ma X (2018) Butyrate: a double-edged sword for health? Adv Nutr 9:21–29. https://doi.org/10.1093/advances/nmx009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lin HV, Frassetto A, Kowalik EJ, Nawrocki AR, Lu MM, Kosinski JR, Hubert JA, Szeto D, Yao X, Forrest G, Marsh DJ (2012) Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE 7:1–9. https://doi.org/10.1371/journal.pone.0035240

    Article  CAS  Google Scholar 

  20. Arora T, Sharma R, Frost G (2011) Propionate. anti-obesity and satiety enhancing factor? Appetite 56:511–515. https://doi.org/10.1016/j.appet.2011.01.016

    Article  PubMed  Google Scholar 

  21. Mariadason JM, Corner GA, Augenlicht LH (2000) Genetic reprogramming in pathways of colonic cell maturation induced by short chain fatty acids: comparison with trichostatin A, sulindac, and curcumin and implications for chemoprevention of colon cancer. Cancer Res 60:4561–4572

    CAS  PubMed  Google Scholar 

  22. Xu Z, Tao J, Chen P, Chen L, Sharma S, Wang G, Dong Q (2018) Sodium butyrate inhibits colorectal cancer cell migration by downregulating Bmi-1 through enhanced miR-200c expression. Mol Nutr Food Res 62:1–11. https://doi.org/10.1002/mnfr.201700844

    Article  CAS  Google Scholar 

  23. Hijova E, Chmelarova A (2007) Short chain fatty acids and colonic health. Bratisl Lek Listy 108:354–358

    CAS  PubMed  Google Scholar 

  24. Wang W, Fang D, Zhang H, Xue J, Wangchuk D, Du J, Jiang L (2020) Sodium butyrate selectively kills cancer cells and inhibits migration in colorectal cancer by targeting thioredoxin-1. Onco Targets Ther 13:4691–4704. https://doi.org/10.2147/OTT.S235575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jaskiewicz J, Zhao Y, Hawes JW, Shimomura Y, Crabb DW, Harris RA (1996) Catabolism of isobutyrate by colonocytes. Arch Biochem Biophys 327:265–270. https://doi.org/10.1006/abbi.1996.0120

    Article  CAS  PubMed  Google Scholar 

  26. Wong JMW, De SR, Kendall CWC, Emam A, Jenkins DJA (2006) Colonic Health : Fermentation and Short Chain Fatty Acids. J Clin Gastroenterol 40:235–243

    Article  CAS  PubMed  Google Scholar 

  27. Krajmalnik-Brown R, Ilhan ZE, Kang DW, DiBaise JK (2012) Effects of gut microbes on nutrient absorption and energy regulation. Nutr Clin Pract 27:201–214. https://doi.org/10.1177/0884533611436116

    Article  PubMed  PubMed Central  Google Scholar 

  28. Topping DL, Clifton PM (2001) Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 81:1031–1064. https://doi.org/10.1152/physrev.2001.81.3.1031

    Article  CAS  PubMed  Google Scholar 

  29. Macfarlane GT, Cummings JH, Allison C (1986) Protein degradation by human intestinal bacteria. J Gen Microbiol 132:1647–1656. https://doi.org/10.1099/00221287-132-6-1647

    Article  CAS  PubMed  Google Scholar 

  30. Mortensen PB, Holtug K, Bonnén H, Clausen MR (1990) The degradation of amino acids, proteins, and blood to short-chain fatty acids in colon is prevented by lactulose. Gastroenterology 98:353–360. https://doi.org/10.1016/0016-5085(90)90825-L

    Article  CAS  PubMed  Google Scholar 

  31. Frampton J, Murphy KG, Frost G, Chambers ES (2020) Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function. Nat Metab 2:840–848. https://doi.org/10.1038/s42255-020-0188-7

    Article  CAS  PubMed  Google Scholar 

  32. Oliphant K, Allen-Vercoe E (2019) Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome 7:1–15. https://doi.org/10.1186/s40168-019-0704-8

    Article  Google Scholar 

  33. Louis P, Flint HJ (2017) Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol 19:29–41. https://doi.org/10.1111/1462-2920.13589

