Skip to main content

Advertisement

Log in

Reverse pharmacology of Nimbin-N2 attenuates alcoholic liver injury and promotes the hepatoprotective dual role of improving lipid metabolism and downregulating the levels of inflammatory cytokines in zebrafish larval model

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Alcoholic liver disease is one of the most prominent liver diseases in the world. Lipid accumulation accompanied by oxidative stress and inflammation in the liver is the most important pathogenesis of ALD. This study was designed to investigate the anti-oxidative, fat metabolism-regulating, and anti-inflammatory potential of N2, a seminatural analog of Nimbin. The ethanol exposure was found to induce liver injury on zebrafish larvae, such as liver inflammation, lipid accumulation, oxidative stress, and hepatocytes apoptosis. N2 was subjected to ADMET screening in-silico, and it was observed N2’s co-exposure decreased the ROS, apoptosis, lipid peroxidation, and macrophage accumulation in the liver of larval zebrafish. To further study the mechanism behind ethanol hepatotoxicity and the hepatoprotective behavior of N2, gene expression changes were determined in zebrafish. The results of this study revealed that ethanol exposure upregulated mRNA expressions of SREBP1, C/EBP-α, FAS and provoked more severe oxidative stress and hepatitis via upregulation of inflammatory cytokines TNF-α, IL-10, IL-1β, iNOS, COX-2. However, the N2 co-exposure protected the hepatocyte damage and almost reversed the condition by downregulating the mRNA levels. The study suggested that N2 could be an effective therapeutic agent for the treatment of ALD and other inflammatory conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

Abbreviations

ALD:

Alcoholic liver disease

ADMET:

Adsorption, distribution, metabolism, excretion, toxicity.

SMILES:

Simplified molecular-input line-entry system

DCF-DA:

Dichlorodihydrofluorescein diacetate

ROS:

Reactive oxygen species

DNA:

Deoxyribonucleic acid

RNA:

Ribonucleic acid

DPPP:

Diphenyl-1-pyrenylphosphine

SOD:

Superoxide dismutase

CAT:

Catalase

PBS:

Phosphate-buffered saline

CMC-Na:

Sodium carboxymethyl cellulose salt

HBD:

Hydrogen-bond donors

HBA:

Hydrogen-bond acceptor

TPSA:

Total polar surface area

GI:

Gastrointestinal

BBB:

Blood–brain barrier

CYP:

Cytochrome

P-gp:

P-glycoprotein

TC:

Total cholesterol

TG:

Total triglyceride

SREBP1:

Sterol regulatory element-binding transcription factor 1

C/EBP- α:

Enhancer Binding Protein Alpha

FAS:

Fatty acid synthase

iNOS:

Induced Nitric oxide synthases

COX-2:

Cyclooxygenase-2

TNF-α:

Tumor necrosis factor-alpha

IL-10:

Interleukin

AFLD:

Alcoholic fatty liver disease

GAS:

Gastrodin

NASH:

Non-alcoholic steatohepatitis

References

  1. Mitra S, Arka De, Chowdhury A (2020) Epidemiology of non-alcoholic and alcoholic fatty liver diseases. Transl Gastroenterol Hepatol 5:1–17. https://doi.org/10.21037/TGH.2019.09.08

    Article  Google Scholar 

  2. Li C, Deng X, Xie X et al (2018) Activation of glutathione peroxidase 4 as a novel anti-inflammatory strategy. Front Pharmacol 9:1–12. https://doi.org/10.3389/fphar.2018.01120

    Article  CAS  Google Scholar 

  3. Lai CY, Lin CY, Hsu CC et al (2018) Liver-directed microRNA-7a depletion induces nonalcoholic fatty liver disease by stabilizing YY1-mediated lipogenic pathways in zebrafish. Biochim Biophys Acta Mol Cell Biol Lipids 1863:844–856. https://doi.org/10.1016/j.bbalip.2018.04.009

    Article  CAS  PubMed  Google Scholar 

  4. Schneider ACR, Gregório C, Uribe-Cruz C et al (2017) Chronic exposure to ethanol causes steatosis and inflammation in zebrafish liver. World J Hepatol 9:418–426. https://doi.org/10.4254/wjh.v9.i8.418

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chen B, Zheng YM, Zhang JP (2018) Comparative study of different diets-induced NAFLD models of zebrafish. Front Endocrinol 9:1–11. https://doi.org/10.3389/fendo.2018.00366

    Article  Google Scholar 

  6. Asrani SK, Devarbhavi H, Eaton J, Kamath PS (2019) Burden of liver diseases in the world. J Hepatol 70:151–171. https://doi.org/10.1016/j.jhep.2018.09.014

