Skip to main content

Advertisement

Log in

Genetic advancements in obesity management and CRISPR–Cas9-based gene editing system

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Human genome research has reached new heights in the recent decade thanks to a major advance in genome editing. Genome editing enables scientists to understand better the functions of a single gene and its impact on a wide range of diseases. In brief, genome editing is a technique for introducing alterations into specific DNA sequences, such as insertions, deletions, or base substitutions. Several methods are adopted to perform genome editing and clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9) systems. Unfortunately, despite substantial progress in understanding the molecular pathways behind obesity, anti-obesity medications are now ineffective. If you are obese, a 10% weight decrease would be preferable to healthy body weight for most people. CRISPR–Cas9, on the other hand, has been shown to reduce body weight by an astonishing 20%. Hence, this updated review elaborates on the molecular basis of obesity, risk factors, types of gene therapy, possible mechanisms, and advantages of the CRISPR–Cas9 system over other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data availability statement is not applicable for this review.

Abbreviations

AMPK:

Adenosine monophosphate-activated protein kinase

ATS-9R:

9-Mer arginine

BMI:

Basal metabolic index

CCL2:

Chemokine ligands 2

CRISPRa:

Clusters of regularly interspaced short palindromic repeats activation

CRISPR-Cas9:

Clusters of regularly interspaced short palindromic repeats-caspase9

CRISPRi:

Clusters of regularly interspaced short palindromic repeats interference

CrRNA:

Clusters of regularly interspaced short palindromic repeats RNA

DNA:

Deoxyribonucleic acid

DSB:

Double-strand break

epiWAT:

Epididymal white adipose tissue

Fabp4:

Fatty acid-binding protein-4

gRNA:

Guide RNA

GWAS:

Genome-wide association studies

HUMBLE:

Human brown-like fat cells

IL-1β:

Interleukin-1-beta

IL6:

Interleukin-6

LepR:

Leptin receptor

PAM:

Protospacer adjacent motif

POMC:

Proopiomelanocortin

RNA:

Ribonucleic acid

SAM:

Synergistic activation mediator

sgNeg:

Single guide negative

subWAT:

Subcutaneous white adipose tissue

TALENs:

Transcription activator-like effector nucleases

TNF:

Tumor necrosis factor

TracrRNA:

Transactivating clusters of regularly interspaced short palindromic repeats RNA

WHO:

World health organization

ZFN:

Zinc finger nuclease

References

  1. Hruby A, Hu FB (2015) The epidemiology of obesity: a big picture. Pharmacoeconomics 33:673–689. https://doi.org/10.1007/s40273-014-0243-x

    Article  PubMed  PubMed Central  Google Scholar 

  2. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight

  3. Biro FM, Wien M (2010) Childhood obesity and adult morbidities. Am J Clin Nutr 91:1499S-1505S. https://doi.org/10.3945/ajcn.2010.28701B

    Article  PubMed  PubMed Central  Google Scholar 

  4. Misra A, Jayawardena R, Anoop S (2019) Obesity in south Asia: phenotype, morbidities, and mitigation. Curr Obes Rep 8:43–52. https://doi.org/10.1007/s13679-019-0328-0

    Article  PubMed  Google Scholar 

  5. Hill JO, Wyatt HR, Peters JC (2012) Energy balance and obesity. Circulation 126:126–132. https://doi.org/10.1161/CIRCULATIONAHA.111.087213

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gonçalves GAR, Paiva RMA (2017) Gene therapy: advances, challenges and perspectives. Einstein (Sao Paulo) 15:369–375. https://doi.org/10.1590/S1679-45082017RB4024

    Article  PubMed  Google Scholar 

  7. Gao M, Liu D (2014) Gene therapy for obesity: progress and prospects. Discov Med 17:319–328

    PubMed  Google Scholar 

  8. Song Z, Xiaoli AM, Yang F (2018) Regulation and metabolic significance of de novo lipogenesis in adipose tissues. Nutrients 10:1383. https://doi.org/10.3390/nu10101383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Klok MD, Jakobsdottir S, Drent ML (2007) The role of leptin and Ghrelin in the regulation of food intake and body weight in humans: a review. Obes Rev 8:21–34. https://doi.org/10.1111/j.1467-789X.2006.00270.x

    Article  CAS  PubMed  Google Scholar 

  10. Obradovic M, Sudar-Milovanovic E, Soskic S, Essack M, Arya S, Stewart AJ, Gojobori T, Isenovic ER (2021) Leptin and obesity: role and clinical implication. Front Endocrinol (Lausanne) 12:585887. https://doi.org/10.3389/fendo.2021.585887

