Abstract
The benefits of gut microbiota-derived short-chain fatty acids (SCFAs) towards health and metabolism have been emerging since the past decade. Extensive studies have been carried out to understand the mechanisms responsible in initiating the functionalities of these SCFAs towards body tissues, which greatly involves the SCFA-specific receptors free fatty acid receptor 2 (FFAR2) and free fatty acid receptor 3 (FFAR3). This review intends to discuss the potential of SCFAs particularly in regulating insulin secretion in pancreatic β-cells, by explaining the production of SCFAs in the gut, the fate of each SCFAs after their production, involvement of FFAR2 and FFAR3 signalling mechanisms and their impacts on insulin secretion. Increased secretion of insulin after SCFAs treatments were reported in many studies, but contradicting evidence also exist in several other studies. Hence, no clear consensus was achieved in determining the true potential of SCFA in regulating insulin secretion. In this review, we explore how such differences were possible and hopefully be able to shed some perspectives in understanding SCFAs-signalling behaviour and preferences.
Similar content being viewed by others
Data availability
All data were included in the manuscript.
References
International Diabetes Federation (2021) IDF Diabetes Atlas, 10th edn. Belgium, Brussels
Kahn BB (1998) Type 2 diabetes: when insulin secretion fails to compensate for insulin resistance. Cell 92:593–596. https://doi.org/10.1016/S0092-8674(00)81125-3
Chen C, Cohrs CM, Stertmann J, Bozsak R, Speier S (2017) Human beta cell mass and function in diabetes: recent advances in knowledge and technologies to understand disease pathogenesis. Mol Metab 6:943–957. https://doi.org/10.1016/j.molmet.2017.06.019
Cerf ME (2013) Beta cell dysfunction and insulin resistance. Front Endocrinol (Lausanne) 4:1–12. https://doi.org/10.3389/fendo.2013.00037
Villa SR, Mishra RK, Zapater JL, Priyadarshini M, Gilchrist A, Mancebo H, Schiltz GE, Layden BT (2017) Homology modeling of FFA2 identifies novel agonists that potentiate insulin secretion. J Investig Med 65:1116–1124. https://doi.org/10.1136/jim-2017-000523
Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, Cameron J, Grosse J, Reimann F, Gribble FM (2012) Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein—coupled receptor FFAR2. Diabetes. https://doi.org/10.2337/db11-1019
Farino ZJ, Morgenstern TJ, Maffei A, Quick M, De Solis AJ, Wiriyasermkul P, Freyberg RJ, Aslanoglou D, Sorisio D, Inbar BP, Free RB, Donthamsetti P, Mosharov EV, Kellendonk C, Schwartz GJ, Sibley DR, Schmauss C, Zeltser LM, Moore H, Harris PE, Javitch JA, Freyberg Z (2019) New roles for dopamine D2 and D3 receptors in pancreatic beta cell insulin secretion. Mol Psychiatry. https://doi.org/10.1038/s41380-018-0344-6
Luna-Vital DA, De Mejia EG (2018) Anthocyanins from purple corn activate free fatty acid-receptor 1 and glucokinase enhancing in vitro insulin secretion and hepatic glucose uptake. PLoS ONE 13:1–20. https://doi.org/10.1371/journal.pone.0200449
De Munter JSL, Hu FB, Spiegelman D, Franz M, Van Dam RM (2007) Whole grain, bran, and germ intake and risk of type 2 diabetes: a prospective cohort study and systematic review. PLoS Med 4:1385–1395. https://doi.org/10.1371/journal.pmed.0040261
