Skip to main content

Advertisement

Log in

Pre-treatment and continuous administration of simvastatin during sepsis improve metabolic parameters and prevent CNS injuries in survivor rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Sepsis causes overproduction of inflammatory cytokines, organ dysfunction, and cognitive impairment in survivors. In addition to inflammation, metabolic changes occur according to the stage and severity of the disease. Understanding the role and place of metabolic disturbances in the pathophysiology of sepsis is essential to evaluate the framework of septic patients, predict the syndrome progress, and define the treatment strategies. We investigated the effect of simvastatin on the disease time course and on metabolic alterations, especially with respect to their possible consequences in the CNS of surviving rats. The animals of this study were weighed daily and followed for 10 days to determine the survival rate. In the first experiment, control or cecal ligation and puncture (CLP)-animals were randomized in 24 h, 48 h, and 10 days after septic induction, for bacterial load determination and quantification of cytokines. In the second experiment, control or CLP-animals were treated or not with simvastatin and randomized in the same three time points for cytokines quantification and assessment of their body metabolism and locomotor activity (at 48 h and 10 days), as well as the evaluation of cytoarchitecture and astrogliosis (at 10 days). The CLP-rats treated with simvastatin showed a reduction in plasma cytokines and improvement in metabolic parameters and locomotor activity, followed by minor alterations compatible with apoptosis and astrogliosis in the hippocampus and prefrontal cortex. These results suggest that the anti-inflammatory effect of simvastatin plays a crucial role in restoring energy production, maintaining a hypermetabolic state necessary for the recovery and survival of these CLP-rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  1. Markwart R, Saito H, Harder T et al (2020) Epidemiology and burden of sepsis acquired in hospitals and intensive care units: a systematic review and meta-analysis. Intensive Care Med 46:1536–1551

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fleischmann C, Scherag A, Adhikari NK et al (2016) Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med 193:259–272

    Article  CAS  PubMed  Google Scholar 

  3. Liu V, Escobar GJ, Greene JD et al (2014) Hospital deaths in patients with sepsis from 2 independent cohorts. JAMA 312:90–92

    Article  CAS  PubMed  Google Scholar 

  4. Torio CM, Moore BJ (2016) National inpatient hospital costs: the most expensive conditions by payer, 2013. NIH

  5. Santos-Junior NN, Catalão CHR, Costa LHA et al (2018) Experimental sepsis induces sustained inflammation and acetylcholinesterase activity impairment in the hypothalamus. J Neuroimmunol 324:143–148

    Article  CAS  PubMed  Google Scholar 

  6. Catalão CHR, Santos-Junior NN, da Costa LHA et al (2020) Simvastatin prevents long-term cognitive deficits in sepsis survivor rats by reducing neuroinflammation and neurodegeneration. Neurotox Res 38:871–886

    Article  PubMed  Google Scholar 

  7. Rittirsch D, Huber-Lang MS, Flierl MA, Ward PA (2009) Immunodesign of experimental sepsis by cecal ligation and puncture. Nat Protoc 4:31–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ebong S, Call D, Nemzek J, Bolgos G, Newcomb D, Remick D (1999) Immunopathologic alterations in murine models of sepsis of increasing severity. Infect Immun 67:6603–6610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Englert JA, Rogers AJ (2016) Metabolism, metabolomics, and nutritional support of patients with sepsis. Clin Chest Med 37:321–331

    Article  PubMed  PubMed Central  Google Scholar 

  10. Molloy RG, Mannick JA, Rodrick ML (1993) Cytokines, sepsis and immunomodulation. Br J Surg 80:289–297

    Article  CAS  PubMed  Google Scholar 

  11. Irahara T, Sato N, Otake K et al (2018) Alterations in energy substrate metabolism in mice with different degrees of sepsis. J Surg Res 227:44–51

    Article  CAS  PubMed  Google Scholar 

  12. Speakman JR (2013) Measuring energy metabolism in the mouse—theoretical, practical, and analytical considerations. Front Physiol 4:34