    Article  PubMed  Google Scholar 

  11. Zigman JM, Bouret SG, Andrews ZB (2016) Obesity impairs the action of the neuroendocrine ghrelin system. Trends Endocrinol Metab 27:54–63. https://doi.org/10.1016/j.tem.2015.09.010

    Article  CAS  PubMed  Google Scholar 

  12. Manghwar H, Lindsey K, Zhang X, Jin S (2019) CRISPR/Cas system: recent advances and future prospects for genome editing. Trends Plant Sci 24:1102–1125. https://doi.org/10.1016/j.tplants.2019.09.006

    Article  CAS  PubMed  Google Scholar 

  13. Zhu L, Mon H, Xu J, Lee JM, Kusakabe T (2015) CRISPR/Cas9-mediated knockout of factors in non-homologous end joining pathway enhances gene targeting in silkworm cells. Sci Rep 5:18103. https://doi.org/10.1038/srep18103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kantor A, McClements ME, MacLaren RE (2020) CRISPR-Cas9 DNA base-editing and prime-editing. Int J Mol Sci 21:6240. https://doi.org/10.3390/ijms21176240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu X, Kriz AJ, Sharp PA (2014) Target specificity of the CRISPR-Cas9 system. Quant Biol 2:59–70. https://doi.org/10.1007/s40484-014-0030-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. La Russa MF, Qi LS (2015) The new state of the art: Cas9 for gene activation and repression. Mol Cell Biol 35:3800–3809. https://doi.org/10.1128/MCB.00512-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. O’Brien PD, Hinder LM, Callaghan BC, Feldman EL (2017) Neurological consequences of obesity. Lancet Neurol 16:465–477. https://doi.org/10.1016/S1474-4422(17)30084-4

    Article  PubMed  PubMed Central  Google Scholar 

  18. Knight JA (2011) Diseases and disorders associated with excess body weight. Ann Clin Lab Sci 41:107–121

    PubMed  Google Scholar 

  19. Abduelkarem AR, Sharif SI, Bankessli FG, Kamal SA, Kulhasan NM, Hamrouni AM (2020) Obesity and its associated risk factors among school-aged children in Sharjah, UAE. PLoS ONE 15:e0234244. https://doi.org/10.1371/journal.pone.0234244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hashan MR, Das Gupta R, Day B, Al Kibria GM (2020) Differences in prevalence and associated factors of underweight and overweight/obesity according to rural-urban residence strata among women of reproductive age in Bangladesh: evidence from a cross-sectional national survey. BMJ Open 10:e034321. https://doi.org/10.1136/bmjopen-2019-034321

    Article  PubMed  PubMed Central  Google Scholar 

  21. Arroyo-Johnson C, Mincey KD (2016) Obesity epidemiology worldwide. Gastroenterol Clin N Am 45:571–579. https://doi.org/10.1016/j.gtc.2016.07.012

    Article  Google Scholar 

  22. Li X, Qi L (2019) Gene-environment interactions on body fat distribution. Int J Mol Sci 20:3690. https://doi.org/10.3390/ijms20153690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Münzberg H, Morrison CD (2015) Structure, production and signaling of leptin. Metabolism 64:13–23. https://doi.org/10.1016/j.metabol.2014.09.010

    Article  CAS  PubMed  Google Scholar 

  24. Devoy A, Bunton-Stasyshyn RK, Tybulewicz VL, Smith AJ, Fisher EM (2011) Genomically humanized mice: technologies and promises. Nat Rev Genet 13:14–20. https://doi.org/10.1038/nrg3116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Goswami R, Subramanian G, Silayeva L, Newkirk I, Doctor D, Chawla K, Chattopadhyay S, Chandra D, Chilukuri N, Betapudi V (2019) Gene therapy leaves a vicious cycle. Front Oncol 9:297. https://doi.org/10.3389/fonc.2019.00297