Den Besten G, Van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54:2325–2340. https://doi.org/10.1194/jlr.R036012
Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L (2014) The role of short-chain fatty acids in health and disease, 1st edn. Elsevier, Amsterdam
Layden BT, Angueira AR, Brodsky M, Durai V, Lowe WL (2013) Short chain fatty acids and their receptors: new metabolic targets. Transl Res 161:131–140. https://doi.org/10.1016/j.trsl.2012.10.007
Cummings JH, Pomare EW, Branch HWJ, Naylor CPE, MacFarlane GT (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28:1221–1227. https://doi.org/10.1136/gut.28.10.1221
Knowles SE, Jarrett IG, Filsell OH, Ballard FJ (1974) Production and utilization of acetate in mammals. Biochem J 142:401–411. https://doi.org/10.1042/bj1420401
Inoue A, Fujimoto D (1969) Enzymatic deacetylation of histone. Biochem Biophys Res Commun 36:1–27
Liu X, Cooper DE, Cluntun AA, Warmoes MO, Zhao S, Reid MA, Liu J, Lund PJ, Lopes M, Garcia BA, Wellen KE, Kirsch DG, Locasale JW (2018) Acetate production from glucose and coupling to mitochondrial metabolism in mammals. Cell 175:502-513.e13. https://doi.org/10.1016/j.cell.2018.08.040
Marques FZ, Nelson E, Chu PY, Horlock D, Fiedler A, Ziemann M, Tan JK, Kuruppu S, Rajapakse NW, El-Osta A, Mackay CR, Kaye DM (2017) High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation 135:964–977. https://doi.org/10.1161/CIRCULATIONAHA.116.024545
Liu H, Wang J, He T, Becker S, Zhang G, Li D, Ma X (2018) Butyrate: a double-edged sword for health? Adv Nutr 9:21–29. https://doi.org/10.1093/advances/nmx009
Lin HV, Frassetto A, Kowalik EJ, Nawrocki AR, Lu MM, Kosinski JR, Hubert JA, Szeto D, Yao X, Forrest G, Marsh DJ (2012) Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE 7:1–9. https://doi.org/10.1371/journal.pone.0035240
Arora T, Sharma R, Frost G (2011) Propionate. anti-obesity and satiety enhancing factor? Appetite 56:511–515. https://doi.org/10.1016/j.appet.2011.01.016
Mariadason JM, Corner GA, Augenlicht LH (2000) Genetic reprogramming in pathways of colonic cell maturation induced by short chain fatty acids: comparison with trichostatin A, sulindac, and curcumin and implications for chemoprevention of colon cancer. Cancer Res 60:4561–4572
Xu Z, Tao J, Chen P, Chen L, Sharma S, Wang G, Dong Q (2018) Sodium butyrate inhibits colorectal cancer cell migration by downregulating Bmi-1 through enhanced miR-200c expression. Mol Nutr Food Res 62:1–11. https://doi.org/10.1002/mnfr.201700844
Hijova E, Chmelarova A (2007) Short chain fatty acids and colonic health. Bratisl Lek Listy 108:354–358
Wang W, Fang D, Zhang H, Xue J, Wangchuk D, Du J, Jiang L (2020) Sodium butyrate selectively kills cancer cells and inhibits migration in colorectal cancer by targeting thioredoxin-1. Onco Targets Ther 13:4691–4704. https://doi.org/10.2147/OTT.S235575
Jaskiewicz J, Zhao Y, Hawes JW, Shimomura Y, Crabb DW, Harris RA (1996) Catabolism of isobutyrate by colonocytes. Arch Biochem Biophys 327:265–270. https://doi.org/10.1006/abbi.1996.0120
Wong JMW, De SR, Kendall CWC, Emam A, Jenkins DJA (2006) Colonic Health : Fermentation and Short Chain Fatty Acids. J Clin Gastroenterol 40:235–243