    Article  CAS  PubMed  Google Scholar 

  34. Widaningrum FBM, Williams BA, Sonni F, Mikkelsen D, Gidley MJ (2020) Fruit and vegetable insoluble dietary fibre in vitro fermentation characteristics depend on cell wall type. Bioact Carbohydrates Diet Fibre 23:100223. https://doi.org/10.1016/j.bcdf.2020.100223

    Article  CAS  Google Scholar 

  35. Cook SI, Sellin JH (1998) Review article: Short chain fatty acids in health and disease. Aliment Pharmacol Ther 12:499–507. https://doi.org/10.1046/j.1365-2036.1998.00337.x

    Article  CAS  PubMed  Google Scholar 

  36. Abdul Rahim MBH, Chilloux J, Martinez-Gili L, Neves AL, Myridakis A, Gooderham N, Dumas ME (2019) Diet-induced metabolic changes of the human gut microbiome: importance of short-chain fatty acids, methylamines and indoles. Acta Diabetol 56:493–500. https://doi.org/10.1007/s00592-019-01312-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Larsen N, Vogensen FK, Van Den Berg FWJ, Nielsen DS, Andreasen AS, Pedersen BK, Al-Soud WA, Sørensen SJ, Hansen LH, Jakobsen M (2010) Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE. https://doi.org/10.1371/journal.pone.0009085

    Article  PubMed  PubMed Central  Google Scholar 

  38. Vatanen T, Franzosa EA, Schwager R, Tripathi S, Arthur TD, Vehik K, Lernmark Å, Hagopian WA, Rewers MJ, She JX, Toppari J, Ziegler AG, Akolkar B, Krischer JP, Stewart CJ, Ajami NJ, Petrosino JF, Gevers D, Lähdesmäki H, Vlamakis H, Huttenhower C, Xavier RJ (2018) The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature 562:589–594. https://doi.org/10.1038/s41586-018-0620-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Remely M, Aumueller E, Merold C, Dworzak S, Hippe B, Zanner J, Pointner A, Brath H, Haslberger AG (2014) Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity. Gene 537:85–92. https://doi.org/10.1016/j.gene.2013.11.081

    Article  CAS  PubMed  Google Scholar 

  40. Mokkala K, Houttu N, Vahlberg T, Munukka E, Rönnemaa T, Laitinen K (2017) Gut microbiota aberrations precede diagnosis of gestational diabetes mellitus. Acta Diabetol 54:1147–1149. https://doi.org/10.1007/s00592-017-1056-0

    Article  PubMed  Google Scholar 

  41. Freeland KR, Wilson C, Wolever TMS (2010) Adaptation of colonic fermentation and glucagon-like peptide-1 secretion with increased wheat fibre intake for 1 year in hyperinsulinaemic human subjects. Br J Nutr 103:82–90. https://doi.org/10.1017/S0007114509991462

    Article  CAS  PubMed  Google Scholar 

  42. Costabile A, Klinder A, Fava F, Napolitano A, Fogliano V, Leonard C, Gibson GR, Tuohy KM (2008) Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: a double-blind, placebo-controlled, crossover study. Br J Nutr 99:110–120. https://doi.org/10.1017/S0007114507793923

    Article  CAS  PubMed  Google Scholar 

  43. Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, Fu H, Xue X, Lu C, Ma J, Yu L, Xu C, Ren Z, Xu Y, Xu S, Shen H, Zhu X, Shi Y, Shen Q, Dong W, Liu R, Ling Y, Zeng Y, Wang X, Zhang Q, Wang J, Wang L, Wu Y, Zeng B, Wei H, Zhang M, Peng Y, Zhang C (2018) Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 80(359):1151–1156. https://doi.org/10.1126/science.aao5774

    Article  CAS  Google Scholar 

  44. Weitkunat K, Schumann S, Petzke KJ, Blaut M, Loh G, Klaus S (2015) Effects of dietary inulin on bacterial growth, short-chain fatty acid production and hepatic lipid metabolism in gnotobiotic mice. J Nutr Biochem 26:929–937. https://doi.org/10.1016/j.jnutbio.2015.03.010