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gaj T, Sirk SJ, Shui SL, Liu J (2016) Genome-editing technologies: principles and applications. Cold Spring Harb Perspect Biol 8:a023754. https://doi.org/10.1101/cshperspect.a023754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405. https://doi.org/10.1016/j.tibtech.2013.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Carroll D (2011) Genome engineering with zinc-finger nucleases. Genetics 188:773–782. https://doi.org/10.1534/genetics.111.131433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Didigu CA, Wilen CB, Wang J, Duong J, Secreto AJ, Danet-Desnoyers GA, Riley JL, Gregory PD, June CH, Holmes MC, Doms RW (2014) Simultaneous zinc-finger nuclease editing of the HIV coreceptors ccr5 and cxcr4 protects CD4+ T cells from HIV-1 infection. Blood 123:61–69. https://doi.org/10.1182/blood-2013-08-521229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14:49–55. https://doi.org/10.1038/nrm3486

    Article  CAS  PubMed  Google Scholar 

  31. Wright DA, Li T, Yang B, Spalding MH (2014) TALEN-mediated genome editing: prospects and perspectives. Biochem J 462:15–24. https://doi.org/10.1042/BJ20140295

    Article  CAS  PubMed  Google Scholar 

  32. Nemudryi AA, Valetdinova KR, Medvedev SP, Zakian SM (2014) TALEN and CRISPR/Cas genome editing systems: tools of discovery. Acta Nat 6:19–40

    Article  CAS  Google Scholar 

  33. tenOever BR (2016) The evolution of antiviral defense systems. Cell Host Microbe 19:142–149. https://doi.org/10.1016/j.chom.2016.01.006

    Article  CAS  PubMed  Google Scholar 

  34. Barrangou R, Marraffini LA (2014) CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity. Mol Cell 54:234–244. https://doi.org/10.1016/j.molcel.2014.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Garcia-Robledo JE, Barrera MC, Tobón GJ (2020) CRISPR/Cas: from adaptive immune system in prokaryotes to therapeutic weapon against immune-related diseases. Int Rev Immunol 39:11–20. https://doi.org/10.1080/08830185.2019.1677645

    Article  CAS  PubMed  Google Scholar 

  36. Rath D, Amlinger L, Rath A, Lundgren M (2015) The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie 117:119–128. https://doi.org/10.1016/j.biochi.2015.03.025

    Article  CAS  PubMed  Google Scholar 

  37. Lino CA, Harper JC, Carney JP, Timlin JA (2018) Delivering CRISPR: a review of the challenges and approaches. Drug Deliv 25:1234–1257. https://doi.org/10.1080/10717544.2018.1474964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McCarty NS, Graham AE, Studená L, Ledesma-Amaro R (2020) Multiplexed CRISPR technologies for gene editing and transcriptional regulation. Nat Commun 11:1281. https://doi.org/10.1038/s41467-020-15053-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sekine R, Kawata T, Muramoto T (2018) CRISPR/Cas9 mediated targeting of multiple genes in Dictyostelium. Sci Rep 8:8471. https://doi.org/10.1038/s41598-018-26756-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang B, Chandrasekera PC, Pippin JJ (2014) Leptin- and leptin receptor-deficient rodent models: relevance for human type 2 diabetes. Curr Diabetes Rev 10:131–145. https://doi.org/10.2174/1573399810666140508121012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yip BH (2020) Recent advances in CRISPR/Cas9 delivery strategies. Biomolecules 10:839. https://doi.org/10.3390/biom10060839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang XH, Tee LY, Wang XG, Huang QS, Yang SH (2015) Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids 4:e264. https://doi.org/10.1038/mtna.2015.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Han HA, Pang JKS, Soh BS (2020) Mitigating off-target effects in CRISPR/Cas9-mediated in vivo gene editing. J Mol Med (Berl) 98:615–632. https://doi.org/10.1007/s00109-020-01893-z

    Article  CAS  PubMed  Google Scholar 

  44. Yoo KH, Hennighausen L, Shin HY (2019) Dissecting tissue-specific super-enhancers by integrating genome-wide analyses and CRISPR/Cas9 genome editing. J Mammary Gland Biol Neoplasia 24:47–59. https://doi.org/10.1007/s10911-018-9417-z

    Article  PubMed  Google Scholar 

  45. Lee JK, Jeong E, Lee J, Jung M, Shin E, Kim YH, Lee K, Jung I, Kim D, Kim S, Kim JS (2018) Directed evolution of CRISPR-Cas9 to increase its specificity. Nat Commun 9:3048. https://doi.org/10.1038/s41467-018-05477-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee J, Jung MH, Jeong E, Lee JK (2019) Using sniper-Cas9 to minimize off-target effects of CRISPR-Cas9 without the loss of on-target activity via directed evolution. J Vis Exp 144:e59202–e59210. https://doi.org/10.3791/59202