Krajmalnik-Brown R, Ilhan ZE, Kang DW, DiBaise JK (2012) Effects of gut microbes on nutrient absorption and energy regulation. Nutr Clin Pract 27:201–214. https://doi.org/10.1177/0884533611436116
Topping DL, Clifton PM (2001) Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 81:1031–1064. https://doi.org/10.1152/physrev.2001.81.3.1031
Macfarlane GT, Cummings JH, Allison C (1986) Protein degradation by human intestinal bacteria. J Gen Microbiol 132:1647–1656. https://doi.org/10.1099/00221287-132-6-1647
Mortensen PB, Holtug K, Bonnén H, Clausen MR (1990) The degradation of amino acids, proteins, and blood to short-chain fatty acids in colon is prevented by lactulose. Gastroenterology 98:353–360. https://doi.org/10.1016/0016-5085(90)90825-L
Frampton J, Murphy KG, Frost G, Chambers ES (2020) Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function. Nat Metab 2:840–848. https://doi.org/10.1038/s42255-020-0188-7
Oliphant K, Allen-Vercoe E (2019) Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome 7:1–15. https://doi.org/10.1186/s40168-019-0704-8
Louis P, Flint HJ (2017) Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol 19:29–41. https://doi.org/10.1111/1462-2920.13589
Widaningrum FBM, Williams BA, Sonni F, Mikkelsen D, Gidley MJ (2020) Fruit and vegetable insoluble dietary fibre in vitro fermentation characteristics depend on cell wall type. Bioact Carbohydrates Diet Fibre 23:100223. https://doi.org/10.1016/j.bcdf.2020.100223
Cook SI, Sellin JH (1998) Review article: Short chain fatty acids in health and disease. Aliment Pharmacol Ther 12:499–507. https://doi.org/10.1046/j.1365-2036.1998.00337.x
Abdul Rahim MBH, Chilloux J, Martinez-Gili L, Neves AL, Myridakis A, Gooderham N, Dumas ME (2019) Diet-induced metabolic changes of the human gut microbiome: importance of short-chain fatty acids, methylamines and indoles. Acta Diabetol 56:493–500. https://doi.org/10.1007/s00592-019-01312-x
Larsen N, Vogensen FK, Van Den Berg FWJ, Nielsen DS, Andreasen AS, Pedersen BK, Al-Soud WA, Sørensen SJ, Hansen LH, Jakobsen M (2010) Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE. https://doi.org/10.1371/journal.pone.0009085
Vatanen T, Franzosa EA, Schwager R, Tripathi S, Arthur TD, Vehik K, Lernmark Å, Hagopian WA, Rewers MJ, She JX, Toppari J, Ziegler AG, Akolkar B, Krischer JP, Stewart CJ, Ajami NJ, Petrosino JF, Gevers D, Lähdesmäki H, Vlamakis H, Huttenhower C, Xavier RJ (2018) The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature 562:589–594. https://doi.org/10.1038/s41586-018-0620-2
Remely M, Aumueller E, Merold C, Dworzak S, Hippe B, Zanner J, Pointner A, Brath H, Haslberger AG (2014) Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity. Gene 537:85–92. https://doi.org/10.1016/j.gene.2013.11.081
Mokkala K, Houttu N, Vahlberg T, Munukka E, Rönnemaa T, Laitinen K (2017) Gut microbiota aberrations precede diagnosis of gestational diabetes mellitus. Acta Diabetol 54:1147–1149. https://doi.org/10.1007/s00592-017-1056-0
Freeland KR, Wilson C, Wolever TMS (2010) Adaptation of colonic fermentation and glucagon-like peptide-1 secretion with increased wheat fibre intake for 1 year in hyperinsulinaemic human subjects. Br J Nutr 103:82–90. https://doi.org/10.1017/S0007114509991462
