Skip to main content
Log in

The role of short-chain fatty acids in central nervous system diseases

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Previous studies have found that intracorporal short-chain fatty acids (SCFAs), as the main metabolites of the gut microbiota, play important roles in the intestinal physiology and immune function. Along with the in-depth study of the brain-gut axis, the attention to the roles of SCFAs in central nervous system (CNS) has been raised. It has been found that SCFAs function in CNS diseases by regulating inflammatory response, neuronal apoptosis, oxidative stress, the integrity of the blood–brain barrier (BBB) and so on. Here, the changes, the effects and the mechanisms of different SCFA as individual or mixture in different CNS diseases were summarized. It is expected to lead to increased interest in SCFAs studies as an important regulator in CNS diseases and provide feasible suggestions based on SCFAs for the therapy of CNS diseases in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Cummings JH, Pomare EW, Branch WJ et al (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28(10):1221–1227. https://doi.org/10.1136/gut.28.10.1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Freedman SN, Shahi SK, Mangalam AK (2018) The “gut feeling”: breaking down the role of gut microbiome in multiple sclerosis. Neurotherapeutics 15(1):109–125. https://doi.org/10.1007/s13311-017-0588-x

    Article  PubMed  Google Scholar 

  3. Niccolai E, Baldi S, Ricci F et al (2019) Evaluation and comparison of short chain fatty acids composition in gut diseases. World J Gastroenterol 25(36):5543–5558. https://doi.org/10.3748/wjg.v25.i36.5543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Duncan SH, Belenguer A, Holtrop G et al (2007) Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol 73(4):1073–1078. https://doi.org/10.1128/aem.02340-06

    Article  CAS  PubMed  Google Scholar 

  5. De Filippis F, Pellegrini N, Vannini L et al (2016) High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 65(11):1812–1821. https://doi.org/10.1136/gutjnl-2015-309957

    Article  CAS  PubMed  Google Scholar 

  6. Park J, Wang Q, Wu Q et al (2019) Bidirectional regulatory potentials of short-chain fatty acids and their G-protein-coupled receptors in autoimmune neuroinflammation. Sci Rep 9(1):8837. https://doi.org/10.1038/s41598-019-45311-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hoyles L, Snelling T, Umlai UK et al (2018) Microbiome-host systems interactions: protective effects of propionate upon the blood-brain barrier. Microbiome 6(1):55. https://doi.org/10.1186/s40168-018-0439-y

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liu J, Wang F, Liu S et al (2017) Sodium butyrate exerts protective effect against Parkinson’s disease in mice via stimulation of glucagon like peptide-1. J Neurol Sci 381:176–181. https://doi.org/10.1016/j.jns.2017.08.3235

    Article  CAS  PubMed  Google Scholar 

  9. Sadler R, Cramer JV, Heindl S et al (2020) Short-chain fatty acids improve poststroke recovery via immunological mechanisms. J Neurosci 40(5):1162–1173. https://doi.org/10.1523/jneurosci.1359-19.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zheng L, Kelly CJ (2017) Microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor-dependent repression of claudin-2. J Immunol 199(8):2976–2984. https://doi.org/10.4049/jimmunol.1700105

    Article  CAS  PubMed  Google Scholar 

  11. Tong LC, Wang Y, Wang ZB et al (2016) Propionate ameliorates dextran sodium sulfate-induced colitis by improving intestinal barrier function and reducing inflammation and oxidative stress. Front Pharmacol 7:253. https://doi.org/10.3389/fphar.2016.00253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kominsky DJ, Campbell EL, Ehrentraut SF et al (2014) IFN-γ-mediated induction of an apical IL-10 receptor on polarized intestinal epithelia. J Immunol 192(3):1267–1276. https://doi.org/10.4049/jimmunol.1301757

    Article  CAS  PubMed  Google Scholar 

  13. Kumari R, Ahuja V, Paul J (2013) Fluctuations in butyrate-producing bacteria in ulcerative colitis patients of North India. World J Gastroenterol 19(22):3404–3414. https://doi.org/10.3748/wjg.v19.i22.3404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang W, Chen L, Zhou R et al (2014) Increased proportions of Bifidobacterium and the Lactobacillus group and loss of butyrate-producing bacteria in inflammatory bowel disease. J Clin Microbiol 52(2):398–406. https://doi.org/10.1128/jcm.01500-13

