Skip to main content

Advertisement

Log in

Migraine signaling pathways: amino acid metabolites that regulate migraine and predispose migraineurs to headache

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Migraine is a common, debilitating disorder for which attacks typically result in a throbbing, pulsating headache. Although much is known about migraine, its complexity renders understanding the complete etiology currently out of reach. However, two important facts are clear, the brain and the metabolism of the migraineur differ from that of the non-migraineur. This review centers on the altered amino acid metabolism in migraineurs and how it helps define the pathology of migraine.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Moskowitz MA, Reinhard JF Jr, Romero J, Melamed E, Pettibone DJ (1979) Neurotransmitters and the fifth cranial nerve: is there a relation to the headache phase of migraine? Lancet 2(8148):883–885. https://doi.org/10.1016/s0140-6736(79)92692-8

    Article  CAS  PubMed  Google Scholar 

  2. May A, Goadsby PJ (1999) The trigeminovascular system in humans: pathophysiologic implications for primary headache syndromes of the neural influences on the cerebral circulation. J Cereb Blood Flow Metab 19(2):115–127. https://doi.org/10.1097/00004647-199902000-00001

    Article  CAS  PubMed  Google Scholar 

  3. Tepper SJ, Rapoport A, Sheftell F (2001) The pathophysiology of migraine. Neurologist 7(5):279–286. https://doi.org/10.1097/00127893-200109000-00002

    Article  CAS  PubMed  Google Scholar 

  4. Ashina M, Hansen JM, Do TP, Melo-Carrillo A, Burstein R, Moskowitz MA (2019) Migraine and the trigeminovascular system-40 years and counting. Lancet Neurol 18(8):795–804. https://doi.org/10.1016/S1474-4422(19)30185-1

    Article  PubMed  PubMed Central  Google Scholar 

  5. Haanes KA, Edvinsson L (2019) Pathophysiological mechanisms in migraine and the identification of new therapeutic targets. CNS Drugs 33(6):525–537. https://doi.org/10.1007/s40263-019-00630-6

    Article  CAS  PubMed  Google Scholar 

  6. Burstein R, Noseda R, Borsook D (2015) Migraine: multiple processes, complex pathophysiology. J Neurosci 35(17):6619–6629. https://doi.org/10.1523/JNEUROSCI.0373-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dodick DW (2018) A phase-by-phase review of migraine pathophysiology. Headache 58(Suppl 1):4–16. https://doi.org/10.1111/head.13300

    Article  PubMed  Google Scholar 

  8. Borsook D, May A, Goadsby P, Hargreaves R (2012) The migraine brain. Oxford UP, New York. ISBN-10: 019975456X

  9. Grech O, Mollan SP, Wakerley BR, Fulton D, Lavery GG, Sinclair AJ (2021) The role of metabolism in migraine pathophysiology and susceptibility. Life 11(5):415. https://doi.org/10.3390/life11050415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gross EC, Lisicki M, Fischer D, Sándor PS, Schoenen J (2019) The metabolic face of migraine—from pathophysiology to treatment. Nat Rev Neurol 15(11):627–643. https://doi.org/10.1038/s41582-019-0255-4

    Article  CAS  PubMed  Google Scholar 

  11. Ferrari MD, Odink J, Tapparelli C, Van Kempen GM, Pennings EJ, Bruyn GW (1989) Serotonin metabolism in migraine. Neurology 39(9):1239–1242. https://doi.org/10.1212/wnl.39.9.1239

    Article  CAS  PubMed  Google Scholar 

  12. Razeghi Jahromi S, Togha M, Ghorbani Z, Hekmatdoost A, Khorsha F, Rafiee P, Shirani P, Nourmohammadi M, Ansari H (2019) The association between dietary tryptophan intake and migraine. Neurol Sci 40(11):2349–2355. https://doi.org/10.1007/s10072-019-03984-3

    Article  PubMed  Google Scholar 

  13. Drummond PD (2006) Tryptophan depletion increases nausea, headache and photophobia in migraine sufferers. Cephalalgia 26(10):1225–1233. https://doi.org/10.1111/j.1468-2982.2006.01212.x

    Article  CAS  PubMed  Google Scholar 

  14. Roth W, Zadeh K, Vekariya R, Ge Y, Mohamadzadeh M (2021) Tryptophan metabolism and gut-brain homeostasis. Int J Mol Sci 22(6):2973. https://doi.org/10.3390/ijms22062973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Davis I, Liu A (2015) What is the tryptophan kynurenine pathway and why is it important to neurotherapeutics? Expert Rev Neurother 15(7):719–721. https://doi.org/10.1586/14737175.2015.1049999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Curto M, Lionetto L, Negro A, Capi M, Fazio F, Giamberardino MA, Simmaco M, Nicoletti F, Martelletti P (2016) Altered kynurenine pathway metabolites in serum of chronic migraine patients. J Headache Pain 17:47. https://doi.org/10.1186/s10194-016-0638-5

    Article  CAS  PubMed Central  Google Scholar 

  17. Heyliger SO, Goodman CB, Ngong JM, Soliman KF (1998) The analgesic effects of tryptophan and its metabolites in the rat. Pharmacol Res 38(4):243–250. https://doi.org/10.1006/phrs.1998.0362

    Article  CAS  PubMed  Google Scholar 

  18. Stone TW, Perkins MN (1981) Quinolinic acid: a potent endogenous excitant at amino acid receptors in CNS. Eur J Pharmacol 72(4):411–412. https://doi.org/10.1016/0014-2999(81)90587-2

    Article  CAS  PubMed  Google Scholar 

  19. Deen M, Hansen HD, Hougaard A, Nørgaard M, Eiberg H, Lehel S, Ashina M, Knudsen GM (2018) High brain serotonin levels in migraine between attacks: a 5-HT4 receptor binding PET study. Neuroimage Clin 18:97–102. https://doi.org/10.1016/j.nicl.2018.01.016