    Article  CAS  PubMed  Google Scholar 

  45. Müller M, Hernández MAG, Goossens GH, Reijnders D, Holst JJ, Jocken JWE, van Eijk H, Canfora EE, Blaak EE (2019) Circulating but not faecal short-chain fatty acids are related to insulin sensitivity, lipolysis and GLP-1 concentrations in humans. Sci Rep 9:1–9. https://doi.org/10.1038/s41598-019-48775-0

    Article  CAS  Google Scholar 

  46. Batta MG, Sjöberg F, Jonsson K, Barman M, Lundell AC, Adlerberth I, Hesselmar B, Sandberg AS, Wold AE (2020) Fecal short chain fatty acids in children living on farms and a link between valeric acid and protection from eczema. Sci Rep. https://doi.org/10.1038/s41598-020-79737-6

    Article  PubMed  PubMed Central  Google Scholar 

  47. Magzal F, Even C, Haimov I, Agmon M, Asraf K, Shochat T, Tamir S (2021) Associations between fecal short-chain fatty acids and sleep continuity in older adults with insomnia symptoms. Sci Rep 11:1–8. https://doi.org/10.1038/s41598-021-83389-5

    Article  CAS  Google Scholar 

  48. Sivaprakasam S, Bhutia YD, Yang S, Ganapathy V (2018) Short-chain fatty acid transporters: role in colonic homeostasis. Compr Physiol 8:299–314

    Google Scholar 

  49. Karp G (2007) Cell signaling and signal transduction: Communication between cells. Cell Mol Biol Concepts Exp 7:617–660

    Google Scholar 

  50. Cooper GM (2000) Pathways of intracellular signal transduction. In: The cell: a molecular approach., 2nd ed. Sinauer Associates, Sunderland, MA

  51. Priyadarshini M, Wicksteed B, Schiltz GE, Gilchrist A, Layden BT (2016) SCFA receptors in pancreatic β cells: novel diabetes targets? Trends Endocrinol Metab 27:653–664. https://doi.org/10.1016/j.tem.2016.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Briscoe CP, Tadayyon M, Andrews JL, Benson WG, Chambers JK, Eilert MM, Ellis C, Elshourbagy NA, Goetz AS, Minnick DT, Murdock PR, Sauls HR, Shabon U, Spinage LD, Strum JC, Szekeres PG, Tan KB, Way JM, Ignar DM, Wilson S, Muir AI (2003) The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem 278:11303–11311. https://doi.org/10.1074/jbc.M211495200

    Article  CAS  PubMed  Google Scholar 

  53. Fredriksson R, Höglund PJ, Gloriam DEI, Lagerström MC, Schiöth HB (2003) Seven evolutionarily conserved human rhodopsin G protein-coupled receptors lacking close relatives. FEBS Lett 554:381–388. https://doi.org/10.1016/S0014-5793(03)01196-7

    Article  CAS  PubMed  Google Scholar 

  54. Wang J, Wu X, Simonavicius N, Tian H, Ling L (2006) Medium-chain fatty acids as ligands for orphan G protein-coupled receptor GPR84. J Biol Chem 281:34457–34464. https://doi.org/10.1074/jbc.M608019200

    Article  CAS  PubMed  Google Scholar 

  55. Mishra SP, Karunakar P, Taraphder S (2020) Free fatty acid receptors 2 and 3 as microbial metabolite sensors to shape host health. Biomedicines 8:154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Canfora EE, Jocken JW, Blaak EE (2015) Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 11:577–591. https://doi.org/10.1038/nrendo.2015.128

    Article  CAS  PubMed  Google Scholar 

  57. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Di Yu, Schilter HC, Rolph MS, MacKay F, Artis D, Xavier RJ, Teixeira MM, MacKay CR (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461:1282–1286. https://doi.org/10.1038/nature08530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mizuta K, Sasaki H, Zhang Y, Matoba A (2020) The short-chain free fatty acid receptor FFAR3 is expressed and potentiates contraction in human airway smooth muscle. Am J Physiol-Lung Cell Mol Physiol 318:L1248–L1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Secor JD, Fligor SC, Tsikis ST, Yu LJ, Puder M (2021) Free fatty acid receptors as mediators and therapeutic targets in liver disease. Front Physiol. https://doi.org/10.3389/fphys.2021.656441