    Article  PubMed  PubMed Central  Google Scholar 

  15. Takahashi K, Nishida A, Fujimoto T et al (2016) Reduced abundance of butyrate-producing bacteria species in the fecal microbial community in Crohn’s disease. Digestion 93(1):59–65. https://doi.org/10.1159/000441768

    Article  CAS  PubMed  Google Scholar 

  16. Arpaia N, Campbell C, Fan X et al (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504(7480):451–455. https://doi.org/10.1038/nature12726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Furusawa Y, Obata Y, Fukuda S et al (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504(7480):446–450. https://doi.org/10.1038/nature12721

    Article  CAS  PubMed  Google Scholar 

  18. Chang PV, Hao L, Offermanns S et al (2014) The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci USA 111(6):2247–2252. https://doi.org/10.1073/pnas.1322269111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu W, Sun M, Chen F et al (2017) Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43. Mucosal Immunol 10(4):946–956. https://doi.org/10.1038/mi.2016.114

    Article  CAS  PubMed  Google Scholar 

  20. Soret R, Chevalier J, De Coppet P et al (2010) Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats. Gastroenterology 138(5):1772–1782. https://doi.org/10.1053/j.gastro.2010.01.053

    Article  CAS  PubMed  Google Scholar 

  21. Hamer HM, Jonkers DM, Bast A et al (2009) Butyrate modulates oxidative stress in the colonic mucosa of healthy humans. Clin Nutr 28(1):88–93. https://doi.org/10.1016/j.clnu.2008.11.002

    Article  CAS  PubMed  Google Scholar 

  22. Tang Y, Chen Y, Jiang H et al (2011) Short-chain fatty acids induced autophagy serves as an adaptive strategy for retarding mitochondria-mediated apoptotic cell death. Cell Death Differ 18(4):602–618. https://doi.org/10.1038/cdd.2010.117

    Article  CAS  PubMed  Google Scholar 

  23. Qiao CM, Sun MF, Jia XB et al (2020) Sodium butyrate causes α-synuclein degradation by an Atg5-dependent and PI3K/Akt/mTOR-related autophagy pathway. Exp Cell Res 387(1):111772. https://doi.org/10.1016/j.yexcr.2019.111772

    Article  CAS  PubMed  Google Scholar 

  24. Thangaraju M, Cresci GA, Liu K et al (2009) GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res 69(7):2826–2832. https://doi.org/10.1158/0008-5472.can-08-4466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Donohoe DR, Holley D, Collins LB et al (2014) A gnotobiotic mouse model demonstrates that dietary fiber protects against colorectal tumorigenesis in a microbiota- and butyrate-dependent manner. Cancer Discov 4(12):1387–1397. https://doi.org/10.1158/2159-8290.cd-14-0501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mangalam A, Shahi SK, Luckey D et al (2017) Human gut-derived commensal bacteria suppress CNS inflammatory and demyelinating disease. Cell Rep 20(6):1269–1277. https://doi.org/10.1016/j.celrep.2017.07.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brissette CA, Houdek HM, Floden AM et al (2012) Acetate supplementation reduces microglia activation and brain interleukin-1β levels in a rat model of Lyme neuroborreliosis. J Neuroinflammation 9:249. https://doi.org/10.1186/1742-2094-9-249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Erny D, Hrabě de Angelis AL, Jaitin D et al (2015) Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18(7):965–977. https://doi.org/10.1038/nn.4030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huuskonen J, Suuronen T, Nuutinen T et al (2004) Regulation of microglial inflammatory response by sodium butyrate and short-chain fatty acids. Br J Pharmacol 141(5):874–880. https://doi.org/10.1038/sj.bjp.0705682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jaworska J, Ziemka-Nalecz M, Sypecka J et al (2017) The potential neuroprotective role of a histone deacetylase inhibitor, sodium butyrate, after neonatal hypoxia-ischemia. J Neuroinflammation 14(1):34. https://doi.org/10.1186/s12974-017-0807-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Patnala R, Arumugam TV, Gupta N et al (2017) HDAC inhibitor sodium butyrate-mediated epigenetic regulation enhances neuroprotective function of microglia during ischemic stroke. Mol Neurobiol 54(8):6391–6411. https://doi.org/10.1007/s12035-016-0149-z

    Article  CAS  PubMed  Google Scholar 

  32. Soliman ML, Combs CK, Rosenberger TA (2013) Modulation of inflammatory cytokines and mitogen-activated protein kinases by acetate in primary astrocytes. J Neuroimmune Pharmacol 8(1):287–300. https://doi.org/10.1007/s11481-012-9426-4