    Article  PubMed  PubMed Central  Google Scholar 

  20. Deen M, Hougaard A, Hansen HD, Svarer C, Eiberg H, Lehel S, Knudsen GM, Ashina M (2019) Migraine is associated with high brain 5-HT levels as indexed by 5-HT4 receptor binding. Cephalalgia 39(4):526–532. https://doi.org/10.1177/0333102418793642

    Article  PubMed  Google Scholar 

  21. Aziz TAM, Fouad HH, Rashed LA, Fathy S (2003) Serotonin and its metabolite; 5-hydroxyindoleacetic acid in neurophysiology of headache. J Clin Biochem Nutr 33(3):95–100. https://doi.org/10.3164/jcbn.33.95

    Article  Google Scholar 

  22. Bruera O, Sances G, Leston J, Levin G, Cristina S, Medina C, Barontini M, Nappi G, Figuerola MA (2008) Plasma melatonin pattern in chronic and episodic headaches: evaluation during sleep and waking. Funct Neurol 23(2):77–81

    PubMed  Google Scholar 

  23. Ferini-Strambi L, Galbiati A, Combi R (2019) Sleep disorder-related headaches. Neurol Sci 40(Suppl 1):107–113. https://doi.org/10.1007/s10072-019-03837-z

    Article  PubMed  Google Scholar 

  24. Paiva T, Farinha A, Martins A, Batista A, Guilleminault C (1997) Chronic headaches and sleep disorders. Arch Intern Med 157(15):1701–1705

    Article  CAS  Google Scholar 

  25. D’Andrea G, D’Amico D, Bussone G, Bolner A, Aguggia M, Saracco MG, Galloni E, De Riva V, D’Arrigo A, Colavito D, Leon A, Perini F (2014) Tryptamine levels are low in plasma of chronic migraine and chronic tension-type headache. Neurol Sci 35(12):1941–1945. https://doi.org/10.1007/s10072-014-1867-5

    Article  PubMed  Google Scholar 

  26. Russi P, Carlà V, Moroni F (1989) Indolpyruvic acid administration increases the brain content of kynurenic acid. Is this a new avenue to modulate excitatory amino acid receptors in vivo? Biochem Pharmacol 38(15):2405–2409. https://doi.org/10.1016/0006-2952(89)90083-x

    Article  CAS  PubMed  Google Scholar 

  27. Politi V, Lavaggi MV, Di Stazio G, Margonelli A (1991) Indole-3-pyruvic acid as a direct precursor of kynurenic acid. Adv Exp Med Biol 294:515–518. https://doi.org/10.1007/978-1-4684-5952-4_57

    Article  CAS  PubMed  Google Scholar 

  28. Tuka B, Nyári A, Cseh EK, Körtési T, Veréb D, Tömösi F, Kecskeméti G, Janáky T, Tajti J, Vécsei L (2021) Clinical relevance of depressed kynurenine pathway in episodic migraine patients: potential prognostic markers in the peripheral plasma during the interictal period. J Headache Pain 22(1):60. https://doi.org/10.1186/s10194-021-01239-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Humphrey PP (1991) 5-Hydroxytryptamine and the pathophysiology of migraine. J Neurol 238(Suppl 1):S38-44. https://doi.org/10.1007/BF01642905

    Article  PubMed  Google Scholar 

  30. Gonçalves AL, Martini Ferreira A, Ribeiro RT, Zukerman E, Cipolla-Neto J, Peres MF (2016) Randomised clinical trial comparing melatonin 3 mg, amitriptyline 25 mg and placebo for migraine prevention. J Neurol Neurosurg Psychiatry 87(10):1127–1132. https://doi.org/10.1136/jnnp-2016-313458

    Article  PubMed  Google Scholar 

  31. Long R, Zhu Y, Zhou S (2019) Therapeutic role of melatonin in migraine prophylaxis: a systematic review. Medicine 98(3):e14099. https://doi.org/10.1097/MD.0000000000014099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zielonka D (2021) Melatonin secretion in migraine patients: the current state of knowledge. Neurol Neurochir Pol 55(1):5–7. https://doi.org/10.5603/PJNNS.a2021.0002

    Article  PubMed  Google Scholar 

  33. Zduńska A, Cegielska J, Zduński S, Białobrzewski M, Kochanowski J (2021) Variability in melatonin concentration in blood serum of patients with episodic migraine: a pilot study. Neurol Neurochir Pol 55(1):81–90. https://doi.org/10.5603/PJNNS.a2020.0095

    Article  PubMed  Google Scholar 

  34. Kozak HH, Boysan M, Uca AU, Aydın A, Kılınç İ, Genç E, Altaş M, Güngör DC, Turgut K, Özer N (2017) Sleep quality, morningness-eveningness preference, mood profile, and levels of serum melatonin in migraine patients: a case-control study. Acta Neurol Belg 117(1):111–119. https://doi.org/10.1007/s13760-016-0723-1

    Article  PubMed  Google Scholar 

  35. Claustrat B, Loisy C, Brun J, Beorchia S, Arnaud JL, Chazot G (1989) Nocturnal plasma melatonin levels in migraine: a preliminary report. Headache 29(4):242–245. https://doi.org/10.1111/j.1526-4610.1989.hed22904242.x

    Article  CAS  PubMed  Google Scholar 

  36. MacGregor EA, Frith A, Ellis J, Aspinall L, Hackshaw A (2006) Incidence of migraine relative to menstrual cycle phases of rising and falling estrogen. Neurology 67(12):2154–2158. https://doi.org/10.1212/01.wnl.0000233888.18228.19

    Article  CAS  PubMed  Google Scholar 

  37. Cupini LM, Corbelli I, Sarchelli P (2021) Menstrual migraine: what it is and does it matter? J Neurol 268(7):2355–2363. https://doi.org/10.1007/s00415-020-09726-2

