Skip to main content

Advertisement

Log in

Regulation of ferroptosis by noncoding RNAs: a novel promise treatment in esophageal squamous cell carcinoma

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Esophageal squamous cell carcinoma (ESCC) is a highly prevalent tumor that requires extensive research. Ferroptosis is a unique cell death modality driven by iron-dependent phospholipid peroxidation manifested as an accumulation of lipid-reactive oxygen species. With further understanding of noncoding RNAs (ncRNAs), numerous studies have demonstrated an important regulatory role of ncRNAs in ESCC through ferroptosis, including microRNAs, long ncRNAs, and circular RNAs. These ncRNAs influence the expression of the target gene to regulate ESCC progression by involving the ferroptosis signaling pathway. However, the specific regulatory mechanism of ncRNAs on ferroptosis in ESCC remains largely unknown. This review summarized the current knowledge on the relation between ferroptosis regulators, such as glutathione synthesis/metabolism, Keap1/Nfr2, and p53, by ncRNAs and ESCC. This review also proposed the possible therapeutic approaches for ncRNAs targeting ferroptosis in ESCC. This is the latest and most effective summary of recent research achievements of ncRNAs on ferroptosis in ESCC. These ncRNAs based on ferroptosis merit further investigation in preclinical research of ESCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Huang FL, Yu SJ (2018) Esophageal cancer: risk factors, genetic association, and treatment. Asian J Surg 41:210–215. https://doi.org/10.1016/j.asjsur.2016.10.005

    Article  PubMed  Google Scholar 

  2. Abnet CC, Arnold M, Wei WQ (2018) epidemiology of esophageal squamous cell carcinoma. Gastroenterology 154:360–373. https://doi.org/10.1053/j.gastro.2017.08.023

    Article  PubMed  Google Scholar 

  3. Shi Z, Zhang L, Zheng J, Sun H, Shao C (2021) ferroptosis: biochemistry and biology in cancers. Front Oncol 11:579286. https://doi.org/10.3389/fonc.2021.579286

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B 3rd, Stockwell BR (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072. https://doi.org/10.1016/j.cell.2012.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wen Y, Chen H, Zhang L, Wu M, Zhang F, Yang D, Shen J, Chen J (2021) Glycyrrhetinic acid induces oxidative/nitrative stress and drives ferroptosis through activating NADPH oxidases and iNOS, and depriving glutathione in triple-negative breast cancer cells. Free Radic Biol Med 173:41–51. https://doi.org/10.1016/j.freeradbiomed.2021.07.019

    Article  CAS  PubMed  Google Scholar 

  6. Hong T, Lei G, Chen X, Li H, Zhang X, Wu N, Zhao Y, Zhang Y, Wang J (2021) PARP inhibition promotes ferroptosis via repressing SLC7A11 and synergizes with ferroptosis inducers in BRCA-proficient ovarian cancer. Redox Biol 42:101928. https://doi.org/10.1016/j.redox.2021.101928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jiang B, Zhao Y, Shi M, Song L, Wang Q, Qin Q, Song X, Wu S, Fang Z, Liu X (2020) DNAJB6 Promotes Ferroptosis in esophageal squamous cell carcinoma. Dig Dis Sci 65:1999–2008. https://doi.org/10.1007/s10620-019-05929-4

    Article  CAS  PubMed  Google Scholar 

  8. Ye J, Ma J, Liu C, Huang J, Wang L, Zhong X (2019) A novel iron(II) phenanthroline complex exhibits anticancer activity against TFR1-overexpressing esophageal squamous cell carcinoma cells through ROS accumulation and DNA damage. Biochem Pharmacol 166:93–107. https://doi.org/10.1016/j.bcp.2019.05.013