    Article  PubMed  Google Scholar 

  33. Sun J, Wang F, Li H et al (2015) Neuroprotective effect of sodium butyrate against cerebral ischemia/reperfusion injury in mice. Biomed Res Int. https://doi.org/10.1155/2015/395895

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kidd SK, Schneider JS (2010) Protection of dopaminergic cells from MPP+-mediated toxicity by histone deacetylase inhibition. Brain Res 1354:172–178. https://doi.org/10.1016/j.brainres.2010.07.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ying M, Xu R, Wu X et al (2006) Sodium butyrate ameliorates histone hypoacetylation and neurodegenerative phenotypes in a mouse model for DRPLA. J Biol Chem 281(18):12580–12586. https://doi.org/10.1074/jbc.M511677200

    Article  CAS  PubMed  Google Scholar 

  36. Chou AH, Chen SY, Yeh TH et al (2011) HDAC inhibitor sodium butyrate reverses transcriptional downregulation and ameliorates ataxic symptoms in a transgenic mouse model of SCA3. Neurobiol Dis 41(2):481–488. https://doi.org/10.1016/j.nbd.2010.10.019

    Article  CAS  PubMed  Google Scholar 

  37. Steffan JS, Bodai L, Pallos J et al (2001) Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413(6857):739–743. https://doi.org/10.1038/35099568

    Article  CAS  PubMed  Google Scholar 

  38. Harrison IF, Smith AD, Dexter DT (2018) Pathological histone acetylation in Parkinson’s disease: Neuroprotection and inhibition of microglial activation through SIRT 2 inhibition. Neurosci Lett 666:48–57. https://doi.org/10.1016/j.neulet.2017.12.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Alquézar C, Barrio E, Esteras N et al (2015) Targeting cyclin D3/CDK6 activity for treatment of Parkinson’s disease. J Neurochem 133(6):886–897. https://doi.org/10.1111/jnc.13070

    Article  CAS  PubMed  Google Scholar 

  40. Barichello T, Generoso JS, Simões LR et al (2015) Sodium butyrate prevents memory impairment by re-establishing BDNF and GDNF expression in experimental pneumococcal meningitis. Mol Neurobiol 52(1):734–740. https://doi.org/10.1007/s12035-014-8914-3

    Article  CAS  PubMed  Google Scholar 

  41. Li Y, Perry T, Kindy MS et al (2009) GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism. Proc Natl Acad Sci U S A 106(4):1285–1290. https://doi.org/10.1073/pnas.0806720106

    Article  PubMed  PubMed Central  Google Scholar 

  42. Perez-Pardo P, Dodiya HB, Engen PA et al (2019) Role of TLR4 in the gut-brain axis in Parkinson’s disease: a translational study from men to mice. Gut 68(5):829–843. https://doi.org/10.1136/gutjnl-2018-316844

    Article  CAS  PubMed  Google Scholar 

  43. Unger MM, Spiegel J, Dillmann KU et al (2016) Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat Disord 32:66–72. https://doi.org/10.1016/j.parkreldis.2016.08.019

    Article  PubMed  Google Scholar 

  44. Zheng J, Zheng SJ, Cai WJ et al (2019) Stable isotope labeling combined with liquid chromatography-tandem mass spectrometry for comprehensive analysis of short-chain fatty acids. Anal Chim Acta 1070:51–59. https://doi.org/10.1016/j.aca.2019.04.021

    Article  CAS  PubMed  Google Scholar 

  45. Zhang L, Wang Y, Xiayu X et al (2017) Altered gut microbiota in a mouse model of Alzheimer’s disease. J Alzheimers Dis 60(4):1241–1257. https://doi.org/10.3233/jad-170020

    Article  CAS  PubMed  Google Scholar 

  46. Zeng Q, Junli G, Liu X et al (2019) Gut dysbiosis and lack of short chain fatty acids in a Chinese cohort of patients with multiple sclerosis. Neurochem Int. https://doi.org/10.1016/j.neuint.2019.104468

    Article  PubMed  Google Scholar 

  47. Chitrala KN, Guan H, Singh NP et al (2017) CD44 deletion leading to attenuation of experimental autoimmune encephalomyelitis results from alterations in gut microbiome in mice. Eur J Immunol 47(7):1188–1199. https://doi.org/10.1002/eji.201646792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gong J, Qiu W, Zeng Q et al (2019) Lack of short-chain fatty acids and overgrowth of opportunistic pathogens define dysbiosis of neuromyelitis optica spectrum disorders: a Chinese pilot study. Mult Scler 25(9):1316–1325. https://doi.org/10.1177/1352458518790396

