Skip to main content

Advertisement

Log in

l-cysteine protective effects against platelet disaggregation and echinocyte occurrence in gentamicin-induced kidney injury

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Gentamicin (GM) is an aminoglycoside antibiotic that induces nephrotoxicity. GM also causes necrosis of cells in the renal proximal tubules, resulting in acute tubular necrosis, followed by acute renal failure. Morphological alteration of blood cells, leukocytes and platelets count, as well as biochemical effects of l-cysteine (Cys) and antibiotic gentamicin, in clinically healthy male Wistar rats, were studied. Rats were divided into four groups: control (injected with 0.9% saline i.p.), GM (80 mg/kg b.w.; gentamicin injected i.p.), Cys-GM (100 mg/kg b.w.; l-cysteine and 80 mg/kg b.w. gentamicin injected i.p.), and Cys-GM-Cys (administered double dosage of 100 mg/kg b.w. l-cysteine and 80 mg/kg b.w. gentamicin i.p.). Biochemical and hematological analyses were performed on blood samples taken six days after treatments. Total proteins, albumin concentration and A/G ratio were significantly lower in experimental groups. Cholesterol, triglycerides, urea, and creatinine concentrations were significantly higher in relation to control. GM-induced lymphocytopenia, thrombocytopenia and neutrophilia. Echinocytosis and platelet disaggregation were found in all GM-treated animals. GM caused renal injury which indirectly led to erythrocyte abnormalities, changes in platelet aggregation, decreased protein fractions, and increased lipid and nitrogen components. The results suggest that GM-induced renal injury leads to significant biochemical changes in blood plasma, erythrocyte membrane impairment which can consequently cause anemia. Therefore, Cys might represent a novel therapeutic tool in the prevention and treatment of gentamicin-induced renal injury and blood cell disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Krause KM, Serio AW, Kane TR, Connolly LE (2016) Aminoglycosides: an overview. Cold Spring Harb Perspect Med 6(6):a027029. https://doi.org/10.1101/cshperspect.a027029

    Article  CAS  Google Scholar 

  2. Kotra LP, Haddad J, Mobashery S (2000) Aminoglycosides: perspectives on mechanisms of action and resistance and strategies to counter resistance. Antimicrob Agents Chemother 44(12):3249–3256. https://doi.org/10.1128/AAC.44.12.3249-3256.2000

    Article  CAS  Google Scholar 

  3. Chang J, Jung HH, Yang JY, Choi J, Im GJ, Chae SW (2011) Protective role of antidiabetic drug metformin against gentamicin induced apoptosis in auditory cell line. Hear Res 282:92–96. https://doi.org/10.1016/j.heares.2011.09.005

    Article  CAS  Google Scholar 

  4. Wilson DN (2014) Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat Rev Microbiol 12(1):35–48. https://doi.org/10.1038/nrmicro3155

    Article  CAS  Google Scholar 

  5. Erdem A, Gündoğan NU, Usubütün A, Kilinç K, Erdem SR, Kara A, Bozkurt A (2000) The protective effect of taurine against gentamicin-induced acute tubular necrosis in rats. Nephrol Dial Transplant 15(8):1175–1182. https://doi.org/10.1093/ndt/15.8.1175

    Article  CAS  Google Scholar 

  6. Babu SV, Urolagin DK, Veeresh B, Attanshetty N (2011) Anogeissus latifolia prevents gentamicin induced nephrotoxicity in rats. Int J Pharm Sci 3(1):1091–1095

    Google Scholar 

  7. Stevens LA, Lafayette RA, Perrone RD, Levey AS, Schrier RW (2007) Laboratory evaluation of kidney function. In: Schrier RW (ed) Diseases of the kidney and urinary tract, 8th edn. Lippincott, Williams and Wilkins, Philadelphia, pp 299–336

    Google Scholar 

  8. Kore KJ, Shete RV, Kale BN, Borade AS (2011) Protective role of hydroalcoholic extract of Ficus carica in gentamicin induced nephrotoxicity in rats. Int J Pharm Life Sci 2:978–982

    Google Scholar 

  9. Chaware VJ, Chaudhary BP, Vaishnav MK, Biyani KR (2011) Protective effect of the aqueous extract of Momordica charantia leaves on gentamicin-induced nephrotoxicity in rats. Int J Pharm Tech Res 3(1):553–555

    Google Scholar 

  10. Amici M, Eusebi F, Miledi R (2005) Effects of the antibiotic gentamicin on nicotinic acetylcholine receptors. Neuropharmacology 49(5):79–88. https://doi.org/10.1016/j.neuropharm.2005.04.015