    Article  CAS  Google Scholar 

  47. Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA, Harrington LB, Sternberg SH, Joung JK, Yildiz A, Doudna JA (2017) Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature 550:407–410. https://doi.org/10.1038/nature24268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Davis KM, Pattanayak V, Thompson DB, Zuris JA, Liu DR (2015) Small molecule-triggered Cas9 protein with improved genome-editing specificity. Nat Chem Biol 11:316–318. https://doi.org/10.1038/nchembio.1793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Makarova KS, Koonin EV (2015) Annotation and classification of CRISPR-Cas systems. Methods Mol Biol 1311:47–75. https://doi.org/10.1007/978-1-4939-2687-9_4

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tangprasertchai NS, Di Felice R, Zhang X, Slaymaker IM, Vazquez Reyes C, Jiang W, Rohs R, Qin PZ (2017) CRISPR-Cas9 mediated DNA unwinding detected using site-directed spin labeling. ACS Chem Biol 12:1489–1493. https://doi.org/10.1021/acschembio.6b01137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, van der Oost J, Koonin EV (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9:467–477. https://doi.org/10.1038/nrmicro2577

    Article  CAS  PubMed  Google Scholar 

  52. Chylinski K, Makarova KS, Charpentier E, Koonin EV (2014) Classification and evolution of type II CRISPR-Cas systems. Nucleic Acids Res 42:6091–6105. https://doi.org/10.1093/nar/gku241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712. https://doi.org/10.1126/science.1138140

    Article  CAS  PubMed  Google Scholar 

  54. Nuñez JK, Lee AS, Engelman A, Doudna JA (2015) Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity. Nature 519:193–198. https://doi.org/10.1038/nature14237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shah SA, Erdmann S, Mojica FJ, Garrett RA (2013) Protospacer recognition motifs: mixed identities and functional diversity. RNA Biol 10:891–899. https://doi.org/10.4161/rna.23764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Heler R, Samai P, Modell JW, Weiner C, Goldberg GW, Bikard D, Marraffini LA (2015) Cas9 specifies functional viral targets during CRISPR-Cas adaptation. Nature 519:199202. https://doi.org/10.1038/nature14245

    Article  CAS  Google Scholar 

  57. Wei Y, Terns RM, Terns MP (2015) Cas9 function and host genome sampling in Type II-A CRISPR-Cas adaptation. Genes Dev 29:356–361. https://doi.org/10.1101/gad.257550.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li M, Wang R, Zhao D, Xiang H (2014) Adaptation of the Haloarcula hispanica CRISPR-Cas system to a purified virus strictly requires a priming process. Nucleic Acids Res 42:2483–2492. https://doi.org/10.1093/nar/gkt1154

    Article  CAS  PubMed  Google Scholar 

  59. Datsenko KA, Pougach K, Tikhonov A, Wanner BL, Severinov K, Semenova E (2012) Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat Commun 3:945. https://doi.org/10.1038/ncomms1937

    Article  CAS  PubMed  Google Scholar 

  60. Richter C, Dy RL, McKenzie RE, Watson BN, Taylor C, Chang JT, McNeil MB, Staals RH, Fineran PC (2014) Priming in the Type I-F CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer. Nucleic Acids Res 42:8516–8526. https://doi.org/10.1093/nar/gku527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Carte J, Wang R, Li H, Terns RM, Terns MP (2008) Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev 22:3489–3496. https://doi.org/10.1101/gad.1742908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hale CR, Zhao P, Olson S, Duff MO, Graveley BR, Wells L, Terns RM, Terns MP (2009) RNA-guided RNA cleavage by a CRISPR RNA–Cas protein complex. Cell 139:945–956. https://doi.org/10.1016/j.cell.2009.07.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hatoum-Aslan A, Maniv I, Marraffini LA (2011) Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site. Proc Natl Acad Sci U S A 108:21218–21222. https://doi.org/10.1073/pnas.1112832108

    Article  PubMed  PubMed Central  Google Scholar 

  64. Charpentier E, Richter H, van der Oost J, White MF (2015) Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity. FEMS Microbiol Rev 39:428–441. https://doi.org/10.1093/femsre/fuv023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602–607. https://doi.org/10.1038/nature09886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bhaya D, Davison M, Barrangou R (2011) CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45:273–297. https://doi.org/10.1146/annurev-genet-110410-132430