    Article  CAS  PubMed  Google Scholar 

  9. Ye J, Wu Y, Cai H, Sun L, Deng W, Liang R, Han A (2021) Development and validation of a ferroptosis-related gene signature and nomogram for predicting the prognosis of esophageal squamous cell carcinoma. Front Genet 12:697524. https://doi.org/10.3389/fgene.2021.697524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lai X, Eberhardt M, Schmitz U, Vera J (2019) Systems biology-based investigation of cooperating microRNAs as monotherapy or adjuvant therapy in cancer. Nucleic Acids Res 47:7753–7766

    Article  CAS  Google Scholar 

  11. Braga EA, Fridman MV, Moscovtsev AA, Filippova EA, Dmitriev AA, Kushlinskii NE (2020) LncRNAs in ovarian cancer progression, metastasis, and main pathways: ceRNA and alternative mechanisms. Int J Mol Sci. https://doi.org/10.3390/ijms21228855

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bure IV, Kuznetsova EB, Zaletaev DV (2018) Long noncoding RNAs and their role in oncogenesis. Mol Biol 52:907–920. https://doi.org/10.1134/S0026898418060034

    Article  CAS  Google Scholar 

  13. Liu J, Yang L, Fu Q, Liu S (2020) Emerging roles and potential biological value of circRNA in osteosarcoma. Front Oncol 10:552236. https://doi.org/10.3389/fonc.2020.552236

    Article  PubMed  PubMed Central  Google Scholar 

  14. Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO (2013) Cell-type specific features of circular RNA expression. PLoS Genet 9:e1003777. https://doi.org/10.1371/journal.pgen.1003777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Di Bella S, La Ferlita A, Carapezza G, Alaimo S, Isacchi A, Ferro A, Pulvirenti A, Bosotti R (2020) A benchmarking of pipelines for detecting ncRNAs from RNA-Seq data. Brief Bioinform 21:1987–1998. https://doi.org/10.1093/bib/bbz110

    Article  CAS  PubMed  Google Scholar 

  16. Koppula P, Zhang Y, Zhuang L, Gan B (2018) Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun 38:12. https://doi.org/10.1186/s40880-018-0288-x

    Article  Google Scholar 

  17. Jiang X, Stockwell BR, Conrad M (2021) Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 22:266–282. https://doi.org/10.1038/s41580-020-00324-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hsu JL, Chou JW, Chen TF, Hsu JT, Su FY, Lan JL, Wu PC, Hu CM, Lee EY, Lee WH (2020) Glutathione peroxidase 8 negatively regulates caspase-4/11 to protect against colitis. EMBO Mol Med 12:e9386. https://doi.org/10.15252/emmm.201809386

    Article  CAS  PubMed  Google Scholar 

  19. Li X, Song L, Wang B, Tao C, Shi L, Xu M (2020) Circ0120816 acts as an oncogene of esophageal squamous cell carcinoma by inhibiting miR-1305 and releasing TXNRD1. Cancer Cell Int 20:526. https://doi.org/10.1186/s12935-020-01617-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen JL, Lin ZX, Qin YS, She YQ, Chen Y, Chen C, Qiu GD, Zheng JT, Chen ZL, Zhang SY (2019) Overexpression of long noncoding RNA LINC01419 in esophageal squamous cell carcinoma and its relation to the sensitivity to 5-fluorouracil by mediating GSTP1 methylation. Ther Adv Med Oncol 11:1758835919838958. https://doi.org/10.1177/1758835919838958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Elofey SGH, Shafik NF, Radwan NH, Mansour OM, Allam RM, Shouman S, AbdelGawad IA (2020) Relation between GSTP1 polymorphism and oxidative stress in patients with hepatocellular carcinoma. J Egypt Natl Cancer Inst 32:38. https://doi.org/10.1186/s43046-020-00049-x

    Article  Google Scholar 

  22. Zhu Y, Zhang Y, Li X, Su Y, Wang N, Chen M, Yang Z (2021) Downregulation of miR106b3p increases sensitivity to cisplatin in esophageal cancer cells by targeting TGM3. Mol Med Rep. https://doi.org/10.3892/mmr.2021.12110