    Article  PubMed  Google Scholar 

  7. Rasineni K, Casey CA (2012) Molecular mechanism of alcoholic fatty liver. Indian J Pharmacol 44:299–303. https://doi.org/10.4103/0253-7613.96297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lai Y, Zhou C, Huang P et al (2018) Polydatin alleviated alcoholic liver injury in zebrafish larvae through ameliorating lipid metabolism and oxidative stress. J Pharmacol Sci 138:46–53. https://doi.org/10.1016/j.jphs.2018.08.007

    Article  CAS  PubMed  Google Scholar 

  9. Li HY, Gan RY, Shang A et al (2021) Plant-based foods and their bioactive compounds on fatty liver disease: Effects, mechanisms, and clinical application. Oxid Med Cell Longev https://doi.org/10.1155/2021/6621644

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nihbin RTO, From N, Zndzca A et al (1990) Tetranortriterpenoids related to nihbin and nimbolide from azadirachta zndzca A Juss (Meliaceae). Tetrahedron 46(3):775–782

    Article  Google Scholar 

  11. Guru A, Issac PK, Velayutham M et al (2021) Molecular mechanism of down-regulating adipogenic transcription factors in 3T3-L1 adipocyte cells by bioactive anti-adipogenic compounds. Mol Biol Rep 48:743–761. https://doi.org/10.1007/s11033-020-06036-8

    Article  CAS  PubMed  Google Scholar 

  12. Alferink LJM, Erler NS, de Knegt RJ et al (2020) Adherence to a plant-based, high-fibre dietary pattern is related to regression of non-alcoholic fatty liver disease in an elderly population. Eur J Epidemiol 35:1069–1085. https://doi.org/10.1007/s10654-020-00627-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhao MG, Sheng XP, Huang YP et al (2018) Triterpenic acids-enriched fraction from Cyclocarya paliurus attenuates non-alcoholic fatty liver disease via improving oxidative stress and mitochondrial dysfunction. Biomed Pharmacother 104:229–239. https://doi.org/10.1016/j.biopha.2018.03.170

    Article  CAS  PubMed  Google Scholar 

  14. Alzohairy MA (2016) Therapeutics role of azadirachta indica (Neem) and their active constituents in diseases prevention and treatment. Evid-based Complement Alternat Med https://doi.org/10.1155/2016/7382506

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sudhakaran G, Prathap P, Guru A et al (2022) Anti-inflammatory role demonstrated both in vitro and in vivo models using non-steroidal tetranortriterpenoid, Nimbin (N1) and its analogues (N2 and N3) that alleviate the domestication of alternative medicine. Cell Biol Int https://doi.org/10.1002/cbin.11769

    Article  PubMed  Google Scholar 

  16. Sudhakaran G, Guru A, Deva BH et al (2022) Evidence-based hormonal, mutational, and endocrine-disrupting chemical-induced zebrafish as an alternative model to study PCOS condition similar to mammalian PCOS model. Life Sci 291:120276. https://doi.org/10.1016/j.lfs.2021.120276

    Article  CAS  PubMed  Google Scholar 

  17. Ma J, Yin H, Li M et al (2019) A comprehensive study of high cholesterol diet-induced larval zebrafish model: a short-time in vivo screening method for non-alcoholic fatty liver disease drugs. Int J Biol Sci 15:973–983. https://doi.org/10.7150/ijbs.30013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Soret PA, Magusto J, Housset C, Gautheron J (2021) In vitro and in vivo models of non-alcoholic fatty liver disease: a critical appraisal. J Clin Med 10:1–18. https://doi.org/10.3390/jcm10010036

    Article  CAS  Google Scholar 

  19. Santhekadur PK, Kumar DP, Sanyal AJ (2018) Preclinical models of non-alcoholic fatty liver disease. J Hepatol 68:230–237. https://doi.org/10.1016/j.jhep.2017.10.031

    Article  CAS  PubMed  Google Scholar 

  20. Redza-Dutordoir M, Averill-Bates DA (2016) Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta Mol Cell Res 1863:2977–2992. https://doi.org/10.1016/j.bbamcr.2016.09.012

    Article  CAS  Google Scholar 

  21. Kawaratani H, Moriya K, Namisaki T et al (2017) Therapeutic strategies for alcoholic liver disease: Focusing on inflammation and fibrosis (Review). Int J Mol Med 40:263–270. https://doi.org/10.3892/ijmm.2017.3015