    Article  CAS  PubMed  Google Scholar 

  49. Chen R, Xu Y, Wu P et al (2019) Transplantation of fecal microbiota rich in short chain fatty acids and butyric acid treat cerebral ischemic stroke by regulating gut microbiota. Pharmacol Res 148:104403. https://doi.org/10.1016/j.phrs.2019.104403

    Article  CAS  PubMed  Google Scholar 

  50. Sampson TR, Debelius JW, Thron T et al (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167(6):1469-1480.e12. https://doi.org/10.1016/j.cell.2016.11.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Park J, Kim M, Kang SG et al (2015) Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol 8(1):80–93. https://doi.org/10.1038/mi.2014.44

    Article  CAS  PubMed  Google Scholar 

  52. Kong Y, Jiang B, Luo X (2018) Gut microbiota influences Alzheimer’s disease pathogenesis by regulating acetate in Drosophila model. Future Microbiol 13:1117–1128. https://doi.org/10.2217/fmb-2018-0185

    Article  CAS  PubMed  Google Scholar 

  53. Smith MD, Bhatt DP, Geiger JD et al (2014) Acetate supplementation modulates brain adenosine metabolizing enzymes and adenosine A2A receptor levels in rats subjected to neuroinflammation. J Neuroinflammation 11:99. https://doi.org/10.1186/1742-2094-11-99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu J, Li H, Gong T et al (2020) Anti-neuroinflammatory effect of short-chain fatty acid acetate against Alzheimer’s Disease via upregulating GPR41 and Inhibiting ERK/JNK/NF-κB. J Agric Food Chem 68(27):7152–7161. https://doi.org/10.1021/acs.jafc.0c02807

    Article  CAS  PubMed  Google Scholar 

  55. Haghikia A, Jörg S, Duscha A et al (2015) Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity 43(4):817–829. https://doi.org/10.1016/j.immuni.2015.09.007

    Article  CAS  PubMed  Google Scholar 

  56. Duscha A, Gisevius B, Hirschberg S et al (2020) Propionic acid shapes the multiple sclerosis disease course by an immunomodulatory mechanism. Cell 180(6):1067-1080.e16. https://doi.org/10.1016/j.cell.2020.02.035

    Article  CAS  PubMed  Google Scholar 

  57. Cheng Y, Mai Q, Zeng X et al (2019) Propionate relieves pentylenetetrazol-induced seizures, consequent mitochondrial disruption, neuron necrosis and neurological deficits in mice. Biochem Pharmacol. https://doi.org/10.1016/j.bcp.2019.08.009

    Article  PubMed  Google Scholar 

  58. Rane P, Shields J, Heffernan M et al (2012) The histone deacetylase inhibitor, sodium butyrate, alleviates cognitive deficits in pre-motor stage PD. Neuropharmacology 62(7):2409–2412. https://doi.org/10.1016/j.neuropharm.2012.01.026

    Article  CAS  PubMed  Google Scholar 

  59. Keshavarzian A, Green SJ, Engen PA et al (2015) Colonic bacterial composition in Parkinson’s disease. Mov Disord 30(10):1351–1360. https://doi.org/10.1002/mds.26307

    Article  CAS  PubMed  Google Scholar 

  60. St Laurent R, O’Brien LM, Ahmad ST (2013) Sodium butyrate improves locomotor impairment and early mortality in a rotenone-induced Drosophila model of Parkinson’s disease. Neuroscience 246:382–390. https://doi.org/10.1016/j.neuroscience.2013.04.037

    Article  CAS  PubMed  Google Scholar 

  61. Srivastav S, Neupane S, Bhurtel S et al (2019) Probiotics mixture increases butyrate, and subsequently rescues the nigral dopaminergic neurons from MPTP and rotenone-induced neurotoxicity. J Nutr Biochem 69:73–86. https://doi.org/10.1016/j.jnutbio.2019.03.021

    Article  CAS  PubMed  Google Scholar 

  62. Sharma S, Taliyan R, Singh S (2015) Beneficial effects of sodium butyrate in 6-OHDA induced neurotoxicity and behavioral abnormalities: modulation of histone deacetylase activity. Behav Brain Res 291:306–314. https://doi.org/10.1016/j.bbr.2015.05.052

    Article  CAS  PubMed  Google Scholar 

  63. Paiva I, Pinho R, Pavlou MA et al (2017) Sodium butyrate rescues dopaminergic cells from alpha-synuclein-induced transcriptional deregulation and DNA damage. Hum Mol Genet 26(12):2231–2246. https://doi.org/10.1093/hmg/ddx114

    Article  CAS  PubMed  Google Scholar 

  64. Jin H, Kanthasamy A, Harischandra DS et al (2014) Histone hyperacetylation up-regulates protein kinase Cδ in dopaminergic neurons to induce cell death: relevance to epigenetic mechanisms of neurodegeneration in Parkinson disease. J Biol Chem 289(50):34743–34767. https://doi.org/10.1074/jbc.M114.576702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Qiao CM, Sun MF, Jia XB et al (2020) Sodium butyrate exacerbates Parkinson’s disease by aggravating neuroinflammation and colonic inflammation in MPTP-induced mice model. Neurochem Res 45(9):2128–2142. https://doi.org/10.1007/s11064-020-03074-3

    Article  CAS  PubMed  Google Scholar 

  66. Wu X, Chen PS, Dallas S et al (2008) Histone deacetylase inhibitors up-regulate astrocyte GDNF and BDNF gene transcription and protect dopaminergic neurons. Int J Neuropsychopharmacol 11(8):1123–1134. https://doi.org/10.1017/s1461145708009024

    Article  CAS  PubMed  Google Scholar 

  67. Jarrett JT, Berger EP, Lansbury PT Jr (1993) The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry 32(18):4693–4697. https://doi.org/10.1021/bi00069a001

    Article  CAS  PubMed  Google Scholar 

  68. Mroczko B, Groblewska M, Litman-Zawadzka A (2019) The role of protein misfolding and tau oligomers (TauOs) in Alzheimer’s disease (AD). Int J Mol Sci. https://doi.org/10.3390/ijms20194661

    Article  PubMed  PubMed Central  Google Scholar 

  69. Govindarajan N, Agis-Balboa RC, Walter J et al (2011) Sodium butyrate improves memory function in an Alzheimer’s disease mouse model when administered at an advanced stage of disease progression. J Alzheimers Dis 26(1):187–197. https://doi.org/10.3233/jad-2011-110080

    Article  CAS  PubMed  Google Scholar 

  70. Fernando W, Martins IJ, Morici M et al (2020) Sodium butyrate reduces brain amyloid-β levels and improves cognitive memory performance in an Alzheimer’s disease transgenic mouse model at an early disease stage. J Alzheimers Dis 74(1):91–99. https://doi.org/10.3233/jad-190120

    Article  CAS  PubMed  Google Scholar 

  71. Marizzoni M, Cattaneo A, Mirabelli P et al (2020) Short-chain fatty acids and lipopolysaccharide as mediators between gut dysbiosis and amyloid pathology in alzheimer’s disease. J Alzheimers Dis 78(2):683–697. https://doi.org/10.3233/jad-200306

    Article  CAS  PubMed  Google Scholar 

  72. Sun J, Xu J, Yang B et al (2020) Effect of clostridium butyricum against microglia-mediated neuroinflammation in Alzheimer’s disease via regulating gut microbiota and metabolites butyrate. Mol Nutr Food Res. https://doi.org/10.1002/mnfr.201900636

    Article  PubMed  Google Scholar 

  73. Ferrante RJ, Kubilus JK, Lee J et al (2003) Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J Neurosci 23(28):9418–9427. https://doi.org/10.1523/jneurosci.23-28-09418.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Minamiyama M, Katsuno M, Adachi H et al (2004) Sodium butyrate ameliorates phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Hum Mol Genet 13(11):1183–1192. https://doi.org/10.1093/hmg/ddh131

    Article  CAS  PubMed  Google Scholar 

  75. Chou AH, Chen YL, Hu SH et al (2014) Polyglutamine-expanded ataxin-3 impairs long-term depression in Purkinje neurons of SCA3 transgenic mouse by inhibiting HAT and impairing histone acetylation. Brain Res 1583:220–229. https://doi.org/10.1016/j.brainres.2014.08.019

    Article  CAS  PubMed  Google Scholar 

  76. Naia L, Cunha-Oliveira T, Hayden MR et al (2017) Histone deacetylase inhibitors protect against pyruvate dehydrogenase dysfunction in Huntington’s disease. J Neurosci 37(10):2776–2794. https://doi.org/10.1523/jneurosci.2006-14.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ziemka-Nalecz M, Jaworska J, Sypecka J et al (2017) Sodium butyrate, a histone deacetylase inhibitor, exhibits neuroprotective/neurogenic effects in a rat model of neonatal hypoxia-ischemia. Mol Neurobiol 54(7):5300–5318. https://doi.org/10.1007/s12035-016-0049-2

    Article  CAS  PubMed  Google Scholar 

  78. Kim HJ, Rowe M, Ren M et al (2007) Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J Pharmacol Exp Ther 321(3):892–901. https://doi.org/10.1124/jpet.107.120188

    Article  CAS  PubMed  Google Scholar 

  79. Li D, Bai X, Jiang Y et al (2020) Butyrate alleviates PTZ-induced mitochondrial dysfunction, oxidative stress and neuron apoptosis in mice via Keap1/Nrf2/HO-1 pathway. Brain Res Bull 168:25–35. https://doi.org/10.1016/j.brainresbull.2020.12.009

    Article  CAS  PubMed  Google Scholar 

  80. Chen T, Noto D, Hoshino Y et al (2019) Butyrate suppresses demyelination and enhances remyelination. J Neuroinflammation 16(1):165. https://doi.org/10.1186/s12974-019-1552-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li H, Sun J, Wang F et al (2016) Sodium butyrate exerts neuroprotective effects by restoring the blood–brain barrier in traumatic brain injury mice. Brain Res 1642:70–78. https://doi.org/10.1016/j.brainres.2016.03.031

    Article  CAS  PubMed  Google Scholar 

  82. Brustovetsky T, Purl K, Young A et al (2004) Dearth of glutamate transporters contributes to striatal excitotoxicity. Exp Neurol 189(2):222–230. https://doi.org/10.1016/j.expneurol.2004.03.021

    Article  CAS  PubMed  Google Scholar 

  83. Wu DM, Wang S, Wen X et al (2019) Suppression of microRNA-342-3p increases glutamate transporters and prevents dopaminergic neuron loss through activating the Wnt signaling pathway via p21-activated kinase 1 in mice with Parkinson’s disease. J Cell Physiol 234(6):9033–9044. https://doi.org/10.1002/jcp.27577

    Article  CAS  PubMed  Google Scholar 

  84. Johnson J Jr, Pajarillo EAB, Taka E et al (2018) Valproate and sodium butyrate attenuate manganese-decreased locomotor activity and astrocytic glutamate transporters expression in mice. Neurotoxicology 64:230–239. https://doi.org/10.1016/j.neuro.2017.06.007

    Article  CAS  PubMed  Google Scholar 

  85. Ho RH, Chan JCY, Fan H et al (2017) In silico and in vitro interactions between short chain fatty acids and human histone deacetylases. Biochemistry 56(36):4871–4878. https://doi.org/10.1021/acs.biochem.7b00508

    Article  CAS  PubMed  Google Scholar 

  86. Luu M, Pautz S, Kohl V et al (2019) The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. Nat Commun 10(1):760. https://doi.org/10.1038/s41467-019-08711-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ho L, Ono K, Tsuji M et al (2018) Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer’s disease-type beta-amyloid neuropathological mechanisms. Expert Rev Neurother 18(1):83–90. https://doi.org/10.1080/14737175.2018.1400909

    Article  CAS  PubMed  Google Scholar 

  88. Pryde SE, Duncan SH, Hold GL et al (2002) The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 217(2):133–139. https://doi.org/10.1111/j.1574-6968.2002.tb11467.x

    Article  CAS  PubMed  Google Scholar 

  89. Stewart ML, Slavin JL (2006) Molecular weight of guar gum affects short-chain fatty acid profile in model intestinal fermentation. Mol Nutr Food Res 50(10):971–976. https://doi.org/10.1002/mnfr.200600024

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by National Natural Science Foundation of China (82171429).

Author information

Authors and Affiliations

Authors

Contributions

YD contributed to writing and revision of the manuscript. Professor CC provided valuable comments for manuscript revision.

Corresponding author

Correspondence to Chun Cui.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Cui, C. The role of short-chain fatty acids in central nervous system diseases. Mol Cell Biochem 477, 2595–2607 (2022). https://doi.org/10.1007/s11010-022-04471-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04471-8

Keywords

Navigation