Skip to main content

Advertisement

Log in

Association of sirtuins (SIRT1-7) with lung and intestinal diseases

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

“Exterior-interior correlation between the lung and large intestine” is one of the important contents of traditional Chinese medicine. This theory describes the role of the lung and the intestine in association with disease treatment. The “lung-gut” axis is a modern extension of the “exterior-interior correlation between lung and large intestine” theory in TCM. Sirtuin (SIRT) is a nicotinamide adenine dinucleotide (NAD+)-dependent enzyme family with deacetylase properties, which is highly conserved from bacteria to humans. The sirtuin defines seven silencing regulatory proteins (SIRT1-7) in human cells. It can regulate aging, metabolism, and certain diseases. Current studies have shown that sirtuins have dual characteristics, acting as both tumor promoters and tumor inhibitors in cancers. This paper provides a comparative summary of the roles of SIRT1-7 in the intestine and lung (both inflammatory diseases and tumors), and the promoter/suppressor effects of targeting SIRT family microRNAs and modulators of inflammation or tumors. Sirtuins have great potential as drug targets for the treatment of intestinal and respiratory diseases. Meanwhile, it may provide new ideas of future drug target research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Wang XZ, Zhao X, Wu HY, Di LQ, Wang SC, Shan JJ (2020) Research progress of “Superficies-Interior Relationship between Lung and Large Intestine.” Mod Tradit Chin Med Materia Med World Sci Technol 22(03):855–860. https://doi.org/10.11842/wst.20190828006

    Article  Google Scholar 

  2. Yin LM, Zhang GQ, Yan XK, Wang Y, Xu YD, Yang YQ (2013) An In Vivo and In Vitro Evaluation of the Mutual Interactions between the Lung and the Large Intestine. Evid Based Complement Altern Med 2013:695641. https://doi.org/10.1155/2013/695641

    Article  Google Scholar 

  3. Ekbom A, Brandt L, Granath F, Löfdahl CG, Egesten A (2008) Increased risk of both ulcerative colitis and Crohn’s disease in a population suffering from COPD. Lung 186(3):167–172. https://doi.org/10.1007/s00408-008-9080-z

    Article  PubMed  Google Scholar 

  4. Tang ZP, Wu JW, Dai YC, Zhang YL, Bi RR (2015) Relationship between ulcerative colitis and lung injuries. Chin Med Sci J 30(2):65–69. https://doi.org/10.1016/s1001-9294(15)30013-4

    Article  CAS  PubMed  Google Scholar 

  5. Wang JY, Wang XY, Wu HY, Sun HY, Liu DM, Zhang W, Jin CX, Wang SR (2016) The association between pulmonary function impairment and colon inflammation in ulcerative colitis patients: a scientific basis for exterior-interior correlation between lung and large intestine. Chin J Integr Med 22(12):894–901. https://doi.org/10.1007/s11655-014-1842-2

    Article  PubMed  Google Scholar 

  6. Shibuya A, Shibuya K (2018) Exploring the gut fungi-lung allergy axis. Cell Host Microbe 24(6):755–757. https://doi.org/10.1016/j.chom.2018.11.012

    Article  CAS  PubMed  Google Scholar 

  7. Lou Z, Zhao H, Lyu G (2020) Mechanism and intervention of mucosal immune regulation based on “lung and large intestine being interior-exteriorly related” theory of traditional Chinese medicine. Zhejiang Da Xue Xue Bao Yi Xue Ban 49(6):665–678. https://doi.org/10.3785/j.issn.1008-9292.2020.12.01

    Article  PubMed  PubMed Central  Google Scholar 

  8. He Y, Wen Q, Yao F, Xu D, Huang Y, Wang J (2017) Gut-lung axis: the microbial contributions and clinical implications. Crit Rev Microbiol 43(1):81–95. https://doi.org/10.1080/1040841X.2016.1176988

    Article  CAS  PubMed  Google Scholar 

  9. Raftery AL, Tsantikos E, Harris NL, Hibbs ML (2020) Links between inflammatory bowel disease and chronic obstructive pulmonary disease. Front Immunol 11:2144. https://doi.org/10.3389/fimmu.2020.02144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Steed AL, Christophi GP, Kaiko GE, Sun L, Goodwin VM, Jain U, Esaulova E, Artyomov MN, Morales DJ, Holtzman MJ, Boon A, Lenschow DJ, Stappenbeck TS (2017) The microbial metabolite desaminotyrosine protects from influenza through type I interferon. Science (New York, NY) 357(6350):498–502. https://doi.org/10.1126/science.aam5336

    Article  CAS  Google Scholar 

  11. Finkel T, Deng CX, Mostoslavsky R (2009) Recent progress in the biology and physiology of sirtuins. Nature 460(7255):587–591. https://doi.org/10.1038/nature08197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang Y, He J, Liao M, Hu M, Li W, Ouyang H, Wang X, Ye T, Zhang Y, Ouyang L (2019) An overview of sirtuins as potential therapeutic target: structure, function and modulators. Eur J Med Chem 161:48–77. https://doi.org/10.1016/j.ejmech.2018.10.028

    Article  CAS  PubMed  Google Scholar 

  13. Bai Y, Yang J, Cui Y, Yao Y, Wu F, Liu C, Fan X, Zhang Y (2021) Research progress of Sirtuin4 in cancer. Front Oncol 10:562950. https://doi.org/10.3389/fonc.2020.562950

    Article  PubMed  PubMed Central  Google Scholar 

  14. Blander G, Guarente L (2004) The Sir2 family of protein deacetylases. Annu Rev Biochem 73:417–435. https://doi.org/10.1146/annurev.biochem.73.011303.073651

    Article  CAS  PubMed  Google Scholar 

  15. Tanno M, Sakamoto J, Miura T, Shimamoto K, Horio Y (2007) Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J Biol Chem 282(9):6823–6832. https://doi.org/10.1074/jbc.M609554200