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wasyluk W, Zwolak A (2021) Metabolic alterations in sepsis. J Clin Med 10:2412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Granger JI, Ratti PL, Datta SC, Raymond RM, Opp MR (2013) Sepsis-induced morbidity in mice: effects on body temperature, body weight, cage activity, social behavior and cytokines in brain. Psychoneuroendocrinology 38:1047–1057

    Article  CAS  PubMed  Google Scholar 

  15. Reis PA, Alexandre PC, D’Avila JC et al (2017) Statins prevent cognitive impairment after sepsis by reverting neuroinflammation, and microcirculatory/endothelial dysfunction. Brain Behav Immun 60:293–303

    Article  CAS  PubMed  Google Scholar 

  16. Catalão CHR, Santos-Júnior NN, da Costa LHA, Souza AO, Alberici LC, Rocha MJA (2017) Brain oxidative stress during experimental sepsis is attenuated by simvastatin administration. Mol Neurobiol 54:7008–7018

    Article  PubMed  Google Scholar 

  17. Reis PA, Estato V, da Silva TI et al (2012) Statins decrease neuroinflammation and prevent cognitive impairment after cerebral malaria. PLoS Pathog 8:e1003099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Barone E, Cenini G, Di Domenico F et al (2011) Long-term high-dose atorvastatin decreases brain oxidative and nitrosative stress in a preclinical model of Alzheimer disease: a novel mechanism of action. Pharmacol Res 63:172–180

    Article  CAS  PubMed  Google Scholar 

  19. Greenwood J, Steinman L, Zamvil SS (2006) Statin therapy and autoimmune disease: from protein prenylation to immunomodulation. Nat Rev Immunol 6(5):358–370

    Article  CAS  PubMed  Google Scholar 

  20. Nemzek JA, Xiao HY, Minard AE, Bolgos GL, Remick DG (2004) Humane endpoints in shock research. Shock 21:17–25

    Article  PubMed  Google Scholar 

  21. Santos-Junior NN, Costa LHA, Catalão CHR, Kanashiro A, Sharshar T, Rocha MJA (2017) Impairment of osmotic challenge-induced neurohypophyseal hormones secretion in sepsis survivor rats. Pituitary 20:515–521

    Article  CAS  PubMed  Google Scholar 

  22. Opal SM, Palardy JE, Parejo N, Jasman RL (2003) Effect of anti-CD14 monoclonal antibody on clearance of Escherichia coli bacteremia and endotoxemia. Crit Care Med 31:929–932

    Article  CAS  PubMed  Google Scholar 

  23. Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates. Elsevier Academic, San Diego

    Google Scholar 

  24. Rudd KE, Johnson SC, Agesa KM et al (2020) Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet 395:200–211

    Article  PubMed  PubMed Central  Google Scholar 

  25. Singer M, Deutschman CS, Seymour CW et al (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 315:801–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cohen J, Vincent JL, Adhikari NK et al (2015) Sepsis: a roadmap for future research. Lancet Infect Dis 15:581–614

    Article  PubMed  Google Scholar 

  27. Gonçalves MC, Horewicz VV, Lückemeyer DD, Prudente AS, Assreuy J (2017) Experimental sepsis severity score associated to mortality and bacterial spreading is related to bacterial load and inflammatory profile of different tissues. Inflammation 40:1553–1565

    Article  PubMed  Google Scholar 

  28. Shaver CM, Hauser AR (2004) Relative contributions of Pseudomonas aeruginosa ExoU, ExoS, and ExoT to virulence in the lung. Infect Immun 72:6969–6977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Machado GB, de Assis MC, Leão R et al (2010) ExoU-induced vascular hyperpermeability and platelet activation in the course of experimental Pseudomonas aeruginosa pneumosepsis. Shock 33:315–321

    Article  PubMed  Google Scholar 

  30. Santos-Junior NN, Catalão CH, Costa LH et al (2018) Alterations in hypothalamic synaptophysin and death markers may be associated with vasopressin impairment in sepsis survivor rats. J Neuroendocrinol 1:e12604

    Article  Google Scholar 

  31. Iwashyna TJ, Ely EW, Smith DM, Langa KM (2010) Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA 304(16):1787–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG (2012) Into the eye of the cytokine storm. Microbiol Mol Biol Rev 76:16–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gharamti A, Samara O, Monzon A et al (2021) Association between cytokine levels, sepsis severity and clinical outcomes in sepsis: a quantitative systematic review protocol. BMJ Open 11:e048476