    Article  PubMed  PubMed Central  Google Scholar 

  60. Iván J, Major E, Sipos A, Kovács K, Horváth D, Tamás I, Bay P, Dombrádi V, Lontay B (2017) The short-chain fatty acid propionate inhibits adipogenic differentiation of human chorion-derived mesenchymal stem cells through the free fatty acid receptor 2. Stem Cells Dev 26:1724–1733. https://doi.org/10.1089/scd.2017.0035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Han JH, Kim IS, Jung SH, Lee SG, Son HY, Myung CS (2014) The effects of propionate and valerate on insulin responsiveness for glucose uptake in 3T3-L1 adipocytes and C2C12 myotubes via G protein-coupled receptor 41. PLoS ONE 9:1–9. https://doi.org/10.1371/journal.pone.0095268

    Article  Google Scholar 

  62. Al MS, Al GA, Akiel M, Al AM, Mohammad S, Aziz MA (2020) Free fatty acids receptors 2 and 3 control cell proliferation by regulating cellular glucose uptake. World J Gastrointest Oncol 12:514–525. https://doi.org/10.4251/wjgo.v12.i5.514

    Article  Google Scholar 

  63. Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI, Wigglesworth MJ, Kinghorn I, Fraser NJ, Pike NB, Strum JC, Steplewski KM, Murdock PR, Holder JC, Marshall FH, Szekeres PG, Wilson S, Ignar DM, Foord SM, Wise A, Dowell SJ (2003) The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278:11312–11319. https://doi.org/10.1074/jbc.M211609200

    Article  CAS  PubMed  Google Scholar 

  64. Kim S, Kim JH, Park BO, Kwak YS (2014) Perspectives on the therapeutic potential of short-chain fatty acid receptors. BMB Rep 47:173–178. https://doi.org/10.5483/BMBRep.2014.47.3.272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tikhonova IG, Poerio E (2015) Free fatty acid receptors: structural models and elucidation of ligand binding interactions computational analysis. BMC Struct Biol 15:1–13. https://doi.org/10.1186/s12900-015-0044-2

    Article  CAS  Google Scholar 

  66. Schmidt J, Smith NJ, Christiansen E, Tikhonova IG, Grundmann M, Hudson BD, Ward RJ, Drewke C, Milligan G, Kostenis E, Ulven T (2011) Selective orthosteric free fatty acid receptor 2 (FFA2) agonists: Identification of the structural and chemical requirements for selective activation of FFA2 versus FFA3. J Biol Chem 286:10628–10640. https://doi.org/10.1074/jbc.M110.210872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lorza-Gil E, Kaiser G, Rexen Ulven E, König GM, Gerst F, Oquendo MB, Birkenfeld AL, Häring HU, Kostenis E, Ulven T, Ullrich S (2020) FFA2-, but not FFA3-agonists inhibit GSIS of human pseudoislets: a comparative study with mouse islets and rat INS-1E cells. Sci Rep 10:1–11. https://doi.org/10.1038/s41598-020-73467-5

    Article  CAS  Google Scholar 

  68. Hudson BD, Tikhonova IG, Pandey SK, Ulven T, Milligan G (2012) Extracellular ionic locks determine variation in constitutive activity and ligand potency between species orthologs of the free fatty acid receptors FFA2 and FFA3 *. J Biol Chem 287:41195–41209. https://doi.org/10.1074/jbc.M112.396259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lee T, Schwandner R, Swaminath G, Weiszmann J, Cardozo M, Greenberg J, Jaeckel P, Ge H, Wang Y, Jiao X, Liu J, Kayser F, Tian H, Li Y (2008) Identification and functional characterization of allosteric agonists for the G protein-coupled receptor FFA2. Mol Pharmacol 74:1599–1609. https://doi.org/10.1124/mol.108.049536

    Article  CAS  PubMed  Google Scholar 

  70. Priyadarshini M, Villa SR, Fuller M, Wicksteed B, Mackay CR, Alquier T, Poitout V, Mancebo H, Mirmira RG, Gilchrist A, Layden BT (2015) An acetate-specific GPCR, FFAR2, regulates insulin secretion. Mol Endocrinol 29:1055–1066. https://doi.org/10.1210/me.2015-1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Le Poul E, Loison C, Struyf S, Springael JY, Lannoy V, Decobecq ME, Brezillon S, Dupriez V, Vassart G, Van Damme J, Parmentier M, Detheux M (2003) Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem 278:25481–25489. https://doi.org/10.1074/jbc.M301403200