    Article  CAS  PubMed  Google Scholar 

  22. Anza M, Endale M, Cardona L et al (2021) Antimicrobial activity, in silico molecular docking, ADMET and DFT analysis of secondary metabolites from roots of three ethiopian medicinal plants. Adv Appl Bioinforma Chem 14:117–132. https://doi.org/10.2147/aabc.s323657

    Article  Google Scholar 

  23. Guru A, Lite C, Freddy AJ et al (2021) Intracellular ROS scavenging and antioxidant regulation of WL15 from cysteine and glycine-rich protein 2 demonstrated in zebrafish in vivo model. Dev Comp Immunol 114:103863. https://doi.org/10.1016/j.dci.2020.103863

    Article  CAS  PubMed  Google Scholar 

  24. Issac PK, Karan R, Guru A et al (2021) Insulin signaling pathway assessment by enhancing antioxidant activity due to morin using in vitro rat skeletal muscle L6 myotubes cells. Mol Biol Rep 48:5857–5872. https://doi.org/10.1007/s11033-021-06580-x

    Article  CAS  PubMed  Google Scholar 

  25. Guru A, Issac PK, Saraswathi NT et al (2021) Deteriorating insulin resistance due to WL15 peptide from cysteine and glycine-rich protein 2 in high glucose-induced rat skeletal muscle L6 cells. Cell Biol Int 45:1698–1709. https://doi.org/10.1002/cbin.11608

    Article  CAS  PubMed  Google Scholar 

  26. Zhang Y, Liu K, Hassan HM, Guo H, Ding P, Han L, He Q, Chen W, Hsiao CD, Zhang L, Jiang Z (2016) L-FABP-deficiency provoked oxidative stress, inflammation and 2 apoptosis-mediated hepatotoxicity induced by pyrazinamide on zebrafish larvae. Antimicrob Agents Chemother https://doi.org/10.1128/AAC.01693-16

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kim S, Kim M, Kang M et al (2021) Antioxidant effects of turmeric leaf extract against hydrogen peroxide-induced oxidative stress in vitro in vero cells and in vivo in zebrafish. Antioxidants https://doi.org/10.3390/antiox10010112

    Article  PubMed  PubMed Central  Google Scholar 

  28. Menu I, Molagoda N (2021) Fisetin inhibits lipopolysaccharide - induced inflammatory response by activating β - catenin, leading to a decrease in endotoxic shock. Sci Rep https://doi.org/10.1038/s41598-021-87257-0

    Article  Google Scholar 

  29. Manjunathan T, Guru A, Arokiaraj J, Gopinath P (2021) 6-Gingerol and semisynthetic 6-Gingerdione counteract oxidative stress induced by ROS in zebrafish. Chem Biodivers https://doi.org/10.1002/cbdv.202100650

    Article  PubMed  Google Scholar 

  30. Issac PK, Guru A, Velayutham M et al (2021) Oxidative stress induced antioxidant and neurotoxicity demonstrated in vivo zebrafish embryo or larval model and their normalization due to morin showing therapeutic implications. Life Sci 283:119864. https://doi.org/10.1016/j.lfs.2021.119864

    Article  CAS  PubMed  Google Scholar 

  31. Li M, Ma J, Ahmad O et al (2018) Lipid-modulate activity of Cichorium glandulosum Boiss. et Huet polysaccharide in nonalcoholic fatty liver disease larval zebrafish model. J Pharmacol Sci 138:257–262. https://doi.org/10.1016/j.jphs.2018.09.012

    Article  CAS  PubMed  Google Scholar 

  32. Ahmad O, Wang B, Ma K et al (2019) Lipid modulating anti-oxidant stress activity of gastrodin on nonalcoholic fatty liver disease larval zebrafish model. Int J Mol Sci 20:1–11. https://doi.org/10.3390/ijms20081984

    Article  CAS  Google Scholar 

  33. Kocere A, Resseguier J, Wohlmann J et al (2020) Real-time imaging of polymersome nanoparticles in zebrafish embryos engrafted with melanoma cancer cells: localization, toxicity and treatment analysis. EBioMedicine https://doi.org/10.1016/j.ebiom.2020.102902

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bradford MM (1976) Protein Extraction & Protein estimation by Bradford method. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  35. Dai W, Wang K, Zheng X et al (2015) High fat plus high cholesterol diet lead to hepatic steatosis in zebrafish larvae : a novel model for screening anti-hepatic steatosis drugs. Nutr Metab https://doi.org/10.1186/s12986-015-0036-z