    Article  CAS  PubMed  Google Scholar 

  38. Murialdo G, Fonzi S, Costelli P, Solinas GP, Parodi C, Marabini S, Fanciullacci M, Polleri A (1994) Urinary melatonin excretion throughout the ovarian cycle in menstrually related migraine. Cephalalgia 14(3):205–209. https://doi.org/10.1046/j.1468-2982.1994.014003205.x

    Article  CAS  PubMed  Google Scholar 

  39. Lang U, Kornemark M, Aubert ML, Paunier L, Sizonenko PC (1981) Radioimmunological determination of urinary melatonin in humans: correlation with plasma levels and typical 24-hour rhythmicity. J Clin Endocrinol Metab 53(3):645–650. https://doi.org/10.1210/jcem-53-3-645

    Article  CAS  PubMed  Google Scholar 

  40. Curto M, Lionetto L, Negro A, Capi M, Perugino F, Fazio F, Giamberardino MA, Simmaco M, Nicoletti F, Martelletti P (2016) Altered serum levels of kynurenine metabolites in patients affected by cluster headache. J Headache Pain 17(1):27. https://doi.org/10.1186/s10194-016-0620-2

    Article  CAS  PubMed Central  Google Scholar 

  41. D’Andrea G, Bussone G, Di Fiore P, Perini F, Gucciardi A, Bolner A, Aguggia M, Saracco G, Galloni E, Giordano G, Leon A (2017) Pathogenesis of chronic cluster headache and bouts: role of tryptamine, arginine metabolism and α1-agonists. Neurol Sci 38(Suppl 1):37–43. https://doi.org/10.1007/s10072-017-2862-4

    Article  CAS  PubMed  Google Scholar 

  42. Oláh G, Herédi J, Menyhárt A, Czinege Z, Nagy D, Fuzik J, Kocsis K, Knapp L, Krucsó E, Gellért L, Kis Z, Farkas T, Fülöp F, Párdutz A, Tajti J, Vécsei L, Toldi J (2013) Unexpected effects of peripherally administered kynurenic acid on cortical spreading depression and related blood-brain barrier permeability. Drug Des Devel Ther 7:981–987. https://doi.org/10.2147/DDDT.S44496

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ye R, Kong X, Han J, Zhao G (2009) N-methyl-D-aspartate receptor antagonists for migraine: a potential therapeutic approach. Med Hypotheses 72(5):603–605. https://doi.org/10.1016/j.mehy.2008.11.037

    Article  CAS  PubMed  Google Scholar 

  44. Konradsson-Geuken A, Wu HQ, Gash CR, Alexander KS, Campbell A, Sozeri Y, Pellicciari R, Schwarcz R, Bruno JP (2010) Cortical kynurenic acid bi-directionally modulates prefrontal glutamate levels as assessed by microdialysis and rapid electrochemistry. Neuroscience 169(4):1848–1859. https://doi.org/10.1016/j.neuroscience.2010.05.052

    Article  CAS  PubMed  Google Scholar 

  45. Chauvel V, Vamos E, Pardutz A, Vecsei L, Schoenen J, Multon S (2012) Effect of systemic kynurenine on cortical spreading depression and its modulation by sex hormones in rat. Exp Neurol 236(2):207–214. https://doi.org/10.1016/j.expneurol.2012.05.002

    Article  CAS  PubMed  Google Scholar 

  46. Fukui S, Schwarcz R, Rapoport SI, Takada Y, Smith QR (1991) Blood-brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J Neurochem 56(6):2007–2017. https://doi.org/10.1111/j.1471-4159.1991.tb03460.x

    Article  CAS  PubMed  Google Scholar 

  47. Majláth Z, Török N, Toldi J, Vécsei L (2016) Memantine and kynurenic acid: current neuropharmacological aspects. Curr Neuropharmacol 14(2):200–209. https://doi.org/10.2174/1570159x14666151113123221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stone TW (1993) Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev 45(3):309–379

    CAS  PubMed  Google Scholar 

  49. Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX (2001) The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J Neurosci 21(19):7463–7473. https://doi.org/10.1523/JNEUROSCI.21-19-07463.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Potter MC, Elmer GI, Bergeron R, Albuquerque EX, Guidetti P, Wu HQ, Schwarcz R (2010) Reduction of endogenous kynurenic acid formation enhances extracellular glutamate, hippocampal plasticity, and cognitive behavior. Neuropsychopharmacology 35(8):1734–1742. https://doi.org/10.1038/npp.2010.39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang J, Simonavicius N, Wu X, Swaminath G, Reagan J, Tian H, Ling L (2006) Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J Biol Chem 281(31):22021–22008. https://doi.org/10.1074/jbc.M603503200

    Article  CAS  PubMed  Google Scholar 

  52. Guo J, Williams DJ, Puhl HL 3rd, Ikeda SR (2008) Inhibition of N-type calcium channels by activation of GPR35, an orphan receptor, heterologously expressed in rat sympathetic neurons. J Pharmacol Exp Ther 324(1):342–351. https://doi.org/10.1124/jpet.107.127266

    Article  CAS  PubMed  Google Scholar 

  53. Laube B, Hirai H, Sturgess M, Betz H, Kuhse J (1997) Molecular determinants of agonist discrimination by NMDA receptor subunits: analysis of the glutamate binding site on the NR2B subunit. Neuron 18(3):493–503. https://doi.org/10.1016/s0896-6273(00)81249-0

    Article  CAS  PubMed  Google Scholar 

  54. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist PH, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Pontén F (2015) Tissue-based map of the human proteome. Science 347(6220):1260419. https://doi.org/10.1126/science.1260419

    Article  CAS  PubMed  Google Scholar 

  55. Hoffmann J, Charles A (2018) Glutamate and its receptors as therapeutic targets for migraine. Neurotherapeutics 15(2):361–370. https://doi.org/10.1007/s13311-018-0616-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pohanka M (2012) Alpha7 nicotinic acetylcholine receptor is a target in pharmacology and toxicology. Int J Mol Sci 13(2):2219–2238. https://doi.org/10.3390/ijms13022219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu L, Chang GQ, Jiao YQ, Simon SA (1998) Neuronal nicotinic acetylcholine receptors in rat trigeminal ganglia. Brain Res 809(2):238–245. https://doi.org/10.1016/s0006-8993(98)00862-2