Costabile A, Klinder A, Fava F, Napolitano A, Fogliano V, Leonard C, Gibson GR, Tuohy KM (2008) Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: a double-blind, placebo-controlled, crossover study. Br J Nutr 99:110–120. https://doi.org/10.1017/S0007114507793923
Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, Fu H, Xue X, Lu C, Ma J, Yu L, Xu C, Ren Z, Xu Y, Xu S, Shen H, Zhu X, Shi Y, Shen Q, Dong W, Liu R, Ling Y, Zeng Y, Wang X, Zhang Q, Wang J, Wang L, Wu Y, Zeng B, Wei H, Zhang M, Peng Y, Zhang C (2018) Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 80(359):1151–1156. https://doi.org/10.1126/science.aao5774
Weitkunat K, Schumann S, Petzke KJ, Blaut M, Loh G, Klaus S (2015) Effects of dietary inulin on bacterial growth, short-chain fatty acid production and hepatic lipid metabolism in gnotobiotic mice. J Nutr Biochem 26:929–937. https://doi.org/10.1016/j.jnutbio.2015.03.010
Müller M, Hernández MAG, Goossens GH, Reijnders D, Holst JJ, Jocken JWE, van Eijk H, Canfora EE, Blaak EE (2019) Circulating but not faecal short-chain fatty acids are related to insulin sensitivity, lipolysis and GLP-1 concentrations in humans. Sci Rep 9:1–9. https://doi.org/10.1038/s41598-019-48775-0
Batta MG, Sjöberg F, Jonsson K, Barman M, Lundell AC, Adlerberth I, Hesselmar B, Sandberg AS, Wold AE (2020) Fecal short chain fatty acids in children living on farms and a link between valeric acid and protection from eczema. Sci Rep. https://doi.org/10.1038/s41598-020-79737-6
Magzal F, Even C, Haimov I, Agmon M, Asraf K, Shochat T, Tamir S (2021) Associations between fecal short-chain fatty acids and sleep continuity in older adults with insomnia symptoms. Sci Rep 11:1–8. https://doi.org/10.1038/s41598-021-83389-5
Sivaprakasam S, Bhutia YD, Yang S, Ganapathy V (2018) Short-chain fatty acid transporters: role in colonic homeostasis. Compr Physiol 8:299–314
Karp G (2007) Cell signaling and signal transduction: Communication between cells. Cell Mol Biol Concepts Exp 7:617–660
Cooper GM (2000) Pathways of intracellular signal transduction. In: The cell: a molecular approach., 2nd ed. Sinauer Associates, Sunderland, MA
Priyadarshini M, Wicksteed B, Schiltz GE, Gilchrist A, Layden BT (2016) SCFA receptors in pancreatic β cells: novel diabetes targets? Trends Endocrinol Metab 27:653–664. https://doi.org/10.1016/j.tem.2016.03.011
Briscoe CP, Tadayyon M, Andrews JL, Benson WG, Chambers JK, Eilert MM, Ellis C, Elshourbagy NA, Goetz AS, Minnick DT, Murdock PR, Sauls HR, Shabon U, Spinage LD, Strum JC, Szekeres PG, Tan KB, Way JM, Ignar DM, Wilson S, Muir AI (2003) The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem 278:11303–11311. https://doi.org/10.1074/jbc.M211495200
Fredriksson R, Höglund PJ, Gloriam DEI, Lagerström MC, Schiöth HB (2003) Seven evolutionarily conserved human rhodopsin G protein-coupled receptors lacking close relatives. FEBS Lett 554:381–388. https://doi.org/10.1016/S0014-5793(03)01196-7
Wang J, Wu X, Simonavicius N, Tian H, Ling L (2006) Medium-chain fatty acids as ligands for orphan G protein-coupled receptor GPR84. J Biol Chem 281:34457–34464. https://doi.org/10.1074/jbc.M608019200
Mishra SP, Karunakar P, Taraphder S (2020) Free fatty acid receptors 2 and 3 as microbial metabolite sensors to shape host health. Biomedicines 8:154
Canfora EE, Jocken JW, Blaak EE (2015) Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 11:577–591. https://doi.org/10.1038/nrendo.2015.128
Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Di Yu, Schilter HC, Rolph MS, MacKay F, Artis D, Xavier RJ, Teixeira MM, MacKay CR (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461:1282–1286. https://doi.org/10.1038/nature08530
Mizuta K, Sasaki H, Zhang Y, Matoba A (2020) The short-chain free fatty acid receptor FFAR3 is expressed and potentiates contraction in human airway smooth muscle. Am J Physiol-Lung Cell Mol Physiol 318:L1248–L1260
Secor JD, Fligor SC, Tsikis ST, Yu LJ, Puder M (2021) Free fatty acid receptors as mediators and therapeutic targets in liver disease. Front Physiol. https://doi.org/10.3389/fphys.2021.656441
Iván J, Major E, Sipos A, Kovács K, Horváth D, Tamás I, Bay P, Dombrádi V, Lontay B (2017) The short-chain fatty acid propionate inhibits adipogenic differentiation of human chorion-derived mesenchymal stem cells through the free fatty acid receptor 2. Stem Cells Dev 26:1724–1733. https://doi.org/10.1089/scd.2017.0035
Han JH, Kim IS, Jung SH, Lee SG, Son HY, Myung CS (2014) The effects of propionate and valerate on insulin responsiveness for glucose uptake in 3T3-L1 adipocytes and C2C12 myotubes via G protein-coupled receptor 41. PLoS ONE 9:1–9. https://doi.org/10.1371/journal.pone.0095268
Al MS, Al GA, Akiel M, Al AM, Mohammad S, Aziz MA (2020) Free fatty acids receptors 2 and 3 control cell proliferation by regulating cellular glucose uptake. World J Gastrointest Oncol 12:514–525. https://doi.org/10.4251/wjgo.v12.i5.514
Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI, Wigglesworth MJ, Kinghorn I, Fraser NJ, Pike NB, Strum JC, Steplewski KM, Murdock PR, Holder JC, Marshall FH, Szekeres PG, Wilson S, Ignar DM, Foord SM, Wise A, Dowell SJ (2003) The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278:11312–11319. https://doi.org/10.1074/jbc.M211609200
Kim S, Kim JH, Park BO, Kwak YS (2014) Perspectives on the therapeutic potential of short-chain fatty acid receptors. BMB Rep 47:173–178. https://doi.org/10.5483/BMBRep.2014.47.3.272
Tikhonova IG, Poerio E (2015) Free fatty acid receptors: structural models and elucidation of ligand binding interactions computational analysis. BMC Struct Biol 15:1–13. https://doi.org/10.1186/s12900-015-0044-2
Schmidt J, Smith NJ, Christiansen E, Tikhonova IG, Grundmann M, Hudson BD, Ward RJ, Drewke C, Milligan G, Kostenis E, Ulven T (2011) Selective orthosteric free fatty acid receptor 2 (FFA2) agonists: Identification of the structural and chemical requirements for selective activation of FFA2 versus FFA3. J Biol Chem 286:10628–10640. https://doi.org/10.1074/jbc.M110.210872
Lorza-Gil E, Kaiser G, Rexen Ulven E, König GM, Gerst F, Oquendo MB, Birkenfeld AL, Häring HU, Kostenis E, Ulven T, Ullrich S (2020) FFA2-, but not FFA3-agonists inhibit GSIS of human pseudoislets: a comparative study with mouse islets and rat INS-1E cells. Sci Rep 10:1–11. https://doi.org/10.1038/s41598-020-73467-5
Hudson BD, Tikhonova IG, Pandey SK, Ulven T, Milligan G (2012) Extracellular ionic locks determine variation in constitutive activity and ligand potency between species orthologs of the free fatty acid receptors FFA2 and FFA3 *. J Biol Chem 287:41195–41209. https://doi.org/10.1074/jbc.M112.396259