    Article  PubMed  PubMed Central  Google Scholar 

  34. Fajgenbaum DC, June CH (2020) Cytokine storm. N Engl J Med 383:2255–2273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Morel J, Hargreaves I, Brealey D et al (2017) Simvastatin pre-treatment improves survival and mitochondrial function in a 3-day fluid-resuscitated rat model of sepsis. Clin Sci (Lond) 131:747–758

    Article  CAS  Google Scholar 

  36. Bozza FA, Salluh JI, Japiassu AM et al (2007) Cytokine profiles as markers of disease severity in sepsis: a multiplex analysis. Crit Care 11:R49

    Article  PubMed  PubMed Central  Google Scholar 

  37. van den Berg S, Laman JD, Boon L et al (2013) Distinctive cytokines as biomarkers predicting fatal outcome of severe Staphylococcus aureus bacteremia in mice. PLoS ONE 8:e59107

    Article  PubMed  PubMed Central  Google Scholar 

  38. Polito A, Sonneville R, Guidoux C et al (2011) Changes in CRH and ACTH synthesis during experimental and human septic shock. PLoS ONE 6:e25905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mogensen KM, Robinson MK, Casey JD et al (2015) Nutritional status and mortality in the critically ill. Crit Care Med 43:2605–2615

    Article  CAS  PubMed  Google Scholar 

  40. Siegel JH, Cerra FB, Coleman B et al (1979) Physiological and metabolic correlations in human sepsis. Invited commentary. Surgery 86:163–193

    CAS  PubMed  Google Scholar 

  41. Giovannini I, Boldrini G, Castagneto M et al (1983) Respiratory quotient and patterns of substrate utilization in human sepsis and trauma. J Parent Enter Nutr 7:226–230

    Article  CAS  Google Scholar 

  42. Even PC, Nadkarni NA (2012) Indirect calorimetry in laboratory mice and rats: principles, practical considerations, interpretation and perspectives. Am J Physiol Regul Integr Comp Physiol 303:R459-476

    Article  CAS  PubMed  Google Scholar 

  43. Li A, Mukhopadhyay A (2020) Substrate utilization and energy expenditure pattern in sepsis by indirect calorimetry. Crit Care 24:535

    Article  PubMed  PubMed Central  Google Scholar 

  44. Fried RC, Bailey PM, Mullen JL, Stein TP, Crosby LO, Buzby GP (1986) Alterations in exogenous substrate metabolism in sepsis. Arch Surg 121:173–178

    Article  CAS  PubMed  Google Scholar 

  45. Cerra FB, Siegel JH, Coleman B, Border JR, McMenamy RR (1980) Septic autocannibalism. A failure of exogenous nutritional support. Ann Surg 192:570–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Leverve XM (2007) Mitochondrial function and substrate availability. Crit Care Med 35:S454-460

    Article  CAS  PubMed  Google Scholar 

  47. Wagner AH, Köhler T, Rückschloss U, Just I, Hecker M (2000) Improvement of nitric oxide-dependent vasodilatation by HMG-CoA reductase inhibitors through attenuation of endothelial superoxide anion formation. Arterioscler Thromb Vasc Biol 20:61–69

    Article  CAS  PubMed  Google Scholar 

  48. Wassmann S, Laufs U, Bäumer AT et al (2001) Inhibition of geranylgeranylation reduces angiotensin II-mediated free radical production in vascular smooth muscle cells: involvement of angiotensin AT1 receptor expression and Rac1 GTPase. Mol Pharmacol 59:646–654

    Article  CAS  PubMed  Google Scholar 

  49. Liao JK, Laufs U (2005) Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol 45:89–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wischmeyer PE, San-Millan I (2015) Winning the war against ICU-acquired weakness: new innovations in nutrition and exercise physiology. Crit Care 19(Suppl 3):S6

    Article  PubMed  PubMed Central  Google Scholar 

  51. Arabi YM, Aldawood AS, Solaiman O (2015) Permissive underfeeding or standard enteral feeding in critical illness. N Engl J Med 373:1175–1176

    PubMed  Google Scholar 

  52. Jovalekic A, Hayman R, Becares N et al (2011) Horizontal biases in rats’ use of three-dimensional space. Behav Brain Res 222:279–288

    Article  PubMed  PubMed Central  Google Scholar 

  53. Jedidi-Ayoub S, Mishchanchuk K, Liu A, Renaudineau S, Duvelle É, Grieves RM (2021) Volumetric spatial behaviour in rats reveals the anisotropic organisation of navigation. Anim Cogn 24:133–163

    Article  PubMed  Google Scholar 

  54. Barichello T, Generoso JS, Collodel A, Petronilho F, Dal-Pizzol F (2021) The blood–brain barrier dysfunction in sepsis. Tissue Barriers 9:1840912

    Article  PubMed  Google Scholar 

  55. Singer BH, Newstead MW, Zeng X et al (2016) Cecal ligation and puncture results in long-term central nervous system myeloid inflammation. PLoS ONE 11:e0149136

    Article  PubMed  PubMed Central  Google Scholar 

  56. Michels M, Abatti MR, Ávila P et al (2020) Characterization and modulation of microglial phenotypes in an animal model of severe sepsis. J Cell Mol Med 24:88–97

    Article  CAS  PubMed  Google Scholar 

  57. Michels M, Abatti M, Vieira A et al (2020) Modulation of microglial phenotypes improves sepsis-induced hippocampus-dependent cognitive impairments and decreases brain inflammation in an animal model of sepsis. Clin Sci (Lond) 134:765–776

    Article  CAS  Google Scholar 

  58. Tian M, Qingzhen L, Zhiyang Y et al (2019) Attractylone attenuates sepsis-associated encephalopathy and cognitive dysfunction by inhibiting microglial activation and neuroinflammation. J Cell Biochem. https://doi.org/10.1002/jcb.27983

    Article  PubMed  PubMed Central  Google Scholar 

  59. Pan S, Wu Y, Pei L et al (2018) BML-111 Reduces neuroinflammation and cognitive impairment in mice with sepsis via the SIRT1/NF-κB signaling pathway. Front Cell Neurosci 12:267

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zhuo Y, Zhang S, Li C, Yang L, Gao H, Wang X (2018) Resolvin D1 promotes SIRT1 expression to counteract the activation of STAT3 and NF-κB in mice with septic-associated lung injury. Inflammation 41:1762–1771

    Article  CAS  PubMed  Google Scholar 

  61. Arranz AM, De Strooper B (2019) The role of astroglia in Alzheimer’s disease: pathophysiology and clinical implications. Lancet Neurol 18:406–414

    Article  CAS  PubMed  Google Scholar 

  62. Liddelow SA, Guttenplan KA, Clarke LE et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Nadir Fernandes for the technical support and Dr. Klaus Hartfelder for his assistance with English language.

Funding

The study was funded by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP-Grant 2017/12462–0) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES): Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

CHRC and MJAR conceived and designed research, with input from AOS, NNSJ, and LHAC. CHRC, AOS, NNSJ, LHAC, and JRS performed the experiments, analyzed the data, and drafted the parts of the paper. CHRC, LCA, and MJAR wrote the final manuscript and revised statistical analyses. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Carlos Henrique Rocha Catalão.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

The study procedures were performed according to the National Council of Animal Experiment Control (CONCEA) and with approval by the Institutional Animal Care and Use Committee at the School of Dentistry of Ribeirão Preto, University of São Paulo (Protocol Number #2019.1.51.58.6).

Informed consent

All authors meet the qualifications for authorship and had an opportunity to read and comment the manuscript.

Consent for publication

All authors support publication of the manuscript in Molecular and Cellular Biochemistry.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catalão, C.H.R., de Oliveira Souza, A., Santos-Junior, N.N. et al. Pre-treatment and continuous administration of simvastatin during sepsis improve metabolic parameters and prevent CNS injuries in survivor rats. Mol Cell Biochem 477, 2657–2667 (2022). https://doi.org/10.1007/s11010-022-04463-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04463-8

Keywords

Navigation