    Article  CAS  PubMed  Google Scholar 

  58. Carpenedo R, Pittaluga A, Cozzi A, Attucci S, Galli A, Raiteri M, Moroni F (2001) Presynaptic kynurenate-sensitive receptors inhibit glutamate release. Eur J Neurosci 13(11):2141–2147. https://doi.org/10.1046/j.0953-816x.2001.01592.x

    Article  CAS  PubMed  Google Scholar 

  59. Carstens E, Simons CT, Dessirier JM, Carstens MI, Jinks SL (2000) Role of neuronal nicotinic-acetylcholine receptors in the activation of neurons in trigeminal subnucleus caudalis by nicotine delivered to the oral mucosa. Exp Brain Res 132(3):375–383. https://doi.org/10.1007/s002210000351

    Article  CAS  PubMed  Google Scholar 

  60. Papadopolou S, Hartmann P, Lips KS, Kummer W, Haberberger RV (2004) Nicotinic receptor mediated stimulation of NO-generation in neurons of rat thoracic dorsal root ganglia. Neurosci Lett 361(1–3):32–35. https://doi.org/10.1016/j.neulet.2003.08.064

    Article  CAS  PubMed  Google Scholar 

  61. Fejes-Szabó A, Bohár Z, Vámos E, Nagy-Grócz G, Tar L, Veres G, Zádori D, Szentirmai M, Tajti J, Szatmári I, Fülöp F, Toldi J, Párdutz Á, Vécsei L (2014) Pre-treatment with new kynurenic acid amide dose-dependently prevents the nitroglycerine-induced neuronal activation and sensitization in cervical part of trigemino-cervical complex. J Neural Transm 121(7):725–738. https://doi.org/10.1007/s00702-013-1146-2

    Article  CAS  PubMed  Google Scholar 

  62. Cosi C, Mannaioni G, Cozzi A, Carlà V, Sili M, Cavone L, Maratea D, Moroni F (2011) G-protein coupled receptor 35 (GPR35) activation and inflammatory pain: studies on the antinociceptive effects of kynurenic acid and zaprinast. Neuropharmacology 60(7–8):1227–1231. https://doi.org/10.1016/j.neuropharm.2010.11.014

    Article  CAS  PubMed  Google Scholar 

  63. Mackenzie AE, Milligan G (2017) The emerging pharmacology and function of GPR35 in the nervous system. Neuropharmacology 113(Pt B):661–671. https://doi.org/10.1016/j.neuropharm.2015.07.035

    Article  CAS  PubMed  Google Scholar 

  64. Lee J, Saloman JL, Weiland G, Auh QS, Chung MK, Ro JY (2012) Functional interactions between NMDA receptors and TRPV1 in trigeminal sensory neurons mediate mechanical hyperalgesia in the rat masseter muscle. Pain 153(7):1514–1524. https://doi.org/10.1016/j.pain.2012.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shelukhina I, Paddenberg R, Kummer W, Tsetlin V (2015) Functional expression and axonal transport of α7 nAChRs by peptidergic nociceptors of rat dorsal root ganglion. Brain Struct Funct 220(4):1885–1899. https://doi.org/10.1007/s00429-014-0762-4

    Article  CAS  PubMed  Google Scholar 

  66. Heyes MP, Saito K, Crowley JS, Davis LE, Demitrack MA, Der M, Dilling LA, Elia J, Kruesi MJ, Lackner A et al (1992) Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease. Brain 115(Pt 5):1249–1273. https://doi.org/10.1093/brain/115.5.1249

    Article  PubMed  Google Scholar 

  67. Forrest CM, Gould SR, Darlington LG, Stone TW (2003) Levels of purine, kynurenine and lipid peroxidation products in patients with inflammatory bowel disease. Adv Exp Med Biol 527:395–400. https://doi.org/10.1007/978-1-4615-0135-0_46

    Article  CAS  PubMed  Google Scholar 

  68. Stone TW, Darlington LG (2002) Endogenous kynurenines as targets for drug discovery and development. Nat Rev Drug Discov 1(8):609–620. https://doi.org/10.1038/nrd870

    Article  CAS  PubMed  Google Scholar 

  69. Grant RS, Coggan SE, Smythe GA (2009) The physiological action of picolinic Acid in the human brain. Int J Tryptophan Res 2:71–79. https://doi.org/10.4137/ijtr.s2469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Beninger RJ, Colton AM, Ingles JL, Jhamandas K, Boegman RJ (1994) Picolinic acid blocks the neurotoxic but not the neuroexcitant properties of quinolinic acid in the rat brain: evidence from turning behaviour and tyrosine hydroxylase immunohistochemistry. Neuroscience 61(3):603–612. https://doi.org/10.1016/0306-4522(94)90438-3

    Article  CAS  PubMed  Google Scholar 

  71. Schwarcz R, Guidetti P, Sathyasaikumar KV, Muchowski PJ (2010) Of mice, rats and men: revisiting the quinolinic acid hypothesis of Huntington’s disease. Prog Neurobiol 90(2):230–245. https://doi.org/10.1016/j.pneurobio.2009.04.005

    Article  CAS  PubMed  Google Scholar 

  72. Stone TW, Mackay GM, Forrest CM, Clark CJ, Darlington LG (2003) Tryptophan metabolites and brain disorders. Clin Chem Lab Med 41(7):852–859. https://doi.org/10.1515/CCLM.2003.129

    Article  CAS  PubMed  Google Scholar 

  73. Edvinsson L, Haanes KA, Warfvinge K (2019) Does inflammation have a role in migraine? Nat Rev Neurol 15(8):483–490. https://doi.org/10.1038/s41582-019-0216-y