    Article  PubMed  PubMed Central  Google Scholar 

  23. Choi Y-W (2013) Transglutaminase 2 activity is enhanced via S-glutathionylation under oxidative stress conditions.

  24. Bai T, Liang R, Zhu R, Wang W, Zhou L, Sun Y (2020) MicroRNA-214-3p enhances erastin-induced ferroptosis by targeting ATF4 in hepatoma cells. J Cell Physiol 235:5637–5648. https://doi.org/10.1002/jcp.29496

    Article  CAS  PubMed  Google Scholar 

  25. Lu J, Xu F, Lu H (2020) LncRNA PVT1 regulates ferroptosis through miR-214-mediated TFR1 and p53. Life Sci 260:118305. https://doi.org/10.1016/j.lfs.2020.118305

    Article  CAS  PubMed  Google Scholar 

  26. Villacorta L, Zhang J, Garcia-Barrio MT, Chen XL, Freeman BA, Chen YE, Cui T (2007) Nitro-linoleic acid inhibits vascular smooth muscle cell proliferation via the Keap1/Nrf2 signaling pathway. Am J Physiol Heart Circ Physiol 293:H770–H776. https://doi.org/10.1152/ajpheart.00261.2007

    Article  CAS  PubMed  Google Scholar 

  27. Tong KI, Katoh Y, Kusunoki H, Itoh K, Tanaka T, Yamamoto M (2006) Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model. Mol Cell Biol 26:2887–2900. https://doi.org/10.1128/MCB.26.8.2887-2900.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jaramillo MC, Zhang DD (2013) The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev 27:2179–2191. https://doi.org/10.1101/gad.225680.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bellezza I, Giambanco I, Minelli A, Donato R (2018) Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta Mol Cell Res 1865:721–733. https://doi.org/10.1016/j.bbamcr.2018.02.010

    Article  CAS  PubMed  Google Scholar 

  30. Akdemir B, Nakajima Y, Inazawa J, Inoue J (2017) miR-432 Induces NRF2 Stabilization by Directly Targeting KEAP1. Mol Cancer Res 15:1570–1578. https://doi.org/10.1158/1541-7786.MCR-17-0232

    Article  CAS  PubMed  Google Scholar 

  31. Liu M, Hu C, Xu Q, Chen L, Ma K, Xu N, Zhu H (2015) Methylseleninic acid activates Keap1/Nrf2 pathway via up-regulating miR-200a in human oesophageal squamous cell carcinoma cells. Biosci Rep. https://doi.org/10.1042/BSR20150092

  32. Zhang Z, Xiong R, Li C, Xu M, Guo M (2019) LncRNA TUG1 promotes cisplatin resistance in esophageal squamous cell carcinoma cells by regulating Nrf2. Acta Biochim Biophys Sin 51:826–833. https://doi.org/10.1093/abbs/gmz069

    Article  CAS  PubMed  Google Scholar 

  33. Zuo J, Zhao M, Fan Z, Liu B, Wang Y, Li Y, Lv P, Xing L, Zhang X, Shen H (2020) MicroRNA-153-3p regulates cell proliferation and cisplatin resistance via Nrf-2 in esophageal squamous cell carcinoma. Thorac Cancer 11:738–747. https://doi.org/10.1111/1759-7714.13326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Akdemir B, Inoue J, Kawano T, Inazawa J (2017) Abstract 2532: High expression of MiR-432-3p is associated with the chemoresistance by NRF2 stabilization via directly targeting KEAP1. Can Res 77:2532–2532. https://doi.org/10.1158/1538-7445.am2017-2532

    Article  Google Scholar 

  35. Xiao S, Liu N, Yang X, Ji G, Li M (2021) Polygalacin D suppresses esophageal squamous cell carcinoma growth and metastasis through regulating miR-142-5p/Nrf2 axis. Free Radic Biol Med 164:58–75. https://doi.org/10.1016/j.freeradbiomed.2020.11.029