    Article  CAS  PubMed  Google Scholar 

  16. Wang C, Liu Y, Zhu Y, Kong C (2020) Functions of mammalian SIRT4 in cellular metabolism and research progress in human cancer. Oncol Lett 20(4):11. https://doi.org/10.3892/ol.2020.11872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhao E, Hou J, Ke X, Abbas MN, Kausar S, Zhang L, Cui H (2019) The roles of sirtuin family proteins in cancer progression. Cancers 11(12):1949. https://doi.org/10.3390/cancers11121949

    Article  CAS  PubMed Central  Google Scholar 

  18. Lakhan SE, Kirchgessner A (2011) Gut microbiota and sirtuins in obesity-related inflammation and bowel dysfunction. J Transl Med 9:202. https://doi.org/10.1186/1479-5876-9-202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Barnes PJ, Baker J, Donnelly LE (2019) Cellular senescence as a mechanism and target in chronic lung diseases. Am J Respir Crit Care Med 200(5):556–564. https://doi.org/10.1164/rccm.201810-1975TR

    Article  CAS  PubMed  Google Scholar 

  20. Zhan Y, Yang C, Zhang Q, Yao L (2021) Silent information regulator type-1 mediates amelioration of inflammatory response and oxidative stress in lipopolysaccharide-induced acute respiratory distress syndrome. J Biochem 169(5):613–620. https://doi.org/10.1093/jb/mvaa150

    Article  CAS  PubMed  Google Scholar 

  21. Lim W, Kang C (2020) Avenanthramide C suppresses hypoxia-induced cyclooxygenase-2 expression through sirtuin1 activation in non-small-cell lung cancer cells. Anim Cells Syst 24(2):79–83. https://doi.org/10.1080/19768354.2020.1748108

    Article  Google Scholar 

  22. Wang X, Liu M, Zhu MJ, Shi L, Liu L, Zhao YL, Cheng L, Gu YJ, Zhou MY, Chen L, Kumar A, Wang Y (2020) Resveratrol protects the integrity of alveolar epithelial barrier via SIRT1/PTEN/p-Akt pathway in methamphetamine-induced chronic lung injury. Cell Prolif 53(3):e12773. https://doi.org/10.1111/cpr.12773

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wang QL, Yang L, Peng Y, Gao M, Yang MS, Xing W, Xiao XZ (2019) Ginsenoside Rg1 regulates SIRT1 to ameliorate sepsis-induced lung inflammation and injury via inhibiting endoplasmic reticulum stress and inflammation. Mediators Inflamm 2019:6453296. https://doi.org/10.1155/2019/6453296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lan KC, Chao SC, Wu HY, Chiang CL, Wang CC, Liu SH, Weng TI (2017) Salidroside ameliorates sepsis-induced acute lung injury and mortality via downregulating NF-κB and HMGB1 pathways through the upregulation of SIRT1. Sci Rep 7(1):12026. https://doi.org/10.1038/s41598-017-12285-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Peng XP, Li XH, Li Y, Huang XT, Luo ZQ (2019) The protective effect of oleanolic acid on NMDA-induced MLE-12 cells apoptosis and lung injury in mice by activating SIRT1 and reducing NF-κB acetylation. Int Immunopharmacol 70:520–529. https://doi.org/10.1016/j.intimp.2019.03.018

    Article  CAS  PubMed  Google Scholar 

  26. Thangjam GS, Birmpas C, Barabutis N, Gregory BW, Clemens MA, Newton JR, Fulton D, Catravas JD (2016) Hsp90 inhibition suppresses NF-κB transcriptional activation via Sirt-2 in human lung microvascular endothelial cells. Am J Physiol 310(10):L964–L974. https://doi.org/10.1152/ajplung.00054.2016

    Article  Google Scholar 

  27. Tian YG, Zhang J (2018) Protective effect of SIRT3 on acute lung injury by increasing manganese superoxide dismutase-mediated antioxidation. Mol Med Rep 17(4):5557–5565. https://doi.org/10.3892/mmr.2018.8469

    Article  CAS  PubMed  Google Scholar 

  28. Kurundkar D, Kurundkar AR, Bone NB, Becker EJ Jr, Liu W, Chacko B, Darley-Usmar V, Zmijewski JW, Thannickal VJ (2019) SIRT3 diminishes inflammation and mitigates endotoxin-induced acute lung injury. JCI Insight 4(1):e120722. https://doi.org/10.1172/jci.insight.120722

    Article  PubMed Central  Google Scholar 

  29. Wang J, Cai Y, Sheng Z (2020) Experimental studies on the protective effects of the overexpression of lentivirus-mediated sirtuin 6 on radiation-induced lung injury. Adv Clin Exp Med 29(7):873–877. https://doi.org/10.17219/acem/117685

    Article  PubMed  Google Scholar 

  30. Yao H, Chung S, Hwang JW, Rajendrasozhan S, Sundar IK, Dean DA, McBurney MW, Guarente L, Gu W, Rönty M, Kinnula VL, Rahman I (2012) SIRT1 protects against emphysema via FOXO3-mediated reduction of premature senescence in mice. J Clin Investig 122(6):2032–2045. https://doi.org/10.1172/JCI60132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang S, He N, Xing H, Sun Y, Ding J, Liu L (2020) Function of hesperidin alleviating inflammation and oxidative stress responses in COPD mice might be related to SIRT1/PGC-1α/NF-κB signaling axis. J Recept Signal Transduct Res 40(4):388–394. https://doi.org/10.1080/10799893.2020.1738483

    Article  CAS  PubMed  Google Scholar 

  32. Wang Y, Zhu Y, Xing S, Ma P, Lin D (2015) SIRT5 prevents cigarette smoke extract-induced apoptosis in lung epithelial cells via deacetylation of FOXO3. Cell Stress Chaperones 20(5):805–810. https://doi.org/10.1007/s12192-015-0599-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Takasaka N, Araya J, Hara H et al (2014) Autophagy induction by SIRT6 through attenuation of insulin-like growth factor signaling is involved in the regulation of human bronchial epithelial cell senescence. J Immunol (Baltimore, Md) 192(3):958–968. https://doi.org/10.4049/jimmunol.1302341

    Article  CAS  Google Scholar 

  34. Zhang HX, Li YN, Wang XL, Ye CL, Zhu XY, Li HP, Yang T, Liu YJ (2019) Probucol ameliorates EMT and lung fibrosis through restoration of SIRT3 expression. Pulm Pharmacol Ther 57:101803. https://doi.org/10.1016/j.pupt.2019.101803