    Article  PubMed  Google Scholar 

  74. Malhotra R (2016) Understanding migraine: potential role of neurogenic inflammation. Ann Indian Acad Neurol 19(2):175–182. https://doi.org/10.4103/0972-2327.182302

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kursun O, Yemisci M, van den Maagdenberg AMJM, Karatas H (2021) Migraine and neuroinflammation: the inflammasome perspective. J Headache Pain 22(1):55. https://doi.org/10.1186/s10194-021-01271-1

    Article  PubMed  PubMed Central  Google Scholar 

  76. Krause D, Suh HS, Tarassishin L, Cui QL, Durafourt BA, Choi N, Bauman A, Cosenza-Nashat M, Antel JP, Zhao ML, Lee SC (2011) The tryptophan metabolite 3-hydroxyanthranilic acid plays anti-inflammatory and neuroprotective roles during inflammation: role of hemeoxygenase-1. Am J Pathol 179(3):1360–1372. https://doi.org/10.1016/j.ajpath.2011.05.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fazio F, Lionetto L, Molinaro G, Bertrand HO, Acher F, Ngomba RT, Notartomaso S, Curini M, Rosati O, Scarselli P, Di Marco R, Battaglia G, Bruno V, Simmaco M, Pin JP, Nicoletti F, Goudet C (2012) Cinnabarinic acid, an endogenous metabolite of the kynurenine pathway, activates type 4 metabotropic glutamate receptors. Mol Pharmacol 81(5):643–656. https://doi.org/10.1124/mol.111.074765

    Article  CAS  PubMed  Google Scholar 

  78. Fazio F, Lionetto L, Curto M, Iacovelli L, Cavallari M, Zappulla C, Ulivieri M, Napoletano F, Capi M, Corigliano V, Scaccianoce S, Caruso A, Miele J, De Fusco A, Di Menna L, Comparelli A, De Carolis A, Gradini R, Nisticò R, De Blasi A, Girardi P, Bruno V, Battaglia G, Nicoletti F, Simmaco M (2015) Xanthurenic acid activates mGlu2/3 metabotropic glutamate receptors and is a potential trait marker for schizophrenia. Sci Rep 5:17799. https://doi.org/10.1038/srep17799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fazio F, Lionetto L, Curto M, Iacovelli L, Copeland CS, Neale SA, Bruno V, Battaglia G, Salt TE, Nicoletti F (2017) Cinnabarinic acid and xanthurenic acid: two kynurenine metabolites that interact with metabotropic glutamate receptors. Neuropharmacology 112(Pt B):365–372. https://doi.org/10.1016/j.neuropharm.2016.06.020

    Article  CAS  PubMed  Google Scholar 

  80. Gradini R, Nisticò R, De Blasi A, Girardi P, Bruno V, Battaglia G, Nicoletti F, Simmaco M (2015) Xanthurenic acid activates mGlu2/3 metabotropic glutamate receptors and is a potential trait marker for schizophrenia. Sci Rep 5:17799. https://doi.org/10.1038/srep17799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Makoff A, Lelchuk R, Oxer M, Harrington K, Emson P (1996) Molecular characterization and localization of human metabotropic glutamate receptor type 4. Brain Res Mol Brain Res 37(1–2):239–248. https://doi.org/10.1016/0169-328x(95)00321-i

    Article  CAS  PubMed  Google Scholar 

  82. Makoff A, Volpe F, Lelchuk R, Harrington K, Emson P (1996) Molecular characterization and localization of human metabotropic glutamate receptor type 3. Brain Res Mol Brain Res 40(1):55–63. https://doi.org/10.1016/0169-328x(96)00037-x

    Article  CAS  PubMed  Google Scholar 

  83. Schmidt D, Smenton A, Raghavan S, Shen H, Ding FX, Carballo-Jane E, Luell S, Ciecko T, Holt TG, Wolff M, Taggart A, Wilsie L, Krsmanovic M, Ren N, Blom D, Cheng K, McCann PE, Waters MG, Tata J, Colletti S (2010) Anthranilic acid replacements in a niacin receptor agonist. Bioorg Med Chem Lett v20(11):3426–3430. https://doi.org/10.1016/j.bmcl.2010.04.001

    Article  CAS  Google Scholar 

  84. Shearer BG, Patel HS, Billin AN, Way JM, Winegar DA, Lambert MH, Xu RX, Leesnitzer LM, Merrihew RV, Huet S, Willson TM (2008) Discovery of a novel class of PPARdelta partial agonists. Bioorg Med Chem Lett 18(18):5018–5022. https://doi.org/10.1016/j.bmcl.2008.08.011

    Article  CAS  PubMed  Google Scholar 

  85. Prousky J, Seely D (2005) The treatment of migraines and tension-type headaches with intravenous and oral niacin (nicotinic acid): systematic review of the literature. Nutr J 4:3. https://doi.org/10.1186/1475-2891-4-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Offermanns S, Colletti SL, Lovenberg TW, Semple G, Wise A, IJzerman AP (2011) International Union of Basic and Clinical Pharmacology. LXXXII: Nomenclature and Classification of Hydroxy-carboxylic Acid Receptors (GPR81, GPR109A, and GPR109B). Pharmacol Rev 63(2):269–290. https://doi.org/10.1124/pr.110.003301

    Article  CAS  PubMed  Google Scholar 

  87. Wise A, Foord SM, Fraser NJ, Barnes AA, Elshourbagy N, Eilert M, Ignar DM, Murdock PR, Steplewski K, Green A, Brown AJ, Dowell SJ, Szekeres PG, Hassall DG, Marshall FH, Wilson S, Pike NB (2003) Molecular identification of high and low affinity receptors for nicotinic acid. J Biol Chem 278(11):9869–9874. https://doi.org/10.1074/jbc.M210695200