Lee T, Schwandner R, Swaminath G, Weiszmann J, Cardozo M, Greenberg J, Jaeckel P, Ge H, Wang Y, Jiao X, Liu J, Kayser F, Tian H, Li Y (2008) Identification and functional characterization of allosteric agonists for the G protein-coupled receptor FFA2. Mol Pharmacol 74:1599–1609. https://doi.org/10.1124/mol.108.049536
Priyadarshini M, Villa SR, Fuller M, Wicksteed B, Mackay CR, Alquier T, Poitout V, Mancebo H, Mirmira RG, Gilchrist A, Layden BT (2015) An acetate-specific GPCR, FFAR2, regulates insulin secretion. Mol Endocrinol 29:1055–1066. https://doi.org/10.1210/me.2015-1007
Le Poul E, Loison C, Struyf S, Springael JY, Lannoy V, Decobecq ME, Brezillon S, Dupriez V, Vassart G, Van Damme J, Parmentier M, Detheux M (2003) Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem 278:25481–25489. https://doi.org/10.1074/jbc.M301403200
Christiansen CB, Buur M, Gabe N, Svendsen B, Dragsted LO, Rosenkilde MM, Holst JJ (2020) The impact of short-chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon. Am J Physiol. https://doi.org/10.1152/ajpgi.00346.2017
Stoddart LA, Smith NJ, Jenkins L, Brown AJ, Milligan G (2008) Conserved polar residues in transmembrane domains V, VI, and VII of free fatty acid receptor 2 and free fatty acid receptor 3 are required for the binding and function of short chain fatty acids. J Biol Chem 283:32913–32924. https://doi.org/10.1074/jbc.M805601200
Hudson BD, Christiansen E, Murdoch H, Jenkins L, Hansen AH, Madsen O, Ulven T, Milligan G (2014) Complex pharmacology of novel allosteric free fatty acid 3 receptor ligands. Mol Pharmacol 86:200–210. https://doi.org/10.1124/mol.114.093294
Wang Y, Jiao X, Kayser F, Liu J, Wang Z, Wanska M, Greenberg J, Weiszmann J, Ge H, Tian H, Wong S, Schwandner R, Lee T, Li Y (2010) The first synthetic agonists of FFA2: discovery and SAR of phenylacetamides as allosteric modulators. Bioorganic Med Chem Lett 20:493–498. https://doi.org/10.1016/j.bmcl.2009.11.112
Bolognini D, Moss CE, Nilsson K, Petersson AU, Donnelly I, Sergeev E, König GM, Kostenis E, Kurowska-Stolarska M, Miller A, Dekker N, Tobin AB, Milligan G (2016) A novel allosteric activator of free fatty acid 2 receptor displays unique Gi-functional bias. J Biol Chem 291:18915–18931. https://doi.org/10.1074/jbc.M116.736157
Smith NJ, Ward RJ, Stoddart LA, Hudson BD, Kostenis E, Ulven T, Morris JC, Tränkle C, Tikhonova IG, Adams DR, Milligan G (2011) Extracellular loop 2 of the free fatty acid receptor 2 mediates allosterism of a phenylacetamide ago-allosteric modulator. Mol Pharmacol 80:163–173. https://doi.org/10.1124/mol.110.070789
Grundmann M, Tikhonova IG, Hudson BD, Smith NJ, Mohr K, Ulven T, Milligan G, Kenakin T, Kostenis E (2016) A molecular mechanism for sequential activation of a G protein-coupled receptor. Cell Chem Biol 23:392–403. https://doi.org/10.1016/j.chembiol.2016.02.014
Means AR, Dedman JR (1980) Calmodulin-an intracellular calcium receptor. Nature 285:73–77
Rankovic Z, Brust TF, Bohn LM (2016) Biased agonism: an emerging paradigm in GPCR drug discovery. Bioorganic Med Chem Lett 26:241–250. https://doi.org/10.1016/j.bmcl.2015.12.024
Rahmeh R, Damian M, Cottet M, Orcel H, Mendre C, Durroux T, Sharma KS, Durand G, Pucci B, Trinquet E, Zwier JM, Deupi X, Bron P, Banères JL, Mouillac B, Granier S (2012) Structural insights into biased G protein-coupled receptor signaling revealed by fluorescence spectroscopy. Proc Natl Acad Sci USA 109:6733–6738. https://doi.org/10.1073/pnas.1201093109