    Article  CAS  PubMed  Google Scholar 

  35. Cao K, Lei X, Liu H, Zhao H, Guo J, Chen Y, Xu Y, Cheng Y, Liu C, Cui J, Li B, Cai J, Gao F, Yang Y (2017) Polydatin alleviated radiation-induced lung injury through activation of Sirt3 and inhibition of epithelial-mesenchymal transition. J Cell Mol Med 21(12):3264–3276. https://doi.org/10.1111/jcmm.13230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen P, Tian K, Tu W, Zhang Q, Han L, Zhou X (2019) Sirtuin 6 inhibits MWCNTs-induced epithelial-mesenchymal transition in human bronchial epithelial cells via inactivating TGF-β1/Smad2 signaling pathway. Toxicol Appl Pharmacol 374:1–10. https://doi.org/10.1016/j.taap.2019.04.013

    Article  CAS  PubMed  Google Scholar 

  37. Li X, Jiang Z, Li X, Zhang X (2018) SIRT1 overexpression protects non-small cell lung cancer cells against osteopontin-induced epithelial-mesenchymal transition by suppressing NF-κB signaling. Onco Targets Ther 11:1157–1171. https://doi.org/10.2147/OTT.S137146

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hwang KE, Kim HJ, Song IS, Park C, Jung JW, Park DS, Oh SH, Kim YS, Kim HR (2021) Salinomycin suppresses TGF-β1-induced EMT by down-regulating MMP-2 and MMP-9 via the AMPK/SIRT1 pathway in non-small cell lung cancer. Int J Med Sci 18(3):715–726. https://doi.org/10.7150/ijms.50080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mu N, Lei Y, Wang Y, Wang Y, Duan Q, Ma G, Liu X, Su L (2019) Inhibition of SIRT1/2 upregulates HSPA5 acetylation and induces pro-survival autophagy via ATF4-DDIT4-mTORC1 axis in human lung cancer cells. Apoptosis 24(9–10):798–811. https://doi.org/10.1007/s10495-019-01559-3

    Article  CAS  PubMed  Google Scholar 

  40. Liu L, Yu L, Zeng C, Long H, Duan G, Yin G, Dai X, Lin Z (2020) E3 ubiquitin ligase HRD1 promotes lung tumorigenesis by promoting sirtuin 2 ubiquitination and degradation. Mol Cell Biol 40(7):e00257-e319. https://doi.org/10.1128/MCB.00257-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhu H, Hu Y, Zeng C, Chang L, Ge F, Wang W, Yan F, Zhao Q, Cao J, Ying M, Gu Y, Zheng L, He Q, Yang B (2020) The SIRT2-mediated deacetylation of AKR1C1 is required for suppressing its pro-metastasis function in Non-Small Cell Lung Cancer. Theranostics 10(5):2188–2200. https://doi.org/10.7150/thno.39151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fu L, Dong Q, He J, Wang X, Xing J, Wang E, Qiu X, Li Q (2017) SIRT4 inhibits malignancy progression of NSCLCs, through mitochondrial dynamics mediated by the ERK-Drp1 pathway. Oncogene 36(19):2724–2736. https://doi.org/10.1038/onc.2016.425

    Article  CAS  PubMed  Google Scholar 

  43. Han Z, Liu L, Liu Y, Li S (2014) Sirtuin SIRT6 suppresses cell proliferation through inhibition of Twist1 expression in non-small cell lung cancer. Int J Clin Exp Pathol 7(8):4774–4781

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim EJ, Juhnn YS (2015) Cyclic AMP signaling reduces sirtuin 6 expression in non-small cell lung cancer cells by promoting ubiquitin-proteasomal degradation via inhibition of the Raf-MEK-ERK (Raf/mitogen-activated extracellular signal-regulated kinase/extracellular signal-regulated kinase) pathway. J Biol Chem 290(15):9604–9613. https://doi.org/10.1074/jbc.M114.633198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fang C, Liu Y, Chen L, Luo Y, Cui Y, Zhang N, Liu P, Zhou M, Xie Y (2021) α-Hederin inhibits the growth of lung cancer A549 cells in vitro and in vivo by decreasing SIRT6 dependent glycolysis. Pharm Biol 59(1):11–20. https://doi.org/10.1080/13880209.2020.1862250

    Article  CAS  PubMed  Google Scholar 

  46. Gao CX, Chen B, Xie HK, Han CN, Luo J (2019) Immunohistochemistry and clinical value of sirtuin 2 in non-metastasized non-small cell lung cancer. J Thorac Dis 11(9):3973–3979. https://doi.org/10.21037/jtd.2019.08.102

    Article  PubMed  PubMed Central  Google Scholar 

  47. Luo J, Bao YC, Ji XX, Chen B, Deng QF, Zhou SW (2017) SPOP promotes SIRT2 degradation and suppresses non-small cell lung cancer cell growth. Biochem Biophys Res Commun 483(2):880–884. https://doi.org/10.1016/j.bbrc.2017.01.027

    Article  CAS  PubMed  Google Scholar 

  48. Li H, Feng Z, Wu W, Li J, Zhang J, Xia T (2013) SIRT3 regulates cell proliferation and apoptosis related to energy metabolism in non-small cell lung cancer cells through deacetylation of NMNAT2. Int J Oncol 43(5):1420–1430. https://doi.org/10.3892/ijo.2013.2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lv XB, Liu L, Cheng C, Yu B, Xiong L, Hu K, Tang J, Zeng L, Sang Y (2015) SUN2 exerts tumor suppressor functions by suppressing the Warburg effect in lung cancer. Sci Rep 5:17940. https://doi.org/10.1038/srep17940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lu W, Zuo Y, Feng Y, Zhang M (2014) SIRT5 facilitates cancer cell growth and drug resistance in non-small cell lung cancer. Tumour Biol 35(11):10699–10705. https://doi.org/10.1007/s13277-014-2372-4