    Article  CAS  PubMed  Google Scholar 

  88. Rahman M, Muhammad S, Khan MA, Chen H, Ridder DA, Müller-Fielitz H, Pokorná B, Vollbrandt T, Stölting I, Nadrowitz R, Okun JG, Offermanns S, Schwaninger M (2014) The β-hydroxybutyrate receptor HCA2 activates a neuroprotective subset of macrophages. Nat Commun 5:3944. https://doi.org/10.1038/ncomms4944

    Article  CAS  PubMed  Google Scholar 

  89. Masson J, Emerit MB, Hamon M, Darmon M (2012) Serotonergic signaling: multiple effectors and pleiotropic effects. WIREs Membr Transp Signal 1:685–713. https://doi.org/10.1002/wmts.50

    Article  CAS  Google Scholar 

  90. Bockaert J, Claeysen S, Bécamel C, Dumuis A, Marin P (2006) Neuronal 5-HT metabotropic receptors: fine-tuning of their structure, signaling, and roles in synaptic modulation. Cell Tissue Res 326(2):553–572. https://doi.org/10.1007/s00441-006-0286-1

    Article  CAS  PubMed  Google Scholar 

  91. Raymond JR, Mukhin YV, Gelasco A, Turner J, Collinsworth G, Gettys TW, Grewal JS, Garnovskaya MN (2001) Multiplicity of mechanisms of serotonin receptor signal transduction. Pharmacol Ther 92(2–3):179–212. https://doi.org/10.1016/s0163-7258(01)00169-3

    Article  CAS  PubMed  Google Scholar 

  92. Liu QQ, Yao XX, Gao SH, Li R, Li BJ, Yang W, Cui RJ (2020) Role of 5-HT receptors in neuropathic pain: potential therapeutic implications. Pharmacol Res 159:104949. https://doi.org/10.1016/j.phrs.2020.104949

    Article  CAS  PubMed  Google Scholar 

  93. Tanaka M, Török N, Vécsei L (2021) Are 5-HT1 receptor agonists effective anti-migraine drugs? Expert Opin Pharmacother 22(10):1221–1225. https://doi.org/10.1080/14656566.2021.1910235

    Article  CAS  PubMed  Google Scholar 

  94. Negro A, Koverech A, Martelletti P (2018) Serotonin receptor agonists in the acute treatment of migraine: a review on their therapeutic potential. J Pain Res 11:515–526. https://doi.org/10.2147/JPR.S132833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pytliak M, Vargová V, Mechírová V, Felsöci M (2011) Serotonin receptors—from molecular biology to clinical applications. Physiol Res 60(1):15–25. https://doi.org/10.33549/physiolres.931903

    Article  CAS  PubMed  Google Scholar 

  96. Rojas PS, Fiedler JL (2016) What do we really know about 5-HT1A receptor signaling in neuronal cells? Front Cell Neurosci 10:272. https://doi.org/10.3389/fncel.2016.00272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ootsuka Y, Blessing WW (2003) 5-Hydroxytryptamine 1A receptors inhibit cold-induced sympathetically mediated cutaneous vasoconstriction in rabbits. J Physiol 552(Pt 1):303–314. https://doi.org/10.1113/jphysiol.2003.048041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ootsuka Y, Blessing WW (2006) Activation of 5-HT1A receptors in rostral medullary raphé inhibits cutaneous vasoconstriction elicited by cold exposure in rabbits. Brain Res 1073–1074:252–261. https://doi.org/10.1016/j.brainres.2005.12.031

    Article  CAS  PubMed  Google Scholar 

  99. Tepper SJ, Rapoport AM, Sheftell FD (2002) Mechanisms of action of the 5-HT1B/1D receptor agonists. Arch Neurol 59(7):1084–1088. https://doi.org/10.1001/archneur.59.7.1084

    Article  PubMed  Google Scholar 

  100. Nelson DL, Phebus LA, Johnson KW, Wainscott DB, Cohen ML, Calligaro DO, Xu YC (2010) Preclinical pharmacological profile of the selective 5-HT1F receptor agonist lasmiditan. Cephalalgia 30(10):1159–1169. https://doi.org/10.1177/0333102410370873

    Article  PubMed  Google Scholar 

  101. Oswald JC, Schuster NM (2018) Lasmiditan for the treatment of acute migraine: a review and potential role in clinical practice. J Pain Res 11:2221–2227. https://doi.org/10.2147/JPR.S152216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Spasov AA, Yakovlev DS, Brigadirova AA, Maltsev DV, Agatsarskaya YV (2019) Novel approaches to the development of antimigraine drugs: a focus on 5-HT2A receptor antagonists. Russ J Bioorg Chem 45:76–88. https://doi.org/10.1134/S1068162019020146

    Article  CAS  Google Scholar 

  103. Villalón CM, Centurión D (2007) Cardiovascular responses produced by 5-hydroxytriptamine:a pharmacological update on the receptors/mechanisms involved and therapeutic implications. Naunyn Schmiedebergs Arch Pharmacol 376(1–2):45–63. https://doi.org/10.1007/s00210-007-0179-1

    Article  CAS  PubMed  Google Scholar 

  104. Anwar MA, Ford WR, Broadley KJ, Herbert AA (2012) Vasoconstrictor and vasodilator responses to tryptamine of rat-isolated perfused mesentery: comparison with tyramine and β-phenylethylamine. Br J Pharmacol 165(7):2191–2202. https://doi.org/10.1111/j.1476-5381.2011.01706.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Srikiatkhachorn A, Suwattanasophon C, Ruangpattanatawee U, Phansuwan-Pujito P (2002) Wolff Award. 5 -HT2A receptor activation and nitric oxide synthesis: a possible mechanism determining migraine attacks. Headache 42(7):566–574. https://doi.org/10.1046/j.1526-4610.2002.02142.x

    Article  PubMed  Google Scholar 

  106. Naito K, Tanaka C, Mitsuhashi M, Moteki H, Kimura M, Natsume H, Ogihara M (2016) Signal transduction mechanism for serotonin 5-HT2B receptor-mediated DNA synthesis and proliferation in primary cultures of adult rat hepatocytes. Biol Pharm Bull 39(1):121–129. https://doi.org/10.1248/bpb.b15-00735