Seljeset S, Siehler S (2012) Receptor-specific regulation of ERK1/2 activation by members of the “free fatty acid receptor” family. J Recept Signal Transduct 32:196–201. https://doi.org/10.3109/10799893.2012.692118
Ang Z, Xiong D, Wu M, Ding JL (2018) FFAR2-FFAR3 receptor heteromerization modulates short-chain fatty acid sensing. FASEB J 32:289–303. https://doi.org/10.1096/fj.201700252RR
Husted AS, Trauelsen M, Rudenko O, Hjorth SA, Schwartz TW (2017) GPCR-mediated signaling of metabolites. Cell Metab 25:777–796. https://doi.org/10.1016/j.cmet.2017.03.008
Gerich JE (2002) Is reduced first-phase insulin release the earliest detectable abnormality in individuals destined to develop type 2 diabetes? Diabetes 51:117–121. https://doi.org/10.2337/diabetes.51.2007.S117
Meas T, Guillausseau PJ (2011) Abnormalities in insulin secretion in type 2 diabetes mellitus. Metab Syndr Underlying Mech Drug Ther 34:53–72. https://doi.org/10.1002/9780470910016.ch3
Manns JG (1967) Insulin release by acetate, propionate, butyrate, and glucose in lambs and adult sheep. Am J Physiol 212:747–755
Manns JG (1967) Probable role of propionate and butyrate in control of insulin secretion in sheep1. Am J Physiol 212:756–764
Oh YK, Eun JS, Lee SC, Chu GM, Lee SS, Moon YH (2015) Responses of blood glucose, insulin, glucagon, and fatty acids to intraruminal infusion of propionate in Hanwoo. Asian-Australas J Anim Sci 28:200–206. https://doi.org/10.5713/ajas.14.0481
Mátis G, Kulcsár A, Turowski V, Fébel H, Neogrády Z, Huber K (2015) Effects of oral butyrate application on insulin signaling in various tissues of chickens. Domest Anim Endocrinol 50:26–31. https://doi.org/10.1016/j.domaniend.2014.07.004
Pingitore A (2017) The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro. Diabetes Obes Metab https://doi.org/10.1111/1462-2920.12735
Pingitore A, Gonzalez-Abuin N, Ruz-Maldonado I, Huang GC, Frost G, Persaud SJ (2019) SCFA stimulate insulin secretion and reduce apoptosis in mouse and human islets in vitro: role of FFAR2. Diabetes Obes Metab 21:330–339. https://doi.org/10.1111/dom.13529
Ørgaard A, Jepsen SL, Holst JJ (2019) Short-chain fatty acids and regulation of pancreatic endocrine secretion in mice. Islets 11:103–111. https://doi.org/10.1080/19382014.2019.1587976
Priyadarshini M, Layden BT (2015) FFAR3 modulates insulin secretion and global gene expression in mouse islets. Islets 7:e1045182. https://doi.org/10.1080/19382014.2015.1045182
Ximenes HMA, Hirata AE, Rocha MS, Curi R, Carpinelli AR (2007) Propionate inhibits glucose-induced insulin secretion in isolated rat pancreatic islets. Cell Biochem Funct 25:173–178. https://doi.org/10.1002/cbf.1297
Bridgeman S, Ellison G, Newsholme P, Mamotte C (2021) The HDAC inhibitor butyrate impairs β cell function and activates the disallowed gene hexokinase i. Int J Mol Sci. https://doi.org/10.3390/ijms222413330
Prause M, Pedersen SS, Tsonkova V, Qiao M, Billestrup N (2021) Butyrate protects pancreatic beta cells from cytokine-induced dysfunction. Int J Mol Sci. https://doi.org/10.3390/ijms221910427