    Article  CAS  PubMed  Google Scholar 

  67. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Marraffini LA, Sontheimer EJ (2010) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11:181–190. https://doi.org/10.1038/nrg2749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang R, Preamplume G, Terns MP, Terns RM, Li H (2011) Interaction of the Cas6 riboendonuclease with CRISPR RNAs: recognition and cleavage. Structure 19:257–264. https://doi.org/10.1016/j.str.2010.11.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, Dickman MJ, Makarova KS, Koonin EV, van der Oost J (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960–964. https://doi.org/10.1126/science.1159689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Westra ER, van Erp PB, Künne T, Wong SP, Staals RH, Seegers CL, Bollen S, Jore MM, Semenova E, Severinov K, de Vos WM, Dame RT, de Vries R, Brouns SJ, van der Oost J (2012) CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol Cell 46:595–605. https://doi.org/10.1016/j.molcel.2012.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Thaker VV (2017) Genetic and epigenetic causes of obesity. Adolesc Med State Art Rev 28:379–405

    PubMed  PubMed Central  Google Scholar 

  73. Gruzdeva O, Borodkina D, Uchasova E, Dyleva Y, Barbarash O (2019) Leptin resistance: underlying mechanisms and diagnosis. Diabetes Metab Syndr Obes 12:191–198. https://doi.org/10.2147/DMSO.S182406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ramos-Lobo AM, Donato J Jr (2017) The role of leptin in health and disease. Temperature (Austin) 4:258–291. https://doi.org/10.1080/23328940.2017.1327003

    Article  PubMed  Google Scholar 

  75. Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X (2020) Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther 5:1. https://doi.org/10.1038/s41392-019-0089-y

    Article  PubMed  PubMed Central  Google Scholar 

  76. Claussnitzer M, Dankel SN, Kim KH, Quon G, Meuleman W, Haugen C, Glunk V, Sousa IS, Beaudry JL, Puviindran V, Abdennur NA, Liu J, Svensson PA, Hsu YH, Drucker DJ, Mellgren G, Hui CC, Hauner H, Kellis M (2015) FTO obesity variant circuitry and adipocyte Browning in humans. N Engl J Med 373:895–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Roh JI, Lee J, Park SU, Kang YS, Lee J, Oh AR, Choi DJ, Cha JY, Lee HW (2018) CRISPR-Cas9-mediated generation of obese and diabetic mouse models. Exp Anim 67:229–237. https://doi.org/10.1538/expanim.17-0123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Romanelli SM, Lewis KT, Nishii A, Rupp AC, Li Z, Mori H, Schill RL, Learman BS, Rhodes CJ, MacDougald OA (2021) BAd-CRISPR: inducible gene knockout in interscapular brown adipose tissue of adult mice. J Biol Chem 297:101402. https://doi.org/10.1016/j.jbc.2021.101402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rabiee A, Plucińska K, Isidor MS, Brown EL, Tozzi M, Sidoli S, Petersen PSS, Agueda-Oyarzabal M, Torsetnes SB, Chehabi GN, Lundh M, Altıntaş A, Barrès R, Jensen ON, Gerhart-Hines Z, Emanuelli B (2021) White adipose remodeling during browning in mice involves YBX1 to drive thermogenic commitment. Mol Metab 44:101137. https://doi.org/10.1016/j.molmet.2020.101137

    Article  CAS  PubMed  Google Scholar 

  80. Zhang Y, Yin C, Zhang T, Li F, Yang W, Kaminski R, Fagan PR, Putatunda R, Young WB, Khalili K, Hu W (2015) CRISPR/gRNA-directed synergistic activation mediator (SAM) induces specific, persistent and robust reactivation of the HIV-1 latent reservoirs. Sci Rep 5:16277. https://doi.org/10.1038/srep16277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kozak LP, Anunciado-Koza R (2008) UCP1: its involvement and utility in obesity. Int J Obes (Lond) 7:S32–S38. https://doi.org/10.1038/ijo.2008.236

    Article  CAS  Google Scholar 

  82. Lockie SH, Stefanidis A, Oldfield BJ, Perez-Tilve D (2013) Brown adipose tissue thermogenesis in the resistance to and reversal of obesity: a potential new mechanism contributing to the metabolic benefits of proglucagon-derived peptides. Adipocyte 2:196–200. https://doi.org/10.4161/adip.25417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wu L, Zhang L, Li B, Jiang H, Duan Y, Xie Z, Shuai L, Li J, Li J (2018) AMP-activated protein kinase (AMPK) regulates energy metabolism through modulating thermogenesis in adipose tissue. Front Physiol 9:122. https://doi.org/10.3389/fphys.2018.00122