    Article  CAS  PubMed  Google Scholar 

  107. Schmuck K, Ullmer C, Engels P, Lübbert H (1994) Cloning and functional characterization of the human 5-HT2B serotonin receptor. FEBS Lett 342(1):85–90. https://doi.org/10.1016/0014-5793(94)80590-3

    Article  CAS  PubMed  Google Scholar 

  108. Wacker D, Wang C, Katritch V, Han GW, Huang XP, Vardy E, McCorvy JD, Jiang Y, Chu M, Siu FY, Liu W, Xu HE, Cherezov V, Roth BL, Stevens RC (2013) Structural features for functional selectivity at serotonin receptors. Science 340(6132):615–619. https://doi.org/10.1126/science.1232808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Manivet P, Mouillet-Richard S, Callebert J, Nebigil CG, Maroteaux L, Hosoda S, Kellermann O, Launay JM (2000) PDZ-dependent activation of nitric-oxide synthases by the serotonin 2B receptor. J Biol Chem 275(13):9324–9331. https://doi.org/10.1074/jbc.275.13.9324

    Article  CAS  PubMed  Google Scholar 

  110. Kaufman MJ, Hartig PR, Hoffman BJ (1995) Serotonin 5-HT2C receptor stimulates cyclic GMP formation in choroid plexus. J Neurochem 64(1):199–205. https://doi.org/10.1046/j.1471-4159.1995.64010199.x

    Article  CAS  PubMed  Google Scholar 

  111. Barnes NM, Hales TG, Lummis SC, Peters JA (2009) The 5-HT3 receptor–the relationship between structure and function. Neuropharmacology 56(1):273–284. https://doi.org/10.1016/j.neuropharm.2008.08.003

    Article  CAS  PubMed  Google Scholar 

  112. Maricq AV, Peterson AS, Brake AJ, Myers RM, Julius D (1991) Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. Science 254(5030):432–437. https://doi.org/10.1126/science.1718042

    Article  CAS  PubMed  Google Scholar 

  113. Lummis SC (2012) 5-HT(3) receptors. J Biol Chem 287(48):40239–40245. https://doi.org/10.1074/jbc.R112.406496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Derkach V, Surprenant A, North RA (1989) 5-HT3 receptors are membrane ion channels. Nature 339(6227):706–709. https://doi.org/10.1038/339706a0

    Article  CAS  PubMed  Google Scholar 

  115. Yang J (1990) Ion permeation through 5-hydroxytryptamine-gated channels in neuroblastoma N18 cells. J Gen Physiol 96(6):1177–1198. https://doi.org/10.1085/jgp.96.6.1177

    Article  CAS  PubMed  Google Scholar 

  116. Davies PA, Pistis M, Hanna MC, Peters JA, Lambert JJ, Hales TG, Kirkness EF (1999) The 5-HT3B subunit is a major determinant of serotonin-receptor function. Nature 397(6717):359–363. https://doi.org/10.1038/16941

    Article  CAS  PubMed  Google Scholar 

  117. King BN, Stoner MC, Haque SM, Kellum JM (2004) A nitrergic secretomotor neurotransmitter in the chloride secretory response to serotonin. Dig Dis Sci 49(2):196–201. https://doi.org/10.1023/b:ddas.0000017438.30998.08

    Article  CAS  PubMed  Google Scholar 

  118. Zeitz KP, Guy N, Malmberg AB, Dirajlal S, Martin WJ, Sun L, Bonhaus DW, Stucky CL, Julius D, Basbaum AI (2002) The 5-HT3 subtype of serotonin receptor contributes to nociceptive processing via a novel subset of myelinated and unmyelinated nociceptors. J Neurosci 22(3):1010–1019. https://doi.org/10.1523/JNEUROSCI.22-03-01010.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Nasirinezhad F, Hosseini M, Karami Z, Yousefifard M, Janzadeh A (2016) Spinal 5-HT3 receptor mediates nociceptive effect on central neuropathic pain; possible therapeutic role for tropisetron. J Spinal Cord Med 39(2):212–219. https://doi.org/10.1179/2045772315Y.0000000047

    Article  PubMed  PubMed Central  Google Scholar 

  120. Claeysen S, Sebben M, Becamel C, Bockaert J, Dumuis A (1999) Novel brain-specific 5-HT4 receptor splice variants show marked constitutive activity: role of the C-terminal intracellular domain. Mol Pharmacol 55(5):910–920

    CAS  PubMed  Google Scholar 

  121. Pindon A, van Hecke G, van Gompel P, Lesage AS, Leysen JE, Jurzak M (2002) Differences in signal transduction of two 5-HT4 receptor splice variants: compound specificity and dual coupling with Galphas- and Galphai/o-proteins. Mol Pharmacol 61(1):85–96. https://doi.org/10.1124/mol.61.1.85

    Article  CAS  PubMed  Google Scholar 

  122. Barthet G, Carrat G, Cassier E, Barker B, Gaven F, Pillot M, Framery B, Pellissier LP, Augier J, Kang DS, Claeysen S, Reiter E, Banères JL, Benovic JL, Marin P, Bockaert J, Dumuis A (2009) Beta-arrestin1 phosphorylation by GRK5 regulates G protein-independent 5-HT4 receptor signalling. EMBO J 28(18):2706–2718. https://doi.org/10.1038/emboj.2009.215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Pineda-Farias JB, Barragán-Iglesias P, Valdivieso-Sánchez A, Rodríguez-Silverio J, Flores-Murrieta FJ, Granados-Soto V, Rocha-González HI (2017) Spinal 5-HT4 and 5-HT6 receptors contribute to the maintenance of neuropathic pain in rats. Pharmacol Rep 69(5):916–923. https://doi.org/10.1016/j.pharep.2017.04.001