    Article  CAS  PubMed  Google Scholar 

  51. Krishnamoorthy V, Vilwanathan R (2020) Silencing sirtuin 6 induces cell cycle arrest and apoptosis in non-small cell lung cancer cell lines. Genomics 112(5):3703–3712. https://doi.org/10.1016/j.ygeno.2020.04.027

    Article  CAS  PubMed  Google Scholar 

  52. Li Z, Huang J, Shen S, Ding Z, Luo Q, Chen Z, Lu S (2018) SIRT6 drives epithelial-to-mesenchymal transition and metastasis in non-small cell lung cancer via snail-dependent transrepression of KLF4. J Exp Clin Cancer Res 37(1):323. https://doi.org/10.1186/s13046-018-0984-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bai L, Lin G, Sun L, Liu Y, Huang X, Cao C, Guo Y, Xie C (2016) Upregulation of SIRT6 predicts poor prognosis and promotes metastasis of non-small cell lung cancer via the ERK1/2/MMP9 pathway. Oncotarget 7(26):40377–40386. https://doi.org/10.18632/oncotarget.9750

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zhao Y, Ye X, Chen R, Gao Q, Zhao D, Ling C, Qian Y, Xu C, Tao M, Xie Y (2020) Sirtuin 7 promotes non-small cell lung cancer progression by facilitating G1/S phase and epithelial-mesenchymal transition and activating AKT and ERK1/2 signaling. Oncol Rep 44(3):959–972. https://doi.org/10.3892/or.2020.7672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Guo R, Li Y, Xue Y, Chen Y, Li J, Deng X, Su J, Liu Y, Sun L (2020) SIRT3 increases cisplatin sensitivity of small-cell lung cancer through apoptosis. Gene 745:144629. https://doi.org/10.1016/j.gene.2020.144629

    Article  CAS  PubMed  Google Scholar 

  56. Wang X, Zeng Q, Li Z, Yang X, Xia W, Chen Z (2019) Adjudin synergizes with paclitaxel and inhibits cell growth and metastasis by regulating the sirtuin 3-Forkhead box O3a axis in human small-cell lung cancer. Thoracic cancer 10(4):642–658. https://doi.org/10.1111/1759-7714.12976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bai M, Lu C, An L, Gao Q, Xie W, Miao F, Chen X, Pan Y, Wang Q (2020) SIRT1 relieves Necrotizing Enterocolitis through inactivation of Hypoxia-inducible factor (HIF)-1a. Cell Cycle (Georgetown, Tex) 19(16):2018–2027. https://doi.org/10.1080/15384101.2020.1788251

    Article  CAS  Google Scholar 

  58. Ren MT, Gu ML, Zhou XX, Yu MS, Pan HH, Ji F, Ding CY (2019) Sirtuin 1 alleviates endoplasmic reticulum stress-mediated apoptosis of intestinal epithelial cells in ulcerative colitis. World J Gastroenterol 25(38):5800–5813. https://doi.org/10.3748/wjg.v25.i38.5800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fu G, Chen S, Liang L, Li X, Tang P, Rao X, Pan M, Xu X, Li Y, Yao Y, Zhou Y, Gao J, Mo S, Cai S, Peng J, Zhang Z, Clevers H, Gao J, Hua G (2021) SIRT1 inhibitors mitigate radiation-induced GI syndrome by enhancing intestinal-stem-cell survival. Cancer Lett 501:20–30. https://doi.org/10.1016/j.canlet.2020.12.034

    Article  CAS  PubMed  Google Scholar 

  60. Lo Sasso G, Menzies KJ, Mottis A, Piersigilli A, Perino A, Yamamoto H, Schoonjans K, Auwerx J (2014) SIRT2 deficiency modulates macrophage polarization and susceptibility to experimental colitis. PLoS ONE 9(7):e103573. https://doi.org/10.1371/journal.pone.0103573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li C, Zhou Y, Rychahou P, Weiss HL, Lee EY, Perry CL, Barrett TA, Wang Q, Evers BM (2020) SIRT2 contributes to the regulation of intestinal cell proliferation and differentiation. Cell Mol Gastroenterol Hepatol 10(1):43–57. https://doi.org/10.1016/j.jcmgh.2020.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang Y, Wang XL, Zhou M, Kang C, Lang HD, Chen MT, Hui SC, Wang B, Mi MT (2018) Crosstalk between gut microbiota and sirtuin-3 in colonic inflammation and tumorigenesis. Exp Mol Med 50(4):1–11. https://doi.org/10.1038/s12276-017-0002-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang F, Wang K, Xu W, Zhao S, Ye D, Wang Y, Xu Y, Zhou L, Chu Y, Zhang C, Qin X, Yang P, Yu H (2017) SIRT5 desuccinylates and activates pyruvate kinase M2 to block macrophage IL-1β production and to prevent DSS-induced colitis in mice. Cell Rep 19(11):2331–2344. https://doi.org/10.1016/j.celrep.2017.05.065

    Article  CAS  PubMed  Google Scholar 

  64. Xu K, Guo Y, Ping L, Qiu Y, Liu Q, Li Z, Wang Z (2020) Protective effects of SIRT6 overexpression against DSS-induced colitis in mice. Cells 9(6):1513. https://doi.org/10.3390/cells9061513

    Article  CAS  PubMed Central  Google Scholar 

  65. Liu X, Li C, Li Q, Chang HC, Tang YC (2020) SIRT7 Facilitates CENP-a nucleosome assembly and suppresses intestinal tumorigenesis. iScience 23(9):101461. https://doi.org/10.1016/j.isci.2020.101461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kabra N, Li Z, Chen L, Li B, Zhang X, Wang C, Yeatman T, Coppola D, Chen J (2009) SirT1 is an inhibitor of proliferation and tumor formation in colon cancer. J Biol Chem 284(27):18210–18217. https://doi.org/10.1074/jbc.M109.000034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Li C, Zhou Y, Kim JT, Sengoku T, Alstott MC, Weiss HL, Wang Q, Evers BM (2021) Regulation of SIRT2 by Wnt/β-catenin signaling pathway in colorectal cancer cells. Biochim Biophys Acta 1868(4):118966. https://doi.org/10.1016/j.bbamcr.2021.118966