    Article  CAS  PubMed  Google Scholar 

  36. Han M, Li N, Li F, Wang H, Ma L (2020) MiR-27b-3p exerts tumor suppressor effects in esophageal squamous cell carcinoma by targeting Nrf2. Hum Cell 33:641–651. https://doi.org/10.1007/s13577-020-00329-7

    Article  CAS  PubMed  Google Scholar 

  37. Yamamoto S, Inoue J, Kawano T, Kozaki K, Omura K, Inazawa J (2014) The impact of miRNA-based molecular diagnostics and treatment of NRF2-stabilized tumors. Mol Cancer Res 12:58–68. https://doi.org/10.1158/1541-7786.MCR-13-0246-T

    Article  CAS  PubMed  Google Scholar 

  38. Nie J, Ge X, Geng Y, Cao H, Zhu W, Jiao Y, Wu J, Zhou J, Cao J (2015) miR-34a inhibits the migration and invasion of esophageal squamous cell carcinoma by targeting Yin Yang-1. Oncol Rep 34:311–317. https://doi.org/10.3892/or.2015.3962

    Article  CAS  PubMed  Google Scholar 

  39. Luo J, Zhou X, Ge X, Liu P, Cao J, Lu X, Ling Y, Zhang S (2013) Upregulation of Ying Yang 1 (YY1) suppresses esophageal squamous cell carcinoma development through heme oxygenase-1. Cancer Sci 104:1544–1551. https://doi.org/10.1111/cas.12248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ge MH, Tian H, Mao L, Li DY, Lin JQ, Hu HS, Huang SC, Zhang CJ, Mei XF (2021) Zinc attenuates ferroptosis and promotes functional recovery in contusion spinal cord injury by activating Nrf2/GPX4 defense pathway. CNS Neurosci Ther. https://doi.org/10.1111/cns.13657

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhang Y, Tang Q, Huang XM, Liao DZ (2020) Circular RNA circCNOT6L regulates cell development through modulating miR-384/FN1 axis in esophageal squamous cell carcinoma. Eur Rev Med Pharmacol Sci 24:3674–3685. https://doi.org/10.26355/eurrev_202004_20830

    Article  CAS  PubMed  Google Scholar 

  42. Li W, Pung D, Su ZY, Guo Y, Zhang C, Yang AY, Zheng X, Du ZY, Zhang K, Kong AN (2016) Epigenetics reactivation of Nrf2 in prostate TRAMP C1 cells by curcumin analogue FN1. Chem Res Toxicol 29:694–703. https://doi.org/10.1021/acs.chemrestox.6b00016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hu HB, Jie HY, Zheng XX (2016) Three circulating LncRNA predict early progress of esophageal squamous cell carcinoma. Cell Physiol Biochem 40:117–125. https://doi.org/10.1159/000452529

    Article  CAS  PubMed  Google Scholar 

  44. Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, Baer R, Gu W (2015) Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520:57–62. https://doi.org/10.1038/nature14344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, Brown LM, Girotti AW, Cornish VW, Schreiber SL, Stockwell BR (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156:317–331. https://doi.org/10.1016/j.cell.2013.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gao M, Monian P, Quadri N, Ramasamy R, Jiang X (2015) Glutaminolysis and transferrin regulate ferroptosis. Mol Cell 59:298–308. https://doi.org/10.1016/j.molcel.2015.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ou Y, Wang SJ, Li D, Chu B, Gu W (2016) Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc Natl Acad Sci USA 113:E6806–E6812. https://doi.org/10.1073/pnas.1607152113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Luo J, Xie K, Gao X, Yao Y, Wang G, Shao C, Li X, Xu Y, Ren B, Hu L, Shen Y (2020) Long noncoding RNA nuclear paraspeckle assembly transcript 1 promotes progression and angiogenesis of esophageal squamous cell carcinoma through miR-590-3p/MDM2 axis. Front Oncol 10:618930. https://doi.org/10.3389/fonc.2020.618930

