Skip to main content
Log in

A novel identified circular RNA, circSnap47, promotes heart failure progression via regulation of miR-223-3p/MAPK axis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the effect of circSnap47 on heart failure (HF) and its potential mechanisms. Quantitative real-time PCR (qRT-PCR) was performed to detect the mRNA expression levels of circSnap47 and miR-233-3p. The viability and apoptosis of H9C2 cells were assessed using CCK-8 and TUNEL assays. The expressions of interleukin (IL)-6, IL-1β, IL-18, and tumor necrosis factor-alpha were determined using ELISA and qRT-PCR. In addition, the expression of apoptosis-related proteins and mitogen-activated protein kinase (MAPK) signaling pathway-related proteins was analyzed using western blot. Moreover, HF-related circRNAs and miRNAs were predicted via bioinformatics analysis. The relationship between circSnap47 and miR-233-3p was further confirmed using a dual-luciferase reporter gene assay. In HF tissues and H9C2 cells treated with oxygen–glucose deprivation (OGD), circSnap47 was upregulated. Silencing circSnap47 increased cell viability and inhibited apoptosis. Besides, silencing circSnap47 alleviated OGD-induced inflammation in H9C2 cells. Moreover, we found that miR-233-3p was the downstream target gene of circSnap47. Our results also revealed that silencing circSnap47 relieved OGD-induced H9C2 cell damage by inactivating the miR-223-3p/MAPK axis. We confirmed that circSnap47 silencing inhibited HF progression via regulation of miR-223/MAPK axis, which will provide for a new therapeutic direction for the treatment of HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Ahern RM, Lozano R, Naghavi M, Foreman K, Gakidou E, Murray CJ (2011) Improving the public health utility of global cardiovascular mortality data: the rise of ischemic heart disease. Popul Health Metrics 9:8

    Article  Google Scholar 

  2. Braunwald E (2015) The war against heart failure: the Lancet lecture. Lancet (London, England) 385(9970):812–824

    Article  PubMed  Google Scholar 

  3. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB (2013) Heart disease and stroke statistics–2013 update: a report from the American Heart Association. Circulation 127(1):e6–e245

    PubMed  Google Scholar 

  4. Zhou B, Yu JW (2017) A novel identified circular RNA, circRNA_010567, promotes myocardial fibrosis via suppressing miR-141 by targeting TGF-β1. Biochem Biophys Res Commun 487(4):769–775

    Article  CAS  PubMed  Google Scholar 

  5. Zhang Y, Chen B (2021) Silencing circ_0062389 alleviates cardiomyocyte apoptosis in heart failure rats via modulating TGF-β1/Smad3 signaling pathway. Gene 766:145154

    Article  CAS  PubMed  Google Scholar 

  6. Deng Y, Wang J, Xie G, Zeng X, Li H (2019) Circ-HIPK3 Strengthens the Effects of Adrenaline in Heart Failure by MiR-17-3p–ADCY6 Axis. Int J Biol Sci 15(11):2484–2496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen X (2019) Expression of microRNA-3133 correlates with the prognosis in patients with clear cell renal cell carcinoma. Medicine 98(24):e16008

    Article  PubMed  PubMed Central  Google Scholar 

  8. Long FQ, Kou CX, Li K, Wu J, Wang QQ (2020) MiR-223–3p inhibits rTp17-induced inflammasome activation and pyroptosis by targeting NLRP3. J Cellular Mol Med. https://doi.org/10.1111/jcmm.16061

    Article  Google Scholar 

  9. Long C, Cen S, Zhong Z, Zhou C, Zhong G (2020) FOXO3 is targeted by miR-223–3p and promotes osteogenic differentiation of bone marrow mesenchymal stem cells by enhancing autophagy. Hum Cell. https://doi.org/10.1007/s13577-020-00421-y

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dai GH, Ma PZ, Song XB, Liu N, Zhang T, Wu B (2014) MicroRNA-223-3p inhibits the angiogenesis of ischemic cardiac microvascular endothelial cells via affecting RPS6KB1/hif-1a signal pathway. PLoS ONE 9(10):e108468

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sun Y, Jiang X, Lv Y, Liang X, Zhao B, Bian W, Zhang D, Jiang J, Zhang C (2020) Circular RNA expression profiles in plasma from patients with heart failure related to platelet activity. Biomolecules 10(2):187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu W, Zheng J, Dong J, Bai R, Song D, Ma X, Zhao L, Yao Y, Zhang H, Liu T (2018) Association of miR-197-5p, a circulating biomarker for heart failure, with myocardial fibrosis and adverse cardiovascular events among patients with stage C or D heart failure. Cardiology 141(4):212–225

    Article  CAS  PubMed  Google Scholar 

  13. Wong LL, Armugam A, Sepramaniam S, Karolina DS, Lim KY, Lim JY, Chong JP, Ng JY, Chen YT, Chan MM, Chen Z, Yeo PS, Ng TP, Ling LH, Sim D, Leong KT, Ong HY, Jaufeerally F, Wong R, Chai P, Low AF, Lam CS, Jeyaseelan K, Richards AM (2015) Circulating microRNAs in heart failure with reduced and preserved left ventricular ejection fraction. Eur J Heart Fail 17(4):393–404

    Article  CAS  PubMed  Google Scholar 

  14. Zhang MW, Shen YJ, Shi J, Yu JG (2021) MiR-223-3p in Cardiovascular diseases: a biomarker and potential therapeutic target. Front Cardiovasc Med 7:610561

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ye CY, Zhang X, Chu Q, Liu C, Yu Y, Jiang W, Zhu QH, Fan L, Guo L (2017) Full-length sequence assembly reveals circular RNAs with diverse non-GT/AG splicing signals in rice. RNA Biol 14(8):1055–1063