    Article  CAS  Google Scholar 

  68. Wang Y, Sun X, Ji K, Du L, Xu C, He N, Wang J, Liu Y, Liu Q (2018) Sirt3-mediated mitochondrial fission regulates the colorectal cancer stress response by modulating the Akt/PTEN signalling pathway. Biomed Pharmacother 105:1172–1182. https://doi.org/10.1016/j.biopha.2018.06.071

    Article  CAS  PubMed  Google Scholar 

  69. Khodaei F, Hosseini SM, Omidi M, Hosseini SF, Rezaei M (2021) Cytotoxicity of metformin against HT29 colon cancer cells contributes to mitochondrial Sirt3 upregulation. J Biochem Mol Toxicol 35(3):e22662. https://doi.org/10.1002/jbt.22662

    Article  CAS  PubMed  Google Scholar 

  70. Wang Q, Ye S, Chen X, Xu P, Li K, Zeng S, Huang M, Gao W, Chen J, Zhang Q, Zhong Z, Liu Q (2019) Mitochondrial NOS1 suppresses apoptosis in colon cancer cells through increasing SIRT3 activity. Biochem Biophys Res Commun 515(4):517–523. https://doi.org/10.1016/j.bbrc.2019.05.114

    Article  CAS  PubMed  Google Scholar 

  71. Miyo M, Yamamoto H, Konno M, Colvin H, Nishida N, Koseki J, Kawamoto K, Ogawa H, Hamabe A, Uemura M, Nishimura J, Hata T, Takemasa I, Mizushima T, Doki Y, Mori M, Ishii H (2015) Tumour-suppressive function of SIRT4 in human colorectal cancer. Br J Cancer 113(3):492–499. https://doi.org/10.1038/bjc.2015.226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mohr AM, Mott JL (2015) Overview of microRNA biology. Semin Liver Dis 35(1):3–11. https://doi.org/10.1055/s-0034-1397344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Iorio MV, Croce CM (2012) MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 4(3):143–159. https://doi.org/10.1002/emmm.201100209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhu Y, Wang G, Li X, Wang T, Weng M, Zhang Y (2018) Knockout of SIRT4 decreases chemosensitivity to 5-FU in colorectal cancer cells. Oncol Lett 16(2):1675–1681. https://doi.org/10.3892/ol.2018.8850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ren M, Yang X, Bie J, Wang Z, Liu M, Li Y, Shao G, Luo J (2020) Citrate synthase desuccinylation by SIRT5 promotes colon cancer cell proliferation and migration. Biol Chem 401(9):1031–1039. https://doi.org/10.1515/hsz-2020-0118

    Article  CAS  PubMed  Google Scholar 

  76. Shi L, Yan H, An S, Shen M, Jia W, Zhang R, Zhao L, Huang G, Liu J (2019) SIRT5-mediated deacetylation of LDHB promotes autophagy and tumorigenesis in colorectal cancer. Mol Oncol 13(2):358–375. https://doi.org/10.1002/1878-0261.12408

    Article  CAS  PubMed  Google Scholar 

  77. Karbasforooshan H, Roohbakhsh A, Karimi G (2018) SIRT1 and microRNAs: the role in breast, lung and prostate cancers. Exp Cell Res 367(1):1–6. https://doi.org/10.1016/j.yexcr.2018.03.023

    Article  CAS  PubMed  Google Scholar 

  78. Yi G, He Z, Zhou X, Xian L, Yuan T, Jia X, Hong J, He L, Liu J (2013) Low concentration of metformin induces a p53-dependent senescence in hepatoma cells via activation of the AMPK pathway. Int J Oncol 43(5):1503–1510. https://doi.org/10.3892/ijo.2013.2077

    Article  CAS  PubMed  Google Scholar 

  79. Fu M, Liu M, Sauve AA, Jiao X, Zhang X, Wu X, Powell MJ, Yang T, Gu W, Avantaggiati ML, Pattabiraman N, Pestell TG, Wang F, Quong AA, Wang C, Pestell RG (2006) Hormonal control of androgen receptor function through SIRT1. Mol Cell Biol 26(21):8122–8135. https://doi.org/10.1128/MCB.00289-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wu KL, Tsai YM, Lien CT, Kuo PL, Hung AJ (2019) The roles of MicroRNA in lung cancer. Int J Mol Sci 20(7):1611. https://doi.org/10.3390/ijms20071611

    Article  CAS  PubMed Central  Google Scholar 

  81. Wang H (2020) MicroRNAs and apoptosis in colorectal cancer. Int J Mol Sci 21(15):5353. https://doi.org/10.3390/ijms2115535320

    Article  CAS  PubMed Central  Google Scholar 

  82. James JP, Riis LB, Malham M, Høgdall E, Langholz E, Nielsen BS (2020) MicroRNA biomarkers in IBD-differential diagnosis and prediction of colitis-associated cancer. Int J Mol Sci 21(21):7893. https://doi.org/10.3390/ijms21217893

    Article  CAS  PubMed Central  Google Scholar 

  83. Tian J, Yuan L (2018) Sirtuin 6 inhibits colon cancer progression by modulating PTEN/AKT signaling. Biomed Pharmacother 106:109–116. https://doi.org/10.1016/j.biopha.2018.06.070

    Article  CAS  PubMed  Google Scholar 

  84. Liu W, Wu M, Du H, Shi X, Zhang T, Li J (2018) SIRT6 inhibits colorectal cancer stem cell proliferation by targeting CDC25A. Oncol Lett 15(4):5368–5374. https://doi.org/10.3892/ol.2018.7989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Deng Z, Wang X, Long X, Liu W, Xiang C, Bao F, Wang D (2018) Sirtuin 7 promotes colorectal carcinoma proliferation and invasion through the inhibition of E-cadherin. Exp Ther Med 15(3):2333–2342. https://doi.org/10.3892/etm.2017.5673

    Article  CAS  PubMed  Google Scholar 

  86. Yang Y, Li L (2021) Depleting microRNA-146a-3p attenuates lipopolysaccharide-induced acute lung injury via up-regulating SIRT1 and mediating NF-κB pathway. J Drug Target 29(4):420–429. https://doi.org/10.1080/1061186X.2020.1850738