    Article  PubMed  PubMed Central  Google Scholar 

  84. Wang CH, Lundh M, Fu A, Kriszt R, Huang TL, Lynes MD, Leiria LO, Shamsi F, Darcy J, Greenwood BP, Narain NR, Tolstikov V, Smith KL, Emanuelli B, Chang YT, Hagen S, Danial NN, Kiebish MA, Tseng YH (2020) CRISPR-engineered human brown-like adipocytes prevent diet-induced obesity and ameliorate metabolic syndrome in mice. Sci Transl Med 12:eaaz8664. https://doi.org/10.1126/scitranslmed.aaz8664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chung JY, Ain QU, Song Y, Yong SB, Kim YH (2019) Targeted delivery of CRISPR interference system against Fabp4 to white adipocytes ameliorates obesity, inflammation, hepatic steatosis, and insulin resistance. Genome Res 29:1442–1452. https://doi.org/10.1101/gr.246900.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rogowski M, Bellusci L, Sabatini M, Rapposelli S, Rahman SM, Chiellini G, Assadi-Porter FM (2019) Lipolytic effects of 3-Iodothyronamine (T1AM) and a novel thyronamine-like analog SG2 through the AMPK pathway. Int J Mol Sci 20:4054. https://doi.org/10.3390/ijms20164054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sun F, Chen G, Yang Y, Lei M (2021) Fatty acid-binding protein 4 silencing protects against lipopolysaccharide-induced cardiomyocyte hypertrophy and apoptosis by inhibiting the Toll-like receptor 4-nuclear factor-κB pathway. J Int Med Res 49:300060521998233. https://doi.org/10.1177/0300060521998233

    Article  CAS  PubMed  Google Scholar 

  88. Liu T, Zhang L, Joo D, Sun SC (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther 2:17023. https://doi.org/10.1038/sigtrans.2017.23

    Article  PubMed  PubMed Central  Google Scholar 

  89. Alagoz M, Kherad N (2020) Advance genome editing technologies in the treatment of human diseases: CRISPR therapy (review). Int J Mol Med 46:521–534. https://doi.org/10.3892/ijmm.2020.4609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rees HA, Liu DR (2018) Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 19:770–788. https://doi.org/10.1038/s41576-018-0059-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cook NL, Pjanic M, Emmerich AG, Rao AS, Hetty S, Knowles JW, Quertermous T, Castillejo-López C, Ingelsson E (2019) CRISPR-Cas9-mediated knockout of SPRY2 in human hepatocytes leads to increased glucose uptake and lipid droplet accumulation. BMC Endocr Disord 19:115. https://doi.org/10.1186/s12902-019-0442-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kamble PG, Hetty S, Vranic M, Almby K, Castillejo-López C, Abalo XM, Pereira MJ, Eriksson JW (2020) Proof-of-concept for CRISPR/Cas9 gene editing in human preadipocytes: deletion of FKBP5 and PPARG and effects on adipocyte differentiation and metabolism. Sci Rep 10:10565. https://doi.org/10.1038/s41598-020-67293-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Matharu N, Rattanasopha S, Tamura S, Maliskova L, Wang Y, Bernard A, Hardin A, Eckalbar WL, Vaisse C, Ahituv N (2019) CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science 363:eaau0629. https://doi.org/10.1126/science.aau0629

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Tenth People’s Affiliated Hospital of Tongji University for providing the workplace to prepare the review.

Funding

This work was supported by the National Key R&D Program of China (No. 2018YFC1314101, 2016YFC1305600), the National Natural Science Foundation of China (81970677), the Fundamental Research Funds for the Central Universities of Tongji University (22120190210), and Shanghai Committee of Science and Technology, China (19DZ1910200, 18411951803, 17DZ1910603).

Author information

Authors and Affiliations

Authors

Contributions

MJ has written, proofread, and finalized the review; FZL has conceptualized the idea, written and proofread; QS has proofread and approved the study.

Corresponding authors

Correspondence to Zhaoliang Fei or Shen Qu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This is a review study, and ethical approval is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayachandran, M., Fei, Z. & Qu, S. Genetic advancements in obesity management and CRISPR–Cas9-based gene editing system. Mol Cell Biochem 478, 491–501 (2023). https://doi.org/10.1007/s11010-022-04518-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04518-w

Keywords

Navigation