    Article  PubMed  Google Scholar 

  49. Tarangelo A, Magtanong L, Bieging-Rolett KT, Li Y, Ye J, Attardi LD, Dixon SJ (2018) p53 suppresses metabolic stress-induced ferroptosis in cancer cells. Cell Rep 22:569–575. https://doi.org/10.1016/j.celrep.2017.12.077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Venkatesh D, O’Brien NA, Zandkarimi F, Tong DR, Stokes ME, Dunn DE, Kengmana ES, Aron AT, Klein AM, Csuka JM, Moon SH, Conrad M, Chang CJ, Lo DC, D’Alessandro A, Prives C, Stockwell BR (2020) MDM2 and MDMX promote ferroptosis by PPARalpha-mediated lipid remodeling. Genes Dev 34:526–543. https://doi.org/10.1101/gad.334219.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lv D, Sun R, Yu Q, Zhang X (2016) The long non-coding RNA maternally expressed gene 3 activates p53 and is downregulated in esophageal squamous cell cancer. Tumour Biol. https://doi.org/10.1007/s13277-016-5426-y

    Article  PubMed  Google Scholar 

  52. Liu B, Pan CF, Yao GL, Wei K, Xia Y, Chen YJ (2018) The long non-coding RNA AK001796 contributes to tumor growth via regulating expression of p53 in esophageal squamous cell carcinoma. Cancer Cell Int 18:38. https://doi.org/10.1186/s12935-018-0537-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhihua Z, Weiwei W, Lihua N, Jianying Z, Jiang G (2019) p53-induced long non-coding RNA PGM5-AS1 inhibits the progression of esophageal squamous cell carcinoma through regulating miR-466/PTEN axis. IUBMB Life 71:1492–1502. https://doi.org/10.1002/iub.2069

    Article  CAS  PubMed  Google Scholar 

  54. Zhang Y, Miao Y, Shang M, Liu M, Liu R, Pan E, Pu Y, Yin L (2019) LincRNA-p21 leads to G1 arrest by p53 pathway in esophageal squamous cell carcinoma. Cancer Manag Res 11:6201–6214. https://doi.org/10.2147/CMAR.S197557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yao J, Zhang H, Li H, Qian R, Liu P, Huang J (2020) P53-regulated lncRNA uc061hsf.1 inhibits cell proliferation and metastasis in human esophageal squamous cell cancer. IUBMB Life 72:401–412. https://doi.org/10.1002/iub.2196

    Article  CAS  PubMed  Google Scholar 

  56. Yan S, Xu J, Liu B, Ma L, Feng H, Tan H, Fang C (2021) Long non-coding RNA BCAR4 aggravated proliferation and migration in esophageal squamous cell carcinoma by negatively regulating p53/p21 signaling pathway. Bioengineered 12:682–696. https://doi.org/10.1080/21655979.2021.1887645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang PL, Liu B, Xia Y, Pan CF, Ma T, Chen YJ (2016) Long non-coding RNA-Low Expression in Tumor inhibits the invasion and metastasis of esophageal squamous cell carcinoma by regulating p53 expression. Mol Med Rep 13:3074–3082. https://doi.org/10.3892/mmr.2016.4913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yang Y, Li H, He Z, Xie D, Ni J, Lin X (2019) MicroRNA-488-3p inhibits proliferation and induces apoptosis by targeting ZBTB2 in esophageal squamous cell carcinoma. J Cell Biochem 120:18702–18713. https://doi.org/10.1002/jcb.29178

    Article  CAS  PubMed  Google Scholar 

  59. Jeon BN, Choi WI, Yu MY, Yoon AR, Kim MH, Yun CO, Hur MW (2009) ZBTB2, a novel master regulator of the p53 pathway. J Biol Chem 284:17935–17946. https://doi.org/10.1074/jbc.M809559200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. He Z, Chen J, Chen X, Wang H, Tang L, Han C (2021) microRNA-377 acts as a suppressor in esophageal squamous cell carcinoma through CBX3-dependent P53/P21 pathway. J Cell Physiol 236:107–120. https://doi.org/10.1002/jcp.29631