    Article  CAS  Google Scholar 

  11. Parlakpinar H, Tasdemir S, Polat A, Bay-Karabulut A, Vardi N, Ucar M, Acet A (2005) Protective role of caffeic acid phenethyl ester (cape) on gentamicin-induced acute renal toxicity in rats. Toxicol 207:169–177. https://doi.org/10.1016/j.tox.2004.08.024

    Article  CAS  Google Scholar 

  12. Abe A, Shayman JA (2009) The role of negatively charged lipids in lysosomal phospholipase A2 function. J Lipid Res 50:2027–2035. https://doi.org/10.1194/jlr.M900008-JLR200

    Article  CAS  Google Scholar 

  13. Stojiljkovic N, Mihajlović D, Veljković S, Stoiljković M, Jovanović I (2008) Glomerular basement membrane alterations induced by gentamicin administration in rats. Exp Toxicol Pathol 60(1):69–75. https://doi.org/10.1016/j.etp.2008.02.007

    Article  CAS  Google Scholar 

  14. Khan SA, Priyamvada S, Farooq N, Khan S, Khan MW, Yusufi AN (2009) Protective effect of green tea extract on gentamicin-induced nephrotoxicity and oxidative damage in rat kidney. Pharmacol Res 59:254–262. https://doi.org/10.1016/j.phrs.2008.12.009

    Article  CAS  Google Scholar 

  15. Alarifi S, Al-Doaiss A, Alkahtani S, Al-Farraj SA, Saad Al-Eissa M, Al-Dahmash B, Al-Yahya H, Mubarak M (2012) Blood chemical changes and renal histological alterations induced by gentamicin in rats. Saudi J Biol Sci 19:103–110. https://doi.org/10.1016/j.sjbs.2011.11.002

    Article  CAS  Google Scholar 

  16. Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, Levin A (2007) Acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 11(2):R31. https://doi.org/10.1186/cc5713

    Article  Google Scholar 

  17. Chen CY, Wooster A, Bowser PR (2004) Comparative blood chemistry and histopathology of tilapia infected with Vibrio vulnificus or Streptococcus iniae or exposed to carbon tetrachloride, gentamicin, or copper sulfate. Aquaculture 239:421–443. https://doi.org/10.1016/j.aquaculture.2004.05.033

    Article  CAS  Google Scholar 

  18. Marino SM, Gladyshev VN (2012) Analysis and functional prediction of reactive cysteine residues. J Biol Chem 287:4419–4425. https://doi.org/10.1074/jbc.R111.275578

    Article  CAS  Google Scholar 

  19. Pace NJ, Weerapana E (2014) A competitive chemical-proteomic platform to identify zinc-binding cysteines. ACS Chem Biol 9:258–265. https://doi.org/10.1021/cb400622q

    Article  CAS  Google Scholar 

  20. Reddie KG, Carroll KS (2008) Expanding the functional diversity of proteins through cysteine oxidation. Curr Opin Chem Biol 12:746–754. https://doi.org/10.1016/j.cbpa.2008.07.028

    Article  CAS  Google Scholar 

  21. Cremers CM, Jakob U (2013) Oxidant sensing by reversible disulfide bond formation. J Biol Chem 288:26489–26496. https://doi.org/10.1074/jbc.R113.462929

    Article  CAS  Google Scholar 

  22. Erel O, Neselioglu S (2014) A novel and automated assay for thiol/disulphide homeostasis. Clin Biochem 47(18):326–332. https://doi.org/10.1016/j.clinbiochem.2014.09.026

    Article  CAS  Google Scholar 

  23. Giustarini D, Milzani A, Dalle-Donne I, Tsikas D, Rossi R (2012) N-Acetylcysteine ethyl ester (NACET): a novel lipophilic cell-permeable cysteine derivative with an unusual pharmacokinetic feature and remarkable antioxidant potential. Biochem Pharmacol 84(1):1522–1533. https://doi.org/10.1016/j.bcp.2012.09.010

    Article  CAS  Google Scholar 

  24. Naidu MU, Shifow AA, Kumar KV, Ratnakar KS (2000) Ginkgo biloba extract ameliorates gentamicin-induced nephrotoxicity in rats. Phytomedicine 7(3):191–197. https://doi.org/10.1016/s0944-7113(00)80003-3

    Article  CAS  Google Scholar 

  25. Silan C, Uzun O, Comunoğlu NU, Gokçen S, Bedirhan S, Cengiz M (2007) Gentamicin-induced nephrotoxicity in rats ameliorated and healing effects of resveratrol. Biol Pharm Bull 30(1):79–83. https://doi.org/10.1248/bpb.30.79

    Article  CAS  Google Scholar 

  26. Abdel-Gayoum AA, Ali BH, Ghawarsha K, Bashir AA (1993) Plasma lipid profile in rats with gentamicin-induced nephrotoxicity. Hum Exp Toxicol 12(5):371–375. https://doi.org/10.1177/096032719301200505

    Article  CAS  Google Scholar 

  27. Hamza R, El-Shenawy N (2017) The beneficial effects of L-cysteine on brain antioxidants of rats affected by sodium valproate. Hum Exp Toxicol 36(11):1212–1221. https://doi.org/10.1177/0960327117695634

    Article  CAS  Google Scholar 

  28. Al-Salmi FA, Al-Eisa R, Hamza RZ, Khaled HE, El-Shenaw NS (2019) Protective effect of L-cysteine against sodium valproate-induced oxidant injury in testis of rats. Int J Pharm 15:248–256. https://doi.org/10.3923/ijp.2019.248.256

    Article  CAS  Google Scholar 

  29. Suljević D, Mahmutović L, Mehinović L (2015) Biohemijska analitika I. Univerzitet u Sarajevu

  30. Edwards JR, Diamantakos EA, Peuler JD, Lamar PC, Prozialeck WC (2007) A novel method for the evaluation of proximal tubule epithelial cellular necrosis in the intact rat kidney using ethidium homodimer. BMC Physiol 7:1. https://doi.org/10.1186/1472-6793-7-1

    Article  CAS  Google Scholar 

  31. Li J, Li QX, Xie XF, Ao Y, Tie CR, Song RJ (2009) Differential roles of dihydropyridine calcium antagonist nifedipine, nitrendipine and amlodipine on gentamicin-induced renal tubular toxicity in rats. Eur J Pharmacol 620(1–3):97–104. https://doi.org/10.1016/j.ejphar.2009.08.021

    Article  CAS  Google Scholar 

  32. Dhanarasu S, Selvam MS, Alkhalaf AA, Aloraifi AKK, Al-Shammari NKA (2018) Ameliorative and erythrocytes membrane stabilizing effects of Mentha piperita on experimentally induced nephrotoxicity by gentamicin. EAJBS 3(10):23–37. https://doi.org/10.21608/eajbsc.2018.13653

    Article  Google Scholar 

  33. Miri S, Safari T, Komeili GR, Nematbakhsh M, Niazi AA, Jahantigh M, Bagheri H, Maghool F (2018) Sex difference in gentamicin-induced nephrotoxicity: influence of L-arginine in rat model. Int J Prev Med 24:9–108. https://doi.org/10.4103/ijpvm.IJPVM_54_17

    Article  Google Scholar 

  34. Gowda S, Desai PB, Kulkarni SS, Hull VV, Math AA, Vernekar SN (2010) Markers of renal function tests. N Am J Med Sci 2(4):170–173

    Google Scholar 

  35. Firdus A, Avdagić N, Fočak M, Mitrašinović-Brulić M, Suljević D (2022) Protective role of antithrombin III in suppressing acute responses in a rat model of renal ischemia-reperfusion injury. Mol Cell Biochem 477(2):627–634. https://doi.org/10.1007/s11010-021-04322-y

    Article  CAS  Google Scholar 

  36. Wiedermann CJ, Wiedermann W, Joannidis M (2017) Causal relationship between hypoalbuminemia and acute kidney injury. World J Nephrol 6(4):176–187. https://doi.org/10.5527/wjn.v6.i4.176

    Article  Google Scholar 

  37. Lee KW, Kyo Won L, Tae Min K, Kyeong Sik K, Seunghwan L, Junhun C, Jae Berm P, Ghee Young K, Sung Joo K (2018) Renal ischemia reperfusion injury in a diabetic monkey model and therapeutic testing of human bone marrow-derived mesenchymal stem cells. J Diabetes Res. https://doi.org/10.1155/2018/5182606

    Article  Google Scholar 

  38. Cernaro V, Sfacteria A, Rifici C, Macri F, Maricchiolo G, Lacquaniti A, Alberto Ricciardi C, Buemi A, Costantino G, Santoro D, Buemi M (2017) Renoprotective effect of erythropoietin in zebrafish after administration of gentamicin: an immunohistochemical study for β-catenin and c-kit expression. J Nephrol 30(3):385–391. https://doi.org/10.1007/s40620-016-0353-y

    Article  CAS  Google Scholar 

  39. Trevisan R, Dodesini AR, Lepore G (2006) Lipids and renal disease. J Am Soc Nephrol 4(2):145–147. https://doi.org/10.1681/ASN.2005121320

    Article  CAS  Google Scholar 

  40. Abrass CK (2004) Cellular lipid metabolism and the role of lipids in progressive renal disease. Am J Nephrol 24(1):46–53. https://doi.org/10.1159/000075925

    Article  CAS  Google Scholar 

  41. Vaziri ND, Sato T, Liang K (2003) Molecular mechanisms of altered cholesterol metabolism in rats with spontaneous focal glomerulosclerosis. Kidney Int 63(5):1756–1763. https://doi.org/10.1046/j.1523-1755.2003.00911.x

    Article  CAS  Google Scholar 

  42. Eritsland J (2000) Safety considerations of polyunsaturated fatty acids. Am J Clin Nutr 71(1):197–201. https://doi.org/10.1093/ajcn/71.1.197S

    Article  Google Scholar 

  43. Kondera E, Bojarski B, Lugowska K, Kot B, Witeska M (2020) Effects of oxytetracycline and gentamicin therapeutic doses on hematological, biochemical and hematopoietic parameters in Cyprinus carpio juveniles. Animals 2278:1–12. https://doi.org/10.3390/ani10122278

    Article  Google Scholar 

  44. Lijana RC, Williams MC (1986) The effects of antibiotics on hemolytic behavior of red blood cell. Cell Biophys 8(4):223–242. https://doi.org/10.1007/BF02788514

    Article  CAS  Google Scholar 

  45. Sakurai S, Shiojima I, Tanigawa T, Nakahara K (1997) Aminoglycosides prevent and dissociate the aggregation of platelets in patients with EDTA-dependent pseudothrombocytopenia. Br J Haematol 99(4):817–823. https://doi.org/10.1046/j.1365-2141.1997.4773280.x

    Article  CAS  Google Scholar 

  46. Chen G, Fei X, Ling J (2012) The effects of aminoglycoside antibiotics on platelet aggregation and blood coagulation. CATH 18(5):538–541. https://doi.org/10.1177/1076029611430955

    Article  CAS  Google Scholar 

  47. Otasevic V, Korac B (2016) Amino acids: metabolism. In: Caballero B, Paul M, Finglas M, Toldrá F (eds) Encyclopedia of food and health. Academic Press, Cambridge, pp 149–155

    Chapter  Google Scholar 

  48. Poole LB (2015) The basics of thiols and cysteines in redox biology and chemistry. Free Radic Biol Med 80:148–157. https://doi.org/10.1016/j.freeradbiomed.2014.11.013

    Article  CAS  Google Scholar 

  49. Sen CK, Packer L (2000) Thiol homeostasis and supplements in physical exercise. Am J Clin Nutr 72(2):653–669. https://doi.org/10.1093/ajcn/72.2.653S

    Article  Google Scholar 

  50. Nitescu N, Ricksten SE, Marcussen N, Haraldsson B, Nilsson U, Basu S, Guron G (2006) N-Acetylcysteine attenuates kidney injury in rats subjected to renal ischaemia-reperfusion. Nephrol Dial Transplant 21(5):1240–1247. https://doi.org/10.1093/ndt/gfk032

    Article  CAS  Google Scholar 

  51. Polat C, Tokyol C, Kahraman A, Sabuncuoğlu B, Yìlmaz S (2006) The effects of desferrioxamine and quercetin on hepatic ischemia–reperfusion induced renal disturbance. Prostaglandins Leukot Essent Fatty Acids 74(6):379–383. https://doi.org/10.1016/j.plefa.2006.03.007

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

DS: Conceptualization, Methodology, Validation, Formal analysis, Data curation, Writing—original draft, Writing—review and editing. MMB: Methodology, Validation, Formal analysis. MF: Formal analysis, Methodology, Data curation, Writing—original draft, Writing—review and editing.

Corresponding author

Correspondence to Damir Suljević.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed by the authors.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suljević, D., Mitrašinović-Brulić, M. & Fočak, M. l-cysteine protective effects against platelet disaggregation and echinocyte occurrence in gentamicin-induced kidney injury. Mol Cell Biochem 478, 13–22 (2023). https://doi.org/10.1007/s11010-022-04498-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04498-x

Keywords

Navigation