Skip to main content
Log in

Nuclear receptor subfamily 3 group c member 2 (NR3C2) is downregulated due to hypermethylation and plays a tumor-suppressive role in colon cancer

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Nuclear receptor subfamily 3 group c member 2 (NR3C2) has been reported to function as a tumor suppressor in several tumors. However, the clinical significance and potential action mechanisms of NR3C2 in colon cancer (COAD) remain unclear. NR3C2 expression and its correlation with clinicopathological features in COAD were analyzed based on the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Receiver operating characteristic (ROC) curves and Human Protein Atlas (HPA) database were used to evaluate the diagnostic and prognostic values of NR3C2 in COAD. Immune infiltration and DNA methylation analyses were performed by Gene Set Cancer Analysis (GSCA) database. NR3C2-correlated genes were identified by UALCAN database and subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathway analyses. Cell apoptosis and proliferation were evaluated using TUNEL and CCK-8 assays, respectively. NR3C2 was downregulated in COAD based on TCGA and GEO databases, which may be due to promoter hypermethylation. NR3C2 expression was correlated with prognosis and immune infiltration of COAD. High NR3C2 expression displayed good diagnostic value in COAD. KEGG pathway analysis presented that NR3C2-correlated genes were mainly clustered in choline metabolism in cancer and apoptosis. In vitro experiments confirmed that NR3C2 overexpression induced apoptosis and suppressed proliferation in COAD cells. In conclusion, our study revealed the potential prognostic and diagnostic values of NR3C2 and provided insights into understanding the tumor-suppressive role of NR3C2 in COAD progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Cao W, Chen HD, Yu YW, Li N, Chen WQ (2021) Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chin Med J 134(7):783–791

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249

    Article  PubMed  Google Scholar 

  3. Moghaddam AA, Woodward M, Huxley R (2007) Obesity and risk of colorectal cancer: a meta-analysis of 31 studies with 70,000 events. Cancer Epidemiol Biomarkers Prev 16(12):2533–2547

    Article  PubMed  Google Scholar 

  4. Klaver CEL, Wisselink DD, Punt CJA, Snaebjornsson P, Crezee J, Aalbers AGJ et al (2019) Adjuvant hyperthermic intraperitoneal chemotherapy in patients with locally advanced colon cancer (COLOPEC): a multicentre, open-label, randomised trial. Lancet Gastroenterol Hepatol 4(10):761–770

    Article  PubMed  Google Scholar 

  5. Issa IA, Noureddine M (2017) Colorectal cancer screening: an updated review of the available options. World J Gastroenterol 23(28):5086–5096

    Article  PubMed  PubMed Central  Google Scholar 

  6. Meyerhardt JA, Mayer RJ (2005) Systemic therapy for colorectal cancer. N Engl J Med 352(5):476–487

    Article  CAS  PubMed  Google Scholar 

  7. Horisberger JD, Rossier BC (1992) Aldosterone regulation of gene transcription leading to control of ion transport. Hypertension 19(3):221–227

    Article  CAS  PubMed  Google Scholar 

  8. Zhang Z, Che X, Yang N, Bai Z, Wu Y, Zhao L et al (2017) miR-135b-5p Promotes migration, invasion and EMT of pancreatic cancer cells by targeting NR3C2. Biomed Pharmacother 96:1341–1348

    Article  CAS  PubMed  Google Scholar 

  9. Guo JY, Wang YK, Lv B, Jin H (2020) miR-454 performs tumor-promoting effects in oral squamous cell carcinoma via reducing NR3C2. J Oral Pathol Med 49(4):286–293

    Article  CAS  PubMed  Google Scholar 

  10. Zhao Z, Zhang M, Duan X, Deng T, Qiu H, Zeng G (2018) Low NR3C2 levels correlate with aggressive features and poor prognosis in non-distant metastatic clear-cell renal cell carcinoma. J Cell Physiol 233(10):6825–6838

    Article  CAS  PubMed  Google Scholar 

  11. Yang S, He P, Wang J, Schetter A, Tang W, Funamizu N et al (2016) A novel MIF signaling pathway drives the malignant character of pancreatic cancer by targeting NR3C2. Cancer Res 76(13):3838–3850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yu M, Yu HL, Li QH, Zhang L, Chen YX (2019) miR-4709 overexpression facilitates cancer proliferation and invasion via downregulating NR3C2 and is an unfavorable prognosis factor in colon adenocarcinoma. J Biochem Mol Toxicol 33(12):e22411

    Article  CAS  PubMed  Google Scholar 

  13. Tiberio L, Nascimbeni R, Villanacci V, Casella C, Fra A, Vezzoli V et al (2013) The decrease of mineralcorticoid receptor drives angiogenic pathways in colorectal cancer. PLoS ONE 8(3):e59410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang DL, Qu LW, Ma L, Zhou YC, Wang GZ, Zhao XC et al (2018) Genome-wide identification of transcription factors that are critical to non-small cell lung cancer. Cancer Lett 434:132–143

    Article  CAS  PubMed  Google Scholar 

  15. Peng Y, Xi X, Li J, Ni J, Yang H, Wen C et al (2021) miR-301b and NR3C2 co-regulate cells malignant properties and have the potential to be independent prognostic factors in breast cancer. J Biochem Mol Toxicol 35(2):e22650

    Article  CAS  PubMed  Google Scholar 

  16. Fernández R, Marcet-Houben M, Legeai F, Richard G, Robin S, Wucher V et al (2020) Selection following gene duplication shapes recent genome evolution in the pea aphid Acyrthosiphon pisum. Mol Biol Evol 37(9):2601–2615

    Article  PubMed  PubMed Central  Google Scholar 

  17. Perez MF, Sarkies P (2021) Malignancy and NF-κB signalling strengthen coordination between expression of mitochondrial and nuclear-encoded oxidative phosphorylation genes. Genome Biol 22(1):328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A et al (2020) Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol 38(6):675–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi B et al (2017) UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 19(8):649–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu CJ, Hu FF, Xia MX, Han L, Zhang Q, Guo AY (2018) GSCALite: a web server for gene set cancer analysis. Bioinformatics 34(21):3771–3772

    Article  CAS  PubMed  Google Scholar 

  21. da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57

    Article  CAS  Google Scholar 

  22. Clough E, Barrett T (2016) The gene expression omnibus database. Methods Mol Biol 1418:93–110

    Article  PubMed  PubMed Central  Google Scholar 

  23. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A et al (2015) Proteomics. Tissue-based map of the human proteome. Science 347(6220):1260419

    Article  PubMed  Google Scholar 

  24. Wu D, Ding Y (2020) Significance of tumor-infiltrating immune cells in the prognosis of colon cancer. Onco Targets Ther 13:4581–4589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou R, Zhang J, Zeng D, Sun H, Rong X, Shi M et al (2019) Immune cell infiltration as a biomarker for the diagnosis and prognosis of stage I-III colon cancer. Cancer Immunol Immunother 68(3):433–442

    Article  CAS  PubMed  Google Scholar 

  26. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359-386

    Article  CAS  PubMed  Google Scholar 

  27. Figueredo A, Coombes ME, Mukherjee S (2008) Adjuvant therapy for completely resected stage II colon cancer. Cochrane Database Syst Rev 16(3):Cd005390

    Google Scholar 

  28. Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68(1):7–30

    Article  PubMed  Google Scholar 

  29. Wu H, Zhang Y (2014) Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 156(1–2):45–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Igarashi K, Yamashita K, Katoh H, Kojima K, Ooizumi Y, Nishizawa N et al (2017) Prognostic significance of promoter DNA hypermethylation of the cysteine dioxygenase 1 (CDO1) gene in primary gallbladder cancer and gallbladder disease. PLoS ONE 12(11):e0188178

    Article  PubMed  PubMed Central  Google Scholar 

  31. Laird PW (2003) The power and the promise of DNA methylation markers. Nat Rev Cancer 3(4):253–266

    Article  CAS  PubMed  Google Scholar 

  32. Waniczek D, Lorenc Z, Śnietura M, Wesecki M, Kopec A, Muc-Wierzgoń M (2017) Tumor-associated macrophages and regulatory T cells infiltration and the clinical outcome in colorectal cancer. Arch Immunol Ther Exp (Warsz) 65(5):445–454

    Article  CAS  Google Scholar 

  33. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140(6):883–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

XL and AY: conducted the experiments and wrote the paper. PW, YY, and ZX: analyzed the data and contributed to bioinformatics. HS: contributed to bioinformatics and supervised the study. RW: contributed to the concept and design. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ren Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Research involving human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 265 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Yang, A., Wen, P. et al. Nuclear receptor subfamily 3 group c member 2 (NR3C2) is downregulated due to hypermethylation and plays a tumor-suppressive role in colon cancer. Mol Cell Biochem 477, 2669–2679 (2022). https://doi.org/10.1007/s11010-022-04449-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04449-6

Keywords

Navigation