    Article  CAS  PubMed  Google Scholar 

  72. Christiansen CB, Buur M, Gabe N, Svendsen B, Dragsted LO, Rosenkilde MM, Holst JJ (2020) The impact of short-chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon. Am J Physiol. https://doi.org/10.1152/ajpgi.00346.2017

    Article  Google Scholar 

  73. Stoddart LA, Smith NJ, Jenkins L, Brown AJ, Milligan G (2008) Conserved polar residues in transmembrane domains V, VI, and VII of free fatty acid receptor 2 and free fatty acid receptor 3 are required for the binding and function of short chain fatty acids. J Biol Chem 283:32913–32924. https://doi.org/10.1074/jbc.M805601200

    Article  CAS  PubMed  Google Scholar 

  74. Hudson BD, Christiansen E, Murdoch H, Jenkins L, Hansen AH, Madsen O, Ulven T, Milligan G (2014) Complex pharmacology of novel allosteric free fatty acid 3 receptor ligands. Mol Pharmacol 86:200–210. https://doi.org/10.1124/mol.114.093294

    Article  CAS  PubMed  Google Scholar 

  75. Wang Y, Jiao X, Kayser F, Liu J, Wang Z, Wanska M, Greenberg J, Weiszmann J, Ge H, Tian H, Wong S, Schwandner R, Lee T, Li Y (2010) The first synthetic agonists of FFA2: discovery and SAR of phenylacetamides as allosteric modulators. Bioorganic Med Chem Lett 20:493–498. https://doi.org/10.1016/j.bmcl.2009.11.112

    Article  CAS  Google Scholar 

  76. Bolognini D, Moss CE, Nilsson K, Petersson AU, Donnelly I, Sergeev E, König GM, Kostenis E, Kurowska-Stolarska M, Miller A, Dekker N, Tobin AB, Milligan G (2016) A novel allosteric activator of free fatty acid 2 receptor displays unique Gi-functional bias. J Biol Chem 291:18915–18931. https://doi.org/10.1074/jbc.M116.736157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Smith NJ, Ward RJ, Stoddart LA, Hudson BD, Kostenis E, Ulven T, Morris JC, Tränkle C, Tikhonova IG, Adams DR, Milligan G (2011) Extracellular loop 2 of the free fatty acid receptor 2 mediates allosterism of a phenylacetamide ago-allosteric modulator. Mol Pharmacol 80:163–173. https://doi.org/10.1124/mol.110.070789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Grundmann M, Tikhonova IG, Hudson BD, Smith NJ, Mohr K, Ulven T, Milligan G, Kenakin T, Kostenis E (2016) A molecular mechanism for sequential activation of a G protein-coupled receptor. Cell Chem Biol 23:392–403. https://doi.org/10.1016/j.chembiol.2016.02.014

    Article  PubMed  Google Scholar 

  79. Means AR, Dedman JR (1980) Calmodulin-an intracellular calcium receptor. Nature 285:73–77

    Article  CAS  PubMed  Google Scholar 

  80. Rankovic Z, Brust TF, Bohn LM (2016) Biased agonism: an emerging paradigm in GPCR drug discovery. Bioorganic Med Chem Lett 26:241–250. https://doi.org/10.1016/j.bmcl.2015.12.024

    Article  CAS  Google Scholar 

  81. Rahmeh R, Damian M, Cottet M, Orcel H, Mendre C, Durroux T, Sharma KS, Durand G, Pucci B, Trinquet E, Zwier JM, Deupi X, Bron P, Banères JL, Mouillac B, Granier S (2012) Structural insights into biased G protein-coupled receptor signaling revealed by fluorescence spectroscopy. Proc Natl Acad Sci USA 109:6733–6738. https://doi.org/10.1073/pnas.1201093109

    Article  PubMed  PubMed Central  Google Scholar 

  82. Seljeset S, Siehler S (2012) Receptor-specific regulation of ERK1/2 activation by members of the “free fatty acid receptor” family. J Recept Signal Transduct 32:196–201. https://doi.org/10.3109/10799893.2012.692118