    Article  CAS  PubMed  Google Scholar 

  124. Bruning TA, Chang PC, Blauw GJ, Vermeij P, van Zwieten PA (1993) Serotonin-induced vasodilatation in the human forearm is mediated by the “nitric oxide-pathway”: no evidence for involvement of the 5-HT3-receptor. J Cardiovasc Pharmacol 22(1):44–51. https://doi.org/10.1097/00005344-199307000-00008

    Article  CAS  PubMed  Google Scholar 

  125. Francken BJ, Jurzak M, Vanhauwe JF, Luyten WH, Leysen JE (1998) The human 5-ht5A receptor couples to Gi/Go proteins and inhibits adenylate cyclase in HEK 293 cells. Eur J Pharmacol 361(2–3):299–309. https://doi.org/10.1016/s0014-2999(98)00744-4

    Article  CAS  PubMed  Google Scholar 

  126. Noda M, Yasuda S, Okada M, Higashida H, Shimada A, Iwata N, Ozaki N, Nishikawa K, Shirasawa S, Uchida M, Aoki S, Wada K (2003) Recombinant human serotonin 5A receptors stably expressed in C6 glioma cells couple to multiple signal transduction pathways. J Neurochem 84(2):222–232. https://doi.org/10.1046/j.1471-4159.2003.01518.x

    Article  CAS  PubMed  Google Scholar 

  127. Doly S, Fischer J, Brisorgueil MJ, Vergé D, Conrath M (2004) 5-HT5A receptor localization in the rat spinal cord suggests a role in nociception and control of pelvic floor musculature. J Comp Neurol 476(4):316–329. https://doi.org/10.1002/cne.20214

    Article  CAS  PubMed  Google Scholar 

  128. Muñoz-Islas E, Vidal-Cantú GC, Bravo-Hernández M, Cervantes-Durán C, Quiñonez-Bastidas GN, Pineda-Farias JB, Barragán-Iglesias P, Granados-Soto V (2014) Spinal 5-HT5A receptors mediate 5-HT-induced antinociception in several pain models in rats. Pharmacol Biochem Behav. https://doi.org/10.1016/j.pbb.2014.02.001

    Article  PubMed  Google Scholar 

  129. Sleight AJ, Boess FG, Bös M, Bourson A (1998) The putative 5-ht6 receptor: localization and function. Ann N Y Acad Sci 861:91–96. https://doi.org/10.1111/j.1749-6632.1998.tb10178.x

    Article  CAS  PubMed  Google Scholar 

  130. Dawson LA (2011) The central role of 5-HT6 receptors in modulating brain neurochemistry. Int Rev Neurobiol 96:1–26. https://doi.org/10.1016/B978-0-12-385902-0.00001-2

    Article  CAS  PubMed  Google Scholar 

  131. Meltzer HY, Roth BL (2013) Lorcaserin and pimavanserin: emerging selectivity of serotonin receptor subtype-targeted drugs. J Clin Invest 123(12):4986–4991. https://doi.org/10.1172/JCI70678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Castañeda-Corral G, Rocha-González HI, Araiza-Saldaña CI, Ambriz-Tututi M, Vidal-Cantú GC, Granados-Soto V (2009) Role of peripheral and spinal 5-HT6 receptors according to the rat formalin test. Neuroscience 162(2):444–452. https://doi.org/10.1016/j.neuroscience.2009.04.072

    Article  CAS  PubMed  Google Scholar 

  133. Schechter LE, Lin Q, Smith DL, Zhang G, Shan Q, Platt B, Brandt MR, Dawson LA, Cole D, Bernotas R, Robichaud A, Rosenzweig-Lipson S, Beyer CE (2008) Neuropharmacological profile of novel and selective 5-HT6 receptor agonists: WAY-181187 and WAY-208466. Neuropsychopharmacology 33(6):1323–1335. https://doi.org/10.1038/sj.npp.1301503

    Article  CAS  PubMed  Google Scholar 

  134. Zhang Y, Yang J, Yang X, Wu Y, Liu J, Wang Y, Huo F, Yan C (2020) The 5-HT6 receptors in the ventrolateral orbital cortex attenuate allodynia in a rodent model of neuropathic pain. Front Neurosci 14:884. https://doi.org/10.3389/fnins.2020.00884

    Article  PubMed  PubMed Central  Google Scholar 

  135. Adham N, Zgombick JM, Bard J, Branchek TA (1998) Functional characterization of the recombinant human 5-hydroxytryptamine7(a) receptor isoform coupled to adenylate cyclase stimulation. J Pharmacol Exp Ther 287(2):508–514

    CAS  PubMed  Google Scholar 

  136. Bard JA, Zgombick J, Adham N, Vaysse P, Branchek TA, Weinshank RL (1993) Cloning of a novel human serotonin receptor (5-HT7) positively linked to adenylate cyclase. J Biol Chem 268(31):23422–23426

    Article  CAS  Google Scholar 

  137. Norum JH, Hart K, Levy FO (2003) Ras-dependent ERK activation by the human G(s)-coupled serotonin receptors 5-HT4(b) and 5-HT7(a). J Biol Chem 278(5):3098–3104. https://doi.org/10.1074/jbc.M206237200

    Article  CAS  PubMed  Google Scholar 

  138. Kobe F, Guseva D, Jensen TP, Wirth A, Renner U, Hess D, Müller M, Medrihan L, Zhang W, Zhang M, Braun K, Westerholz S, Herzog A, Radyushkin K, El-Kordi A, Ehrenreich H, Richter DW, Rusakov DA, Ponimaskin E (2012) 5-HT7R/G12 signaling regulates neuronal morphology and function in an age-dependent manner. J Neurosci 32(9):2915–2930. https://doi.org/10.1523/JNEUROSCI.2765-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Baker LP, Nielsen MD, Impey S, Metcalf MA, Poser SW, Chan G, Obrietan K, Hamblin MW, Storm DR (1998) Stimulation of type 1 and type 8 Ca2+/calmodulin-sensitive adenylyl cyclases by the Gs-coupled 5-hydