Skip to main content
Log in

Punicalagin protects against the development of pancreatic injury and insulitis in rats with induced T1DM by reducing inflammation and oxidative stress

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Pancreatic inflammation and oxidative damage remain major concerns in type 1 diabetes mellitus (T1DM). Punicalagin, a major polyphenol in pomegranates, exhibited antioxidant and protective effects on several organs in case of T1DM; however, no study has yet explored the protective effects of punicalagin on the pancreas and islets of Langerhans. T1DM was induced by injecting 40 mg/kg streptozotocin (STZ) intraperitoneally. Punicalagin (1 mg/kg ip) was injected daily for 15 days after T1DM induction. In diabetic rats, punicalagin treatment lowered the levels of inflammatory biomarkers (monocyte chemoattractant protein-1 and C-reactive protein) and adhesion molecules (E-selectin, intercellular adhesion molecule, and vascular cell adhesion molecule) while activating myeloperoxidase activity. Treatment of diabetic rats with punicalagin improved glutathione content and superoxide dismutase, catalase, and glutathione peroxidase activities; upregulated serum paraoxonase-1 activity; and prevented the elevation lipid peroxidation and protein oxidation products in the pancreas. Furthermore, punicalagin protected the pancreas against STZ-induced histopathological alterations and increased immune-reactive β-cells while reducing leucocyte infiltration into the islets of Langerhans, leading to normalized blood glucose and insulin levels. These findings indicated that punicalagin might protect against the development of insulitis in T1DM. In conclusion, punicalagin exerts a strong protective effect on the pancreas against oxidative injury and inflammation in STZ-induced experimental T1DM. The present results recommend punicalagin as a potential adjuvant for reducing diabetes-associated insulitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Roder PV, Wu B, Liu Y, Han W (2016) Pancreatic regulation of glucose homeostasis. Exp Mol Med 48:e219. https://doi.org/10.1038/emm.2016.6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Newsholme P, Cruzat VF, Keane KN, Carlessi R, de Bittencourt PI (2016) Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem J 473:4527–4550. https://doi.org/10.1042/BCJ20160503C

    Article  PubMed  CAS  Google Scholar 

  3. Pugliese A (2016) Insulitis in the pathogenesis of type 1 diabetes. Pediatr Diabetes 17:31–36. https://doi.org/10.1111/pedi.12388

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Fraga CG, Croft KD, Kennedy DO, Tomás-Barberán FA (2019) The effects of polyphenols and other bioactives on human health. Food Funct 10:514–528. https://doi.org/10.1039/c8fo01997e

    Article  PubMed  CAS  Google Scholar 

  5. Stiller A, Garrison K, Gurdyumov K, Kenner J, Yasmin F, Yates P et al (2021) From fighting critters to saving lives: polyphenols in plant defense and human health. Int J Mol Sci 22:8995. https://doi.org/10.3390/ijms22168995

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Faddladdeen KAJ (2021) Ameliorating effect of pomegranate peel extract supplement against type 1 diabetes-induced hepatic changes in the rat: biochemical, morphological and ultrastructural microscopic studies. Folia Morphol (Warsz) 80:149–157. https://doi.org/10.5603/FM.a2020.0034

    Article  CAS  Google Scholar 

  7. Subkorn P, Norkaew C, Deesrisak K, Tanyong D (2021) Punicalagin, a pomegranate compound, induces apoptosis and autophagy in acute leukemia. PeerJ 9:e12303. https://doi.org/10.7717/peerj.12303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Venusova E, Kolesarova A, Horky P, Slama P (2021) Physiological and Immune Functions of Punicalagin. Nutrients 13:2150. https://doi.org/10.3390/nu13072150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Taheri Rouhi SZ, Sarker MMR, Rahmat A, Alkahtani SA, Othman F (2017) The effect of pomegranate fresh juice versus pomegranate seed powder on metabolic indices, lipid profile, inflammatory biomarkers, and the histopathology of pancreatic islets of Langerhans in streptozotocin-nicotinamide induced type 2 diabetic Sprague-Dawley rats. BMC Complement Altern Med 17:156. https://doi.org/10.1186/s12906-017-1667-6

    Article  PubMed  CAS  Google Scholar 

  10. Venusova E, Kolesarova A, Horky P, Slama P (2021) Physiological and immune functions of punicalagin. Nutrients 13:2150. https://doi.org/10.3390/nu13072150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Yu LM, Dong X, Xue XD, Zhang J, Li Z, Wu HJ et al (2019) Protection of the myocardium against ischemia/reperfusion injury by punicalagin through an SIRT1-NRF-2-HO-1-dependent mechanism. Chem Biol Interact 306:152–162. https://doi.org/10.1016/j.cbi.2019.05.003

    Article  PubMed  CAS  Google Scholar 

  12. El-Missiry MA, Amer MA, Hemieda FA, Othman AI, Sakr DA, Abdulhadi HL (2015) Cardioameliorative effect of punicalagin against streptozotocin-induced apoptosis, redox imbalance, metabolic changes and inflammation. Egypt J Basic Appl Sci 2:247–260. https://doi.org/10.1016/j.ejbas.2015.09.004

    Article  Google Scholar 

  13. An X, Zhang Y, Cao Y, Chen J, Qin H, Yang L (2020) Punicalagin protects diabetic nephropathy by inhibiting pyroptosis based on TXNIP/NLRP3 pathway. Nutrients 12:1516. https://doi.org/10.3390/nu12051516

    Article  PubMed Central  CAS  Google Scholar 

  14. Zhong J, Reece EA, Yang P (2015) Punicalagin exerts protective effect against high glucose-induced cellular stress and neural tube defects. Biochem Biophys Res Commun 467:179–184. https://doi.org/10.1016/j.bbrc.2015.10.024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Jin D, Zhang B, Li Q, Tu J, Zhou B (2020) Effect of punicalagin on multiple targets in streptozotocin/high-fat diet-induced diabetic mice. Food Funct 11:10617–10634. https://doi.org/10.1039/d0fo01275k

    Article  PubMed  CAS  Google Scholar 

  16. El-Missiry MA, ElKomy MA, Othman AI, AbouEl-Ezz AM (2018) Punicalagin ameliorates the elevation of plasma homocysteine, amyloid-beta, TNF-alpha and apoptosis by advocating antioxidants and modulating apoptotic mediator proteins in brain. Biomed Pharmacother 102:472–480. https://doi.org/10.1016/j.biopha.2018.03.096

    Article  PubMed  CAS  Google Scholar 

  17. Furman BL (2015) Streptozotocin-induced diabetic models in mice and rats. Curr Protoc Pharmacol. https://doi.org/10.1002/0471141755.ph0547s70

    Article  PubMed  Google Scholar 

  18. Othman AI, El-Sawi MR, El-Missiry MA, Abukhalil MH (2017) Epigallocatechin-3-gallate protects against diabetic cardiomyopathy through modulating the cardiometabolic risk factors, oxidative stress, inflammation, cell death and fibrosis in streptozotocin-nicotinamide-induced diabetic rats. Biomed Pharmacother 94:362–373. https://doi.org/10.1016/j.biopha.2017.07.129

    Article  PubMed  CAS  Google Scholar 

  19. Janardhan KS, Jensen H, Clayton NP, Herbert RA (2018) Immunohistochemistry in investigative and toxicologic pathology. Toxicol Pathol 46:488–510. https://doi.org/10.1177/0192623318776907

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Anggorowati N, Kurniasari CR, Damayanti K, Cahyanti T, Widodo I, Ghozali A et al (2017) Histochemical and immunohistochemical study of α-SMA, collagen, and PCNA in epithelial ovarian neoplasm. Asian Pac J Cancer Prev: APJCP 18:667. https://doi.org/10.22034/APJCP.2017.18.3.667

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zheng P, Li Z, Zhou Z (2018) Gut microbiome in type 1 diabetes: a comprehensive review. Diabetes Metab Res Rev 34:e3043. https://doi.org/10.1002/dmrr.3043

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lindsay RS, Corbin K, Mahne A, Levitt BE, Gebert MJ, Wigton EJ et al (2015) Antigen recognition in the islets changes with progression of autoimmune islet infiltration. J Immunol 194:522–530. https://doi.org/10.4049/jimmunol.1400626

    Article  PubMed  CAS  Google Scholar 

  23. Rhee KJ, Lee CG, Kim SW, Gim DH, Kim HC, Jung BD (2015) Extract of Ginkgo Biloba Ameliorates streptozotocin-induced type 1 diabetes mellitus and high-fat diet-induced type 2 diabetes mellitus in mice. Int J Med Sci 12:987–994. https://doi.org/10.7150/ijms.13339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Jialal I, Kaur H, Devaraj S (2013) Human C-reactive protein accentuates macrophage activity in biobreeding diabetic rats. J Diabetes Complications 27:23–28. https://doi.org/10.1016/j.jdiacomp.2012.03.020

    Article  PubMed  Google Scholar 

  25. Cvetkovic I, Al-Abed Y, Miljkovic D, Maksimovic-Ivanic D, Roth J, Bacher M et al (2005) Critical role of macrophage migration inhibitory factor activity in experimental autoimmune diabetes. Endocrinol 146:2942–2951. https://doi.org/10.1210/en.2004-1393

    Article  CAS  Google Scholar 

  26. Cao Y, Chen J, Ren G, Zhang Y, Tan X, Yang L (2019) Punicalagin prevents inflammation in LPS-induced RAW264.7 macrophages by inhibiting FoxO3a/autophagy signaling pathway. Nutrients 11:2794. https://doi.org/10.3390/nu11112794

    Article  PubMed Central  CAS  Google Scholar 

  27. BenSaad LA, Kim KH, Quah CC, Kim WR, Shahimi M (2017) Anti-inflammatory potential of Ellagic acid, Gallic acid and punicalagin A&B isolated from Punica granatum. BMC Complement Altern Med 17:47. https://doi.org/10.1186/s12906-017-1555-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Nguyen-Ngo C, Willcox JC, Lappas M (2020) Anti-inflammatory effects of phenolic acids punicalagin and curcumin in human placenta and adipose tissue. Placenta 100:1–12. https://doi.org/10.1016/j.placenta.2020.08.002

    Article  PubMed  CAS  Google Scholar 

  29. Liu L, Liu Y, Qi B, Wu Q, Li Y, Wang Z (2014) Nicorandil attenuates endothelial VCAM-1 expression via thioredoxin production in diabetic rats induced by streptozotocin. Mol Med Rep 9:2227–2232. https://doi.org/10.3892/mmr.2014.2066

    Article  PubMed  CAS  Google Scholar 

  30. Gustavsson C, Agardh C-D, Zetterqvist AV, Nilsson J, Agardh E, Gomez MF (2010) Vascular cellular adhesion molecule-1 (VCAM-1) expression in mice retinal vessels is affected by both hyperglycemia and hyperlipidemia. PLoS ONE 5:e12699. https://doi.org/10.1371/journal.pone.0012699

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Asni E, Romus I (2019) The effect of alpha-lipoic acid on expression of VCAM-1 in type 2 diabetic rat. Anat Cell Biol 52:176–182. https://doi.org/10.5115/acb.2019.52.2.176

    Article  PubMed  PubMed Central  Google Scholar 

  32. Asgary S, Sahebkar A, Afshani MR, Keshvari M, Haghjooyjavanmard S, Rafieian-Kopaei M (2014) Clinical evaluation of blood pressure lowering, endothelial function improving, hypolipidemic and anti-inflammatory effects of pomegranate juice in hypertensive subjects. Phytother Res 28:193–199. https://doi.org/10.1002/ptr.4977

    Article  PubMed  CAS  Google Scholar 

  33. Sohrab G, Nasrollahzadeh J, Zand H, Amiri Z, Tohidi M, Kimiagar M (2014) Effects of pomegranate juice consumption on inflammatory markers in patients with type 2 diabetes: a randomized, placebo-controlled trial. J Res Med Sci 19:215–220

    PubMed  PubMed Central  Google Scholar 

  34. Sohrab G, Nasrollahzadeh J, Tohidi M, Zand H, Nikpayam O (2018) Pomegranate juice increases sirtuin1 protein in peripheral blood mononuclear cell from patients with type 2 diabetes: a randomized placebo controlled clinical trial. Metab Syndr Relat Disord 16:446–451. https://doi.org/10.1089/met.2017.0146

    Article  PubMed  CAS  Google Scholar 

  35. Habtemariam S (2019) Medicinal foods as potential therapies for type-2 Diabetes and associated diseases: the chemical and pharmacological basis of their action, 1st edn. Academic Press

    Google Scholar 

  36. Bradley PP, Priebat DA, Christensen RD, Rothstein G (1982) Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol 78:206–209. https://doi.org/10.1111/1523-1747.ep12506462

    Article  PubMed  CAS  Google Scholar 

  37. Vanessa Fiorentino T, Prioletta A, Zuo P, Folli F (2013) Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Curr Pharm Des 19:5695–5703. https://doi.org/10.2174/1381612811319320005

    Article  CAS  Google Scholar 

  38. Mabhida SE, Johnson R, Ndlovu M, Sangweni NF, Louw J, Opoku A et al (2018) A Lanosteryl triterpene from Protorhus longifolia augments insulin signaling in type 1 diabetic rats. BMC Complement Altern Med 18:265. https://doi.org/10.1186/s12906-018-2337-z

    Article  PubMed  CAS  Google Scholar 

  39. Kulkarni R, Acharya J, Ghaskadbi S, Goel P (2014) Oxidative stress as a covariate of recovery in diabetes therapy. Front Endocrinol (Lausanne) 5:89. https://doi.org/10.3389/fendo.2014.00089

    Article  Google Scholar 

  40. Tang D, Liu L, Ajiakber D, Ye J, Xu J, Xin X et al (2018) Anti-diabetic effect of Punica granatum flower polyphenols extract in type 2 diabetic rats: activation of Akt/GSK-3beta and inhibition of IRE1alpha-XBP1 pathways. Front Endocrinol (Lausanne) 9:586. https://doi.org/10.3389/fendo.2018.00586

    Article  PubMed Central  Google Scholar 

  41. Davies MJ, Hawkins CL (2020) The role of myeloperoxidase in biomolecule modification, chronic inflammation, and disease. Antioxid Redox Signal 32:957–981. https://doi.org/10.1089/ars.2020.8030

    Article  PubMed  CAS  Google Scholar 

  42. Nishat S, Klinke A, Baldus S, Khan LA, Basir SF (2014) Increased A3AR-dependent vasoconstriction in diabetic mice is promoted by myeloperoxidase. J Cardiovasc Pharmacol 64:465–472. https://doi.org/10.1097/FJC.0000000000000139

    Article  PubMed  CAS  Google Scholar 

  43. Ojha S, Alkaabi J, Amir N, Sheikh A, Agil A, Fahim MA et al (2014) Withania coagulans fruit extract reduces oxidative stress and inflammation in kidneys of streptozotocin-induced diabetic rats. Oxid Med Cell Longev 2014:201436. https://doi.org/10.1155/2014/201436

    Article  PubMed  PubMed Central  Google Scholar 

  44. Stocker P, Cassien M, Vidal N, Thétiot-Laurent S, Pietri S (2017) A fluorescent homogeneous assay for myeloperoxidase measurement in biological samples. A positive correlation between myeloperoxidase-generated HOCl level and oxidative status in STZ-diabetic rats. Talanta 170:119–127. https://doi.org/10.1016/j.talanta.2017.03.102

    Article  PubMed  CAS  Google Scholar 

  45. Ndrepepa G (2019) Myeloperoxidase—a bridge linking inflammation and oxidative stress with cardiovascular disease. Clin Chim Acta 493:36–51. https://doi.org/10.1016/j.cca.2019.02.022

    Article  PubMed  CAS  Google Scholar 

  46. Kuchta A, Strzelecki A, Cwiklinska A, Toton M, Gruchala M, Zdrojewski Z et al (2015) PON-1 activity and plasma 8-isoprostane concentration in patients with angiographically proven coronary artery disease. Oxid Med Cell Longev 2015:5136937. https://doi.org/10.1155/2016/5136937

    Article  PubMed  CAS  Google Scholar 

  47. Tas S, Sarandol E, Ziyanok S, Aslan K, Dirican M (2005) Effects of green tea on serum paraoxonase/arylesterase activities in streptozotocin-induced diabetic rats. Nutr Res 25:1061–1074. https://doi.org/10.1016/j.nutres.2005.10.001

    Article  CAS  Google Scholar 

  48. Taş S, Sarandöl E, Dirican M (2014) Vitamin B6 supplementation improves oxidative stress and enhances serum paraoxonase/arylesterase activities in streptozotocin-induced diabetic rats. Sci World J 2014:351598. https://doi.org/10.1155/2014/351598

    Article  Google Scholar 

  49. Hedrick CC, Thorpe SR, Fu MX, Harper CM, Yoo J, Kim SM et al (2000) Glycation impairs high-density lipoprotein function. Diabetologia 43:312–320. https://doi.org/10.1007/s001250050049

    Article  PubMed  CAS  Google Scholar 

  50. Rosenblat M, Hayek T, Aviram M (2006) Anti-oxidative effects of pomegranate juice (PJ) consumption by diabetic patients on serum and on macrophages. Atherosclerosis 187:363–371. https://doi.org/10.1016/j.atherosclerosis.2005.09.006

    Article  PubMed  CAS  Google Scholar 

  51. Betanzos-Cabrera G, Guerrero-Solano A, Cruz-Mayorga D, Calderon Z, Villanueva-Sanchez J, Irecta AP et al (2009) Effect of pomegranate juice on paraoxonase 1 (pon1) gene expression and enzymatic activity in a streptozotocin-induced diabetes and diet-induced obese mode. Can J Diabetes 33:266–267. https://doi.org/10.1016/S1499-2671(09)33210-4

    Article  Google Scholar 

  52. Betanzos-Cabrera G, Guerrero-Solano J, Martínez-Pérez M, Calderón-Ramos Z, Belefant-Miller H, Cancino-Diaz JC (2011) Pomegranate juice increases levels of paraoxonase1 (PON1) expression and enzymatic activity in streptozotocin-induced diabetic mice fed with a high-fat diet. Food Res Int 44:1381–1385. https://doi.org/10.1016/j.foodres.2011.01.042

    Article  CAS  Google Scholar 

  53. BinMowyna MN, Binobead MA, Al Badr NA, AlSedairy SA, Elredh IAR, Al-Qahtani WS (2019) Effect of Saudi and Egyptian pomegranate polyphenols in regulating the activity of PON1, PON2 and lipid profile for preventing coronary heart disease. BioRxiv 2019:570838. https://doi.org/10.1101/570838

    Article  CAS  Google Scholar 

  54. Rojas J, Bermudez V, Palmar J, Martinez MS, Olivar LC, Nava M et al (2018) Pancreatic beta cell death: novel potential mechanisms in diabetes therapy. J Diabetes Res 2018:9601801. https://doi.org/10.1155/2018/9601801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Willcox A, Richardson SJ, Bone AJ, Foulis AK, Morgan NG (2009) Analysis of islet inflammation in human type 1 diabetes. Clin Exp Immunol 155:173–181. https://doi.org/10.1111/j.1365-2249.2008.03860.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Zhao B, Wu F, Han X, Zhou W, Shi Q, Wang H (2020) Protective effects of acarbose against insulitis in multiple low-dose streptozotocin-induced diabetic mice. Life Sci 263:118490. https://doi.org/10.1016/j.lfs.2020.118490

    Article  PubMed  CAS  Google Scholar 

  57. Shalaby MF, Zaki AA, Shabana S, Osman NM (2015) Effects of Punica granatum peels extract on the Intestinal α-glucosidase activity and the histopathology of the pancreas of Alloxan–induced diabetic rats. Egypt J Med Sci 36:255–272

    Google Scholar 

  58. Wang JY, Zhu C, Qian TW, Guo H, Wang DD, Zhang F et al (2015) Extracts of black bean peel and pomegranate peel ameliorate oxidative stress-induced hyperglycemia in mice. Exp Ther Med 9:43–48. https://doi.org/10.3892/etm.2014.2040

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Facilities provided by Mansoura University are greatly acknowledged.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by HLA, BRD, LHA, AIO, MAEM, and MEA. The first draft of the manuscript was written and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Maggie E. Amer or Mohamed A. El-Missiry.

Ethics declarations

Conflict of interests

None. The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in this study were conducted in accordance with the regulations approved by the Ethics Committee at Faculty of Science, Mansoura University, Egypt.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulhadi, H.L., Dabdoub, B.R., Ali, L.H. et al. Punicalagin protects against the development of pancreatic injury and insulitis in rats with induced T1DM by reducing inflammation and oxidative stress. Mol Cell Biochem 477, 2817–2828 (2022). https://doi.org/10.1007/s11010-022-04478-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04478-1

Keywords

Navigation