    Article  PubMed  Google Scholar 

  16. Qu S, Yang X, Li X, Wang J, Gao Y, Shang R, Sun W, Dou K, Li H (2015) Circular RNA: a new star of noncoding RNAs. Cancer Lett 365(2):141–148

    Article  CAS  PubMed  Google Scholar 

  17. Zhong L, Wang Y, Cheng Y, Wang W, Lu B, Zhu L, Ma Y (2018) Circular RNA circC3P1 suppresses hepatocellular carcinoma growth and metastasis through miR-4641/PCK1 pathway. Biochem Biophys Res Commun 499(4):1044–1049

    Article  CAS  PubMed  Google Scholar 

  18. Zhou J, Zhang WW, Peng F, Sun JY, He ZY, Wu SG (2018) Downregulation of hsa_circ_0011946 suppresses the migration and invasion of the breast cancer cell line MCF-7 by targeting RFC3. Cancer Manag Res 10:535–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ma HB, Yao YN, Yu JJ, Chen XX, Li HF (2018) Extensive profiling of circular RNAs and the potential regulatory role of circRNA-000284 in cell proliferation and invasion of cervical cancer via sponging miR-506. Am J Transl Res 10(2):592–604

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Han J, Zhang L, Hu L, Yu H, Xu F, Yang B, Zhang R, Zhang Y, An Y (2020) Circular RNA-expression profiling reveals a potential role of Hsa_circ_0097435 in heart failure via sponging multiple microRNAs. Front Genet 11:212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kalogeropoulos A, Georgiopoulou V, Psaty BM, Rodondi N, Smith AL, Harrison DG, Liu Y, Hoffmann U, Bauer DC, Newman AB, Kritchevsky SB, Harris TB, Butler J (2010) Inflammatory markers and incident heart failure risk in older adults: the health ABC (health, aging, and body composition) study. J Am Coll Cardiol 55(19):2129–2137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vasan RS, Sullivan LM, Roubenoff R, Dinarello CA, Harris T, Benjamin EJ, Sawyer DB, Levy D, Wilson PW, D’Agostino RB (2003) Inflammatory markers and risk of heart failure in elderly subjects without prior myocardial infarction: the Framingham Heart Study. Circulation 107(11):1486–1491

    Article  CAS  PubMed  Google Scholar 

  23. Van Tassell BW, Seropian IM, Toldo S, Mezzaroma E, Abbate A (2013) Interleukin-1β induces a reversible cardiomyopathy in the mouse. Inflamm Res 62(7):637–640

    Article  PubMed  Google Scholar 

  24. Chang H, Li C, Wang Q, Lu L, Zhang Q, Zhang Y, Zhang N, Wang Y, Wang W (2017) QSKL protects against myocardial apoptosis on heart failure via PI3K/Akt-p53 signaling pathway. Sci Rep 7(1):16986

    Article  PubMed  PubMed Central  Google Scholar 

  25. Adams BD, Parsons C, Walker L, Zhang WC, Slack FJ (2017) Targeting noncoding RNAs in disease. J Clin Investig 127(3):761–771

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li J, Su H, Zhu Y, Cao Y, Ma X (2020) ETS2 and microRNA-155 regulate the pathogenesis of heart failure through targeting and regulating GPR18 expression. Exp Ther Med 19(6):3469–3478

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Li DM, Li BX, Yang LJ, Gao P, Ma ZY, Li ZJD (2020) Diagnostic value of circulating microRNA-208a in differentiation of preserved from reduced ejection fraction heart failure. Heart Lung. https://doi.org/10.1016/j.hrtlng.2020.07.010

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22(2):153–183

    CAS  PubMed  Google Scholar 

  29. Li X, Wang G, QiLi M, Liang H, Li T, XiaoQiang E, Feng Y, Zhang Y, Liu X, Qian M, BoZhi X, Shen Z, Gitau SC, Zhao D, Shan H (2018) Aspirin Reduces Cardiac Interstitial Fibrosis by Inhibiting Erk1/2-Serpine2 and P-Akt Signalling Pathways. Cell Physiol 45(5):1955–1965

    CAS  Google Scholar 

  30. Song Y, Mai H, Lin Y, Wang Y, Wang X, Gu S (2020) MiR-144 affects proliferation and apoptosis of high glucose-induced AC16 cardiomyocytes by regulating CTRP3/JNK signaling. Int J Clin Exp Pathol 13(2):142–152

    PubMed  PubMed Central  Google Scholar 

  31. Li CY, Zhou Q, Yang LC, Chen YH, Hou JW, Guo K, Wang YP, Li YG (2016) Dual-specificity phosphatase 14 protects the heart from aortic banding-induced cardiac hypertrophy and dysfunction through inactivation of TAK1-P38MAPK/-JNK1/2 signaling pathway. Basic Res Cardiol 111(2):19

    Article  PubMed  Google Scholar 

Download references

Funding

No Funding.

Author information

Authors and Affiliations

Authors

Contributions

YW: conception and design; PZ, HW, and LZ: perform research; PZ, JZ, and NL: data analysis and interpretation; YW: manuscript writing; All authors: final approval of manuscript.

Corresponding author

Correspondence to Peng Zhao.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval and consent to participate

No human studies were carried out by the authors for this article. No animal studies were carried out by the authors for this article.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, H., Zhang, L. et al. A novel identified circular RNA, circSnap47, promotes heart failure progression via regulation of miR-223-3p/MAPK axis. Mol Cell Biochem 478, 459–469 (2023). https://doi.org/10.1007/s11010-022-04523-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04523-z

Keywords

Navigation