    Article  CAS  PubMed  Google Scholar 

  61. Meng L, Liu F, Ju Y, Ding P, Liu S, Chang S, Liu S, Zhang Y, Lian Y, Gu L, Zhang X, Sang M (2018) Tumor suppressive miR-6775-3p inhibits ESCC progression through forming a positive feedback loop with p53 via MAGE-A family proteins. Cell Death Dis 9:1057. https://doi.org/10.1038/s41419-018-1119-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang J, Cheng C, Yuan X, He JT, Pan QH, Sun FY (2014) microRNA-155 acts as an oncogene by targeting the tumor protein 53-induced nuclear protein 1 in esophageal squamous cell carcinoma. Int J Clin Exp Pathol 7:602–610

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ma S, Paiboonrungruan C, Yan T, Williams KP, Major MB, Chen XL (2018) Targeted therapy of esophageal squamous cell carcinoma: the NRF2 signaling pathway as target. Ann N Y Acad Sci 1434:164–172. https://doi.org/10.1111/nyas.13681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang M, Zang X, Wang M, Li Z, Qiao M, Hu H, Chen D (2019) Exosome-based nanocarriers as bio-inspired and versatile vehicles for drug delivery: recent advances and challenges. J Mater Chem B 7:2421–2433. https://doi.org/10.1039/c9tb00170k

    Article  CAS  PubMed  Google Scholar 

  65. Luo Y, Niu G, Yi H, Li Q, Wu Z, Wang J, Yang J, Li B, Peng Y, Liang Y, Wang W, Peng Z, Shuai X, Guo Y (2021) Nanomedicine promotes ferroptosis to inhibit tumour proliferation in vivo. Redox Biol 42:101908. https://doi.org/10.1016/j.redox.2021.101908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang Y, Wei Z, Pan K, Li J, Chen Q (2020) The function and mechanism of ferroptosis in cancer. Apoptosis 25:786–798. https://doi.org/10.1007/s10495-020-01638-w

    Article  CAS  PubMed  Google Scholar 

  67. Zheng Y, Hasan A, Nejadi Babadaei MM, Behzadi E, Nouri M, Sharifi M, Falahati M (2020) Exosomes: Multiple-targeted multifunctional biological nanoparticles in the diagnosis, drug delivery, and imaging of cancer cells. Biomed Pharmacother 129:110442. https://doi.org/10.1016/j.biopha.2020.110442

    Article  CAS  PubMed  Google Scholar 

  68. Zhang H, Deng T, Liu R, Ning T, Yang H, Liu D, Zhang Q, Lin D, Ge S, Bai M, Wang X, Zhang L, Li H, Yang Y, Ji Z, Wang H, Ying G, Ba Y (2020) CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol Cancer 19:43. https://doi.org/10.1186/s12943-020-01168-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wu S, Li T, Liu W, Huang Y (2021) Ferroptosis and cancer: complex relationship and potential application of exosomes. Front Cell Dev Biol 9:733751. https://doi.org/10.3389/fcell.2021.733751

    Article  PubMed  PubMed Central  Google Scholar 

  70. Rios-Luci C, Diaz-Rodriguez E, Gandullo-Sanchez L, Diaz-Gil L, Ocana A, Pandiella A (2020) Adaptive resistance to trastuzumab impairs response to neratinib and lapatinib through deregulation of cell death mechanisms. Cancer Lett 470:161–169. https://doi.org/10.1016/j.canlet.2019.11.026

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable

Funding

This study was supported by Medical Science Research Project of Hebei Province (20220013).

Author information

Authors and Affiliations

Authors

Contributions

GQ was a major contributor in writing the manuscript, WZ and KD collected references used in the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Guanen Qiao.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, G., Zhang, W. & Dong, K. Regulation of ferroptosis by noncoding RNAs: a novel promise treatment in esophageal squamous cell carcinoma. Mol Cell Biochem 477, 2193–2202 (2022). https://doi.org/10.1007/s11010-022-04441-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04441-0

Keywords

Navigation