    Article  CAS  PubMed  Google Scholar 

  87. Yang F, Yan J, Lu Y, Wang D, Liu L, Wang Z (2021) MicroRNA-499-5p targets SIRT1 to aggravate lipopolysaccharide-induced acute lung injury. Free Radic Res 55(1):71–82. https://doi.org/10.1080/10715762.2020.1863393

    Article  CAS  PubMed  Google Scholar 

  88. Yan J, Yang F, Wang D, Lu Y, Liu L, Wang Z (2021) MicroRNA-217 modulates inflammation, oxidative stress, and lung injury in septic mice via SIRT1. Free Radic Res 55(1):1–10. https://doi.org/10.1080/10715762.2020.1852234

    Article  CAS  PubMed  Google Scholar 

  89. Chen S, Ding R, Hu Z, Yin X, Xiao F, Zhang W, Yan S, Lv C (2020) MicroRNA-34a inhibition alleviates lung injury in cecal ligation and puncture induced septic mice. Front Immunol 11:1829. https://doi.org/10.3389/fimmu.2020.01829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wu Y, Jiang W, Lu Z, Su W, Liu N, Guo F (2020) miR-138-5p targets sirtuin1 to regulate acute lung injury by regulation of the NF-κB signaling pathway. Can J Physiol Pharmacol 98(8):522–530. https://doi.org/10.1139/cjpp-2019-0559

    Article  CAS  PubMed  Google Scholar 

  91. Tuerdi B, Zuo L, Ma Y, Wang K (2018) Downregulation of miR-155 attenuates sepsis-induced acute lung injury by targeting SIRT1. Int J Clin Exp Pathol 11(9):4483–4492

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang HL, Wang HR, Liang Y, Hu AN, Enguita FJ, Zhou XG, Dong J (2020) Hsa_circ_0006571 promotes spinal metastasis through sponging microRNA-138 to regulate sirtuin 1 expression in lung adenocarcinoma. Transl Lung Cancer Res 9(6):2411–2427. https://doi.org/10.21037/tlcr-20-1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lin Z, Pan J, Chen L, Wang X, Chen Y (2020) MiR-140 resensitizes cisplatin-resistant NSCLC cells to cisplatin treatment through the SIRT1/ROS/JNK pathway. Onco Targets Ther 13:8149–8160. https://doi.org/10.2147/OTT.S261799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang Z, Nong L, Chen ML, Gu XL, Zhao WW, Liu MH, Cheng WW (2020) Long noncoding RNA SNHG10 sponges miR-543 to upregulate tumor suppressive SIRT1 in nonsmall cell lung cancer. Cancer Biother Radiopharm 35(10):771–775. https://doi.org/10.1089/cbr.2019.3334

    Article  CAS  PubMed  Google Scholar 

  95. Qi H, Wang H, Pang D (2019) miR-448 promotes progression of non-small-cell lung cancer via targeting SIRT1. Exp Ther Med 18(3):1907–1913. https://doi.org/10.3892/etm.2019.7738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yao Y, Hua Q, Zhou Y, Shen H (2019) CircRNA has_circ_0001946 promotes cell growth in lung adenocarcinoma by regulating miR-135a-5p/SIRT1 axis and activating Wnt/β-catenin signaling pathway. Biomed Pharmacother 111:1367–1375. https://doi.org/10.1016/j.biopha.2018.12.120

    Article  CAS  PubMed  Google Scholar 

  97. Ye Z, Fang B, Pan J, Zhang N, Huang J, Xie C, Lou T, Cao Z (2017) miR-138 suppresses the proliferation, metastasis and autophagy of non-small cell lung cancer by targeting Sirt1. Oncol Rep 37(6):3244–3252. https://doi.org/10.3892/or.2017.5619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Xu G, Cai J, Wang L, Jiang L, Huang J, Hu R, Ding F (2018) MicroRNA-30e-5p suppresses non-small cell lung cancer tumorigenesis by regulating USP22-mediated Sirt1/JAK/STAT3 signaling. Exp Cell Res 362(2):268–278. https://doi.org/10.1016/j.yexcr.2017.11.027

    Article  CAS  PubMed  Google Scholar 

  99. Cai Y, Sheng Z, Chen Y, Wang J (2019) LncRNA HMMR-AS1 promotes proliferation and metastasis of lung adenocarcinoma by regulating MiR-138/sirt6 axis. Aging 11(10):3041–3054. https://doi.org/10.18632/aging.101958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jiang K, Shen M, Chen Y, Xu W (2018) miR-150 promotes the proliferation and migration of non-small cell lung cancer cells by regulating the SIRT2/JMJD2A signaling pathway. Oncol Rep 40(2):943–951. https://doi.org/10.3892/or.2018.6487

    Article  CAS  PubMed  Google Scholar 

  101. Ruan L, Chen J, Ruan L, Tan A, Wang P (2018) miR-34a inhibits tumorigenesis of NSCLC via targeting SIRT6. Int J Clin Exp Pathol 11(3):1135–1145

    PubMed  PubMed Central  Google Scholar 

  102. Ruan L, Chen J, Ruan L, Yang T, Wang P (2018) MicroRNA-186 suppresses lung cancer progression by targeting SIRT6. Cancer Biomark 21(2):415–423. https://doi.org/10.3233/CBM-170650

    Article  CAS  PubMed  Google Scholar 

  103. Sun C, Zeng X, Guo H, Wang T, Wei L, Zhang Y, Zhao J, Ma X, Zhang N (2020) MicroRNA-125a-5p modulates radioresistance in LTEP-a2 non-small cell lung cancer cells by targeting SIRT7. Cancer Biomark 27(1):39–49. https://doi.org/10.3233/CBM-190381

    Article  CAS  PubMed  Google Scholar 

  104. Shi H, Ji Y, Zhang D, Liu Y, Fang P (2016) MicroRNA-3666-induced suppression of SIRT7 inhibits the growth of non-small cell lung cancer cells. Oncol Rep 36(5):3051–3057. https://doi.org/10.3892/or.2016.5063

    Article  CAS  PubMed  Google Scholar 

  105. Hu C, Zou Y, Jing LL (2020) miR-140-3p inhibits progression of non-small cell lung cancer by targeting Janus kinase 1. J Biosci 45:48