    Article  CAS  Google Scholar 

  83. Ang Z, Xiong D, Wu M, Ding JL (2018) FFAR2-FFAR3 receptor heteromerization modulates short-chain fatty acid sensing. FASEB J 32:289–303. https://doi.org/10.1096/fj.201700252RR

    Article  CAS  PubMed  Google Scholar 

  84. Husted AS, Trauelsen M, Rudenko O, Hjorth SA, Schwartz TW (2017) GPCR-mediated signaling of metabolites. Cell Metab 25:777–796. https://doi.org/10.1016/j.cmet.2017.03.008

    Article  CAS  PubMed  Google Scholar 

  85. Gerich JE (2002) Is reduced first-phase insulin release the earliest detectable abnormality in individuals destined to develop type 2 diabetes? Diabetes 51:117–121. https://doi.org/10.2337/diabetes.51.2007.S117

    Article  Google Scholar 

  86. Meas T, Guillausseau PJ (2011) Abnormalities in insulin secretion in type 2 diabetes mellitus. Metab Syndr Underlying Mech Drug Ther 34:53–72. https://doi.org/10.1002/9780470910016.ch3

    Article  Google Scholar 

  87. Manns JG (1967) Insulin release by acetate, propionate, butyrate, and glucose in lambs and adult sheep. Am J Physiol 212:747–755

    Article  CAS  PubMed  Google Scholar 

  88. Manns JG (1967) Probable role of propionate and butyrate in control of insulin secretion in sheep1. Am J Physiol 212:756–764

    Article  CAS  PubMed  Google Scholar 

  89. Oh YK, Eun JS, Lee SC, Chu GM, Lee SS, Moon YH (2015) Responses of blood glucose, insulin, glucagon, and fatty acids to intraruminal infusion of propionate in Hanwoo. Asian-Australas J Anim Sci 28:200–206. https://doi.org/10.5713/ajas.14.0481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mátis G, Kulcsár A, Turowski V, Fébel H, Neogrády Z, Huber K (2015) Effects of oral butyrate application on insulin signaling in various tissues of chickens. Domest Anim Endocrinol 50:26–31. https://doi.org/10.1016/j.domaniend.2014.07.004

    Article  CAS  PubMed  Google Scholar 

  91. Pingitore A (2017) The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro. Diabetes Obes Metab https://doi.org/10.1111/1462-2920.12735

  92. Pingitore A, Gonzalez-Abuin N, Ruz-Maldonado I, Huang GC, Frost G, Persaud SJ (2019) SCFA stimulate insulin secretion and reduce apoptosis in mouse and human islets in vitro: role of FFAR2. Diabetes Obes Metab 21:330–339. https://doi.org/10.1111/dom.13529

    Article  CAS  PubMed  Google Scholar 

  93. Ørgaard A, Jepsen SL, Holst JJ (2019) Short-chain fatty acids and regulation of pancreatic endocrine secretion in mice. Islets 11:103–111. https://doi.org/10.1080/19382014.2019.1587976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Priyadarshini M, Layden BT (2015) FFAR3 modulates insulin secretion and global gene expression in mouse islets. Islets 7:e1045182. https://doi.org/10.1080/19382014.2015.1045182

    Article  PubMed  PubMed Central  Google Scholar 

  95. Ximenes HMA, Hirata AE, Rocha MS, Curi R, Carpinelli AR (2007) Propionate inhibits glucose-induced insulin secretion in isolated rat pancreatic islets. Cell Biochem Funct 25:173–178. https://doi.org/10.1002/cbf.1297

    Article  CAS  PubMed  Google Scholar 

  96. Bridgeman S, Ellison G, Newsholme P, Mamotte C (2021) The HDAC inhibitor butyrate impairs β cell function and activates the disallowed gene hexokinase i. Int J Mol Sci. https://doi.org/10.3390/ijms222413330

    Article  PubMed  PubMed Central  Google Scholar 

  97. Prause M, Pedersen SS, Tsonkova V, Qiao M, Billestrup N (2021) Butyrate protects pancreatic beta cells from cytokine-induced dysfunction. Int J Mol Sci. https://doi.org/10.3390/ijms221910427