Wang S, Yuan M, Zhang L, Zhu K, Sheng C, Zhou F, Xu Z, Liu Q, Liu Y, Lu J, Wang X, Zhou L (2022) Sodium butyrate potentiates insulin secretion from rat islets at the expense of compromised expression of β cell identity genes. Cell Death Dis 13:1–10. https://doi.org/10.1038/s41419-022-04517-1
Holst JJ (2007) The physiology of glucagon-like peptide 1. Physiol Rev 87:1409–1439. https://doi.org/10.1152/physrev.00034.2006
Yadav H, Lee J, Lloyd J, Walter P, Rane SG (2013) Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion. J Biol Chem 288:25088–25097. https://doi.org/10.1074/jbc.M113.452516
Psichas A, Sleeth ML, Murphy KG, Brooks L, Bewick GA, Hanyaloglu AC, Ghatei MA, Bloom SR, Frost G (2015) The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int J Obes 39:424–429
Kaji I, Karaki SI, Kuwahara A (2014) Short-chain fatty acid receptor and its contribution to glucagon-like peptide-1 release. Digestion 89:31–36. https://doi.org/10.1159/000356211
Pingitore A, Chambers ES, Hill T, Maldonado IR, Liu B, Bewick G, Morrison DJ, Preston T, Wallis GA, Tedford C, Castañera González R, Huang GC, Choudhary P, Frost G, Persaud SJ (2017) The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro. Diabetes Obes Metab 19:257–265. https://doi.org/10.1111/dom.12811
Pingitore A, Gonzalez-Abuin N, Ruz-Maldonado I, Huang GC, Frost G, Persaud SJ (2019) Short chain fatty acids stimulate insulin secretion and reduce apoptosis in mouse and human islets in vitro: role of free fatty acid receptor 2. Diabetes, Obes Metab 21:330–339. https://doi.org/10.1111/dom.13529
Tang C, Ahmed K, Gille A, Lu S, Gröne HJ, Tunaru S, Offermanns S (2015) Loss of FFA2 and FFA3 increases insulin secretion and improves glucose tolerance in type 2 diabetes. Nat Med 21:173–177. https://doi.org/10.1038/nm.3779
Layden BT, Yalamanchi SK, Wolever TMS, Dunaif A, Lowe WL (2012) Negative association of acetate with visceral adipose tissue and insulin levels. Diabetes Metab Syndr Obes Targets Ther 5:49–55. https://doi.org/10.2147/DMSO.S29244
McNelis JC, Lee YS, Mayoral R, Van Der Kant R, Johnson AMF, Wollam J, Olefsky JM (2015) GPR43 potentiates β-cell function in obesity. Diabetes 64:3203–3217. https://doi.org/10.2337/db14-1938
Bjursell M, Admyre T, Göransson M, Marley AE, Smith DM, Oscarsson J, Bohlooly-Y M (2011) Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. Am J Physiol Endocrinol Metab 300:211–220. https://doi.org/10.1152/ajpendo.00229.2010
Acknowledgements
The authors acknowledge the financial support from the Fundamental Grant Research Scheme Malaysia under the Project Number 04-01-18-1930FR (Vot No. 5540055).
Funding
This study was funded by the Malaysian Ministry of Higher Education (MOHE) FRGS fund under the Project Number 04–01-18-1930FR (Vot No. 5540055).
Author information
Authors and Affiliations
Contributions
Conceptualisation and writing original draft, NSAR; editing and reviewing, SAG, MEK, UHZ, AI, MBHAR; funding acquisition, MBHAR.
Corresponding author
Ethics declarations
Conflicts of interest
The authors declare no conflict of interest.
Ethical statement
Not applicable.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Rosli, N.S.A., Abd Gani, S., Khayat, M.E. et al. Short-chain fatty acids: possible regulators of insulin secretion. Mol Cell Biochem 478, 517–530 (2023). https://doi.org/10.1007/s11010-022-04528-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11010-022-04528-8