    Article  Google Scholar 

  36. Hong JM, Kim JE, Min SK et al (2021) Anti-inflammatory effects of antarctic lichen umbilicaria antarctica methanol extract in lipopolysaccharide-stimulated raw 264.7 macrophage cells and zebrafish model. Biomed Res Int https://doi.org/10.1155/2021/8812090

    Article  PubMed  PubMed Central  Google Scholar 

  37. Patel VB, Why HJ, Richardson PJ, Preedy VR (1997) The effects of alcohol on the heart. Adverse Drug React Toxicol Rev 16:15–43. https://doi.org/10.3810/pgm.1997.02.163

    Article  CAS  PubMed  Google Scholar 

  38. Lai Y, Zhou C, Huang P et al (2018) Polydatin alleviated alcoholic liver injury in zebra fi sh larvae through ameliorating lipid metabolism and oxidative stress. J Pharmacol Sci https://doi.org/10.1016/j.jphs.2018.08.007

    Article  PubMed  Google Scholar 

  39. Dong X, Liu J, Xu Y, Cao H (2019) Role of macrophages in experimental liver injury and repair in mice (Review). Exp Ther Med https://doi.org/10.3892/etm.2019.7450

    Article  PubMed  PubMed Central  Google Scholar 

  40. Poli G, Albano E, Dianzani MU (1987) The role of lipid peroxidation in liver damage. Chem Phys Lipid 45:117–142. https://doi.org/10.1016/0009-3084(87)90063-6

    Article  CAS  Google Scholar 

  41. Jeon S, Carr R (2020) Alcohol effects on hepatic lipid metabolism. J Lipid Res 61:470–479. https://doi.org/10.1194/jlr.R119000547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lin H, Zhou Z, Zhong W et al (2017) Naringenin inhibits alcoholic injury by improving lipid metabolism and reducing apoptosis in zebrafish larvae. Oncol Rep 38:2877–2884. https://doi.org/10.3892/or.2017.5965

    Article  CAS  PubMed  Google Scholar 

  43. Deng Y, Ma J, Weng X et al (2021) Kaempferol-3-o-glucuronide ameliorates non-alcoholic steatohepatitis in high-cholesterol-diet-induced larval zebrafish and hepg2 cell models via regulating oxidation stress. Life 11:1–12. https://doi.org/10.3390/life11050445

    Article  CAS  Google Scholar 

  44. Kawaratani H, Tsujimoto T, Douhara A et al (2013) The effect of inflammatory cytokines in alcoholic liver disease. Mediators Inflamm https://doi.org/10.1155/2013/495156

    Article  PubMed  PubMed Central  Google Scholar 

  45. Shieh YS, Chang YS, Hong JR et al (2010) Increase of hepatic fat accumulation by liver specific expression of Hepatitis B virus X protein in zebrafish. Biochim Biophys Acta Mol Cell Biol Lipids 1801:721–730. https://doi.org/10.1016/j.bbalip.2010.04.008

    Article  CAS  Google Scholar 

  46. Cha SH, Hwang Y, Heo SJ, Jun HS (2020) Diphlorethohydroxycarmalol attenuates palmitate-induced hepatic lipogenesis and inflammation. Mar Drugs https://doi.org/10.3390/md18090475

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Dr. Pushparathinam Gopinath thank and gratefully acknowledge the Science and Engineering Research Board (SERB), Government of India for the financial support under the start-up research grant (SERB-SRG/2019/001133). He also thanks the Department of Chemistry, SRMIST for providing the necessary infrastructure facility to complete the study. The authors express their sincere appreciation to the Researchers Supporting Project Number (RSP2022R414) King Saud University, Riyadh, Saudi Arabia.

Funding

This study was supported by Science and Engineering Research Board (SERB), Government of India through start-up research grant (No. SERB-SRG/2019/001133) and Researchers Supporting Project (Number: RSP2022R414), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments, All Authors; Performed the experiments, GS, PP, AG: Analyzed the data, All Authors; Contributed reagents/materials/analysis tools and Supervised the research, BOA, MHA, AJ, PG, JA. Wrote the paper, All Authors.

Corresponding author

Correspondence to Jesu Arockiaraj.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudhakaran, G., Prathap, P., Guru, A. et al. Reverse pharmacology of Nimbin-N2 attenuates alcoholic liver injury and promotes the hepatoprotective dual role of improving lipid metabolism and downregulating the levels of inflammatory cytokines in zebrafish larval model. Mol Cell Biochem 477, 2387–2401 (2022). https://doi.org/10.1007/s11010-022-04448-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04448-7

Keywords

Navigation