    Article  PubMed  PubMed Central  Google Scholar 

  98. Wang S, Yuan M, Zhang L, Zhu K, Sheng C, Zhou F, Xu Z, Liu Q, Liu Y, Lu J, Wang X, Zhou L (2022) Sodium butyrate potentiates insulin secretion from rat islets at the expense of compromised expression of β cell identity genes. Cell Death Dis 13:1–10. https://doi.org/10.1038/s41419-022-04517-1

    Article  CAS  Google Scholar 

  99. Holst JJ (2007) The physiology of glucagon-like peptide 1. Physiol Rev 87:1409–1439. https://doi.org/10.1152/physrev.00034.2006

    Article  CAS  PubMed  Google Scholar 

  100. Yadav H, Lee J, Lloyd J, Walter P, Rane SG (2013) Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion. J Biol Chem 288:25088–25097. https://doi.org/10.1074/jbc.M113.452516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Psichas A, Sleeth ML, Murphy KG, Brooks L, Bewick GA, Hanyaloglu AC, Ghatei MA, Bloom SR, Frost G (2015) The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int J Obes 39:424–429

    Article  CAS  Google Scholar 

  102. Kaji I, Karaki SI, Kuwahara A (2014) Short-chain fatty acid receptor and its contribution to glucagon-like peptide-1 release. Digestion 89:31–36. https://doi.org/10.1159/000356211

    Article  CAS  PubMed  Google Scholar 

  103. Pingitore A, Chambers ES, Hill T, Maldonado IR, Liu B, Bewick G, Morrison DJ, Preston T, Wallis GA, Tedford C, Castañera González R, Huang GC, Choudhary P, Frost G, Persaud SJ (2017) The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro. Diabetes Obes Metab 19:257–265. https://doi.org/10.1111/dom.12811

    Article  CAS  PubMed  Google Scholar 

  104. Pingitore A, Gonzalez-Abuin N, Ruz-Maldonado I, Huang GC, Frost G, Persaud SJ (2019) Short chain fatty acids stimulate insulin secretion and reduce apoptosis in mouse and human islets in vitro: role of free fatty acid receptor 2. Diabetes, Obes Metab 21:330–339. https://doi.org/10.1111/dom.13529

    Article  CAS  PubMed  Google Scholar 

  105. Tang C, Ahmed K, Gille A, Lu S, Gröne HJ, Tunaru S, Offermanns S (2015) Loss of FFA2 and FFA3 increases insulin secretion and improves glucose tolerance in type 2 diabetes. Nat Med 21:173–177. https://doi.org/10.1038/nm.3779

    Article  CAS  PubMed  Google Scholar 

  106. Layden BT, Yalamanchi SK, Wolever TMS, Dunaif A, Lowe WL (2012) Negative association of acetate with visceral adipose tissue and insulin levels. Diabetes Metab Syndr Obes Targets Ther 5:49–55. https://doi.org/10.2147/DMSO.S29244

    Article  CAS  Google Scholar 

  107. McNelis JC, Lee YS, Mayoral R, Van Der Kant R, Johnson AMF, Wollam J, Olefsky JM (2015) GPR43 potentiates β-cell function in obesity. Diabetes 64:3203–3217. https://doi.org/10.2337/db14-1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bjursell M, Admyre T, Göransson M, Marley AE, Smith DM, Oscarsson J, Bohlooly-Y M (2011) Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. Am J Physiol Endocrinol Metab 300:211–220. https://doi.org/10.1152/ajpendo.00229.2010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Fundamental Grant Research Scheme Malaysia under the Project Number 04-01-18-1930FR (Vot No. 5540055).

Funding

This study was funded by the Malaysian Ministry of Higher Education (MOHE) FRGS fund under the Project Number 04–01-18-1930FR (Vot No. 5540055).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation and writing original draft, NSAR; editing and reviewing, SAG, MEK, UHZ, AI, MBHAR; funding acquisition, MBHAR.

Corresponding author

Correspondence to Mohd Badrin Hanizam Abdul Rahim.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Ethical statement

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosli, N.S.A., Abd Gani, S., Khayat, M.E. et al. Short-chain fatty acids: possible regulators of insulin secretion. Mol Cell Biochem 478, 517–530 (2023). https://doi.org/10.1007/s11010-022-04528-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04528-8

Keywords

Navigation