    Article  CAS  PubMed  Google Scholar 

  106. Xiong Y, Shi L, Wang L, Zhou Z, Wang C, Lin Y, Luo D, Qiu J, Chen D (2017) Activation of sirtuin 1 by catalpol-induced down-regulation of microRNA-132 attenuates endoplasmic reticulum stress in colitis. Pharmacol Res 123:73–82. https://doi.org/10.1016/j.phrs.2017.05.030

    Article  CAS  PubMed  Google Scholar 

  107. Yuan T, Zhang L, Yao S, Deng SY, Liu JQ (2020) miR-195 promotes LPS-mediated intestinal epithelial cell apoptosis via targeting SIRT1/eIF2a. Int J Mol Med 45(2):510–518. https://doi.org/10.3892/ijmm.2019.4431

    Article  CAS  PubMed  Google Scholar 

  108. Hu Y, Mao Z, Xu L, Yin L, Tao X, Tang Z, Qi Y, Sun P, Peng J (2018) Protective effect of dioscin against intestinal ischemia/reperfusion injury via adjusting miR-351-5p-mediated oxidative stress. Pharmacol Res 137:56–63. https://doi.org/10.1016/j.phrs.2018.09.016

    Article  CAS  PubMed  Google Scholar 

  109. Liu F, Wang X, Geng H, Bu HF, Wang P, De Plaen IG, Yang H, Qian J, Tan XD (2020) Interferon-γ inhibits sirtuin 6 gene expression in intestinal epithelial cells through a microRNA-92b-dependent mechanism. Am J Physiol Cell Physiol 318(4):C732–C739. https://doi.org/10.1152/ajpcell.00335.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wu Q, Shi M, Meng W, Wang Y, Hui P, Ma J (2019) Long noncoding RNA FOXD3-AS1 promotes colon adenocarcinoma progression and functions as a competing endogenous RNA to regulate SIRT1 by sponging miR-135a-5p. J Cell Physiol 234(12):21889–21902. https://doi.org/10.1002/jcp.28752

    Article  CAS  PubMed  Google Scholar 

  111. Luo Y, Chen JJ, Lv Q, Qin J, Huang YZ, Yu MH, Zhong M (2019) Long non-coding RNA NEAT1 promotes colorectal cancer progression by competitively binding miR-34a with SIRT1 and enhancing the Wnt/β-catenin signaling pathway. Cancer Lett 440–441:11–22. https://doi.org/10.1016/j.canlet.2018.10.002

    Article  CAS  PubMed  Google Scholar 

  112. Shen ZL, Wang B, Jiang KW, Ye CX, Cheng C, Yan YC, Zhang JZ, Yang Y, Gao ZD, Ye YJ, Wang S (2016) Downregulation of miR-199b is associated with distant metastasis in colorectal cancer via activation of SIRT1 and inhibition of CREB/KISS1 signaling. Oncotarget 7(23):35092–35105. https://doi.org/10.18632/oncotarget.9042

    Article  PubMed  PubMed Central  Google Scholar 

  113. Lian B, Yang D, Liu Y, Shi G, Li J, Yan X, Jin K, Liu X, Zhao J, Shang W, Zhang R (2018) miR-128 targets the SIRT1/ROS/DR5 pathway to sensitize colorectal cancer to TRAIL-induced apoptosis. Cell Physiol Biochem 49(6):2151–2162. https://doi.org/10.1159/000493818

    Article  CAS  PubMed  Google Scholar 

  114. Zhang HG, Wang FJ, Wang Y, Zhao ZX, Qiao PF (2021) lncRNA GAS5 inhibits malignant progression by regulating macroautophagy and forms a negative feedback regulatory loop with the miR-34a/mTOR/SIRT1 pathway in colorectal cancer. Oncol Rep 45(1):202–216. https://doi.org/10.3892/or.2020.7825

    Article  CAS  PubMed  Google Scholar 

  115. Du F, Li Z, Zhang G, Shaoyan S, Geng D, Tao Z, Qiu K, Liu S, Zhou Y, Zhang Y, Gu J, Wang G, Li L, Wu W (2020) SIRT2, a direct target of miR-212-5p, suppresses the proliferation and metastasis of colorectal cancer cells. J Cell Mol Med 24(17):9985–9998. https://doi.org/10.1111/jcmm.15603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Li N, Mao D, Cao Y, Li H, Ren F, Li K (2018) Downregulation of SIRT6 by miR-34c-5p is associated with poor prognosis and promotes colon cancer proliferation through inhibiting apoptosis via the JAK2/STAT3 signaling pathway. Int J Oncol 52(5):1515–1527. https://doi.org/10.3892/ijo.2018.4304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Newman DJ, Cragg GM (2020) Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 83(3):770–803. https://doi.org/10.1021/acs.jnatprod.9b01285

    Article  CAS  PubMed  Google Scholar 

  118. Karaman Mayack B, Sippl W, Ntie-Kang F (2020) Natural Products as Modulators of Sirtuins. Molecules (Basel, Switzerland) 25(14):3287. https://doi.org/10.3390/molecules25143287

    Article  CAS  Google Scholar 

  119. Sawda C, Moussa C, Turner RS (2017) Resveratrol for Alzheimer’s disease. Ann N Y Acad Sci 1403(1):142–149. https://doi.org/10.1111/nyas.13431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Li J, Liu L, Zhou X, Lu X, Liu X, Li G, Long J (2020) Melatonin attenuates sepsis-induced acute lung injury through improvement of epithelial sodium channel-mediated alveolar fluid clearance via activation of SIRT1/SGK1/Nedd4-2 signaling pathway. Front Pharmacol 11:590652. https://doi.org/10.3389/fphar.2020.590652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang Y, Su NX, Pan SG, Ge XP, Dai XP (2020) Fengbaisan suppresses endoplasmic reticulum stress by up-regulating SIRT1 expression to protect rats with chronic obstructive pulmonary diseases. Pharm Biol 58(1):878–885. https://doi.org/10.1080/13880209.2020.1806335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Jiao P, Li W, Shen L, Li Y, Yu L, Liu Z (2020) The protective effect of doxofylline against lipopolysaccharides (LPS)-induced activation of NLRP3 inflammasome is mediated by SIRT1 in human pulmonary bronchial epithelial cells. Artif Cells Nanomed Biotechnol 48(1):687–694. https://doi.org/10.1080/21691401.2020.1730391

    Article  CAS  PubMed  Google Scholar 

  123. Lei J, Shen Y, Xv G, Di Z, Li Y, Li G (2020) Aloin suppresses lipopolysaccharide-induced acute lung injury by inhibiting NLRP3/NF-κB via activation of SIRT1 in mice. Immunopharmacol Immunotoxicol 42(4):306–313. https://doi.org/10.1080/08923973.2020.1765373

    Article  CAS  PubMed  Google Scholar 

  124. Liu X, Jin X, Yu D, Liu G (2019) Suppression of NLRP3 and NF-κB signaling pathways by α-Cyperone via activating SIRT1 contributes to attenuation of LPS-induced acute lung injury in mice. Int Immunopharmacol 76:105886. https://doi.org/10.1016/j.intimp.2019.105886

    Article  CAS  PubMed  Google Scholar 

  125. Chen L, Li W, Qi D, Lu L, Zhang Z, Wang D (2018) Honokiol protects pulmonary microvascular endothelial barrier against lipopolysaccharide-induced ARDS partially via the Sirt3/AMPK signaling axis. Life Sci 210:86–95. https://doi.org/10.1016/j.lfs.2018.08.064

    Article  CAS  PubMed  Google Scholar 

  126. Li X, Jamal M, Guo P, Jin Z, Zheng F, Song X, Zhan J, Wu H (2019) Irisin alleviates pulmonary epithelial barrier dysfunction in sepsis-induced acute lung injury via activation of AMPK/SIRT1 pathways. Biomed Pharmacother 118:109363. https://doi.org/10.1016/j.biopha.2019.109363

    Article  CAS  PubMed  Google Scholar 

  127. Liu S, Shen H, Li J, Gong Y, Bao H, Zhang J, Hu L, Wang Z, Gong J (2020) Loganin inhibits macrophage M1 polarization and modulates sirt1/NF-κB signaling pathway to attenuate ulcerative colitis. Bioengineered 11(1):628–639. https://doi.org/10.1080/21655979.2020.1774992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ma F, Hao H, Gao X, Cai Y, Zhou J, Liang P, Lv J, He Q, Shi C, Hu D, Chen B, Zhu L, Xiao X, Li S (2020) Melatonin ameliorates necrotizing enterocolitis by preventing Th17/Treg imbalance through activation of the AMPK/SIRT1 pathway. Theranostics 10(17):7730–7746. https://doi.org/10.7150/thno.45862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Li H, Shen L, Lv T, Wang R, Zhang N, Peng H, Diao W (2019) Salidroside attenuates dextran sulfate sodium-induced colitis in mice via SIRT1/FoxOs signaling pathway. Eur J Pharmacol 861:172591. https://doi.org/10.1016/j.ejphar.2019.172591

    Article  CAS  PubMed  Google Scholar 

  130. Sun H, Cai H, Fu Y, Wang Q, Ji K, Du L, Xu C, Tian L, He N, Wang J, Zhang M, Liu Y, Wang Y, Li J, Liu Q (2020) The protection effect of resveratrol against radiation-induced inflammatory bowel disease via NLRP-3 inflammasome repression in mice. Dose Response 18(2):1559325820931292. https://doi.org/10.1177/1559325820931292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Jeong SM, Haigis MC (2015) Sirtuins in cancer: a balancing act between genome stability and metabolism. Mol Cells 38(9):750–758. https://doi.org/10.14348/molcells.2015.0167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kupis W, Pałyga J, Tomal E, Niewiadomska E (2016) The role of sirtuins in cellular homeostasis. J Physiol Biochem 72(3):371–380. https://doi.org/10.1007/s13105-016-0492-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chen X, Sun K, Jiao S, Cai N, Zhao X, Zou H, Xie Y, Wang Z, Zhong M, Wei L (2014) High levels of SIRT1 expression enhance tumorigenesis and associate with a poor prognosis of colorectal carcinoma patients. Sci Rep 4:7481. https://doi.org/10.1038/srep07481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zu G, Ji A, Zhou T, Che N (2016) Clinicopathological significance of SIRT1 expression in colorectal cancer: a systematic review and meta analysis. Int J Surg 26:32–37. https://doi.org/10.1016/j.ijsu.2016.01.002

    Article  PubMed  Google Scholar 

  135. Yu DF, Jiang SJ, Pan ZP, Cheng WD, Zhang WJ, Yao XK, Li YC, Lun YZ (2016) Expression and clinical significance of Sirt1 in colorectal cancer. Oncol Lett 11(2):1167–1172. https://doi.org/10.3892/ol.2015.3982

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was financially supported by National Natural Science Foundation of China (Grant Nos. U1903122, 81872768), Liaoning Revitalization Talents Program (XLYC1807118), Shenyang Young Scientific and Technological Innovators Program (RC200408), The Fund of State Key Laboratory of Phytochemistry and Plant Resources in West China (P2020-KF01), State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University) (CMEMR2021-B01), Educational Committee Foundation of Liaoning Province (2020LJC09), Doctoral Scientific Research Foundation of Liaoning Province (2020-BS-129) and Special Fund of Research Institute of Drug Regulatory Science Research Shenyang Pharmaceutical University (2021jgkx010).

Author information

Authors and Affiliations

Authors

Contributions

YC performed the literature search and wrote the manuscript. GC and NL conceived and designed the review. YC helped consult new references and revise the manuscript. DZ, YF, and BL critically reviewed the manuscript. All authors approved the final manuscript for publication.

Corresponding authors

Correspondence to Yong Cui, Gang Chen or Ning Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All the authors have approved the submission and publication of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhou, D., Feng, Y. et al. Association of sirtuins (SIRT1-7) with lung and intestinal diseases. Mol Cell Biochem 477, 2539–2552 (2022). https://doi.org/10.1007/s11010-022-04462-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04462-9

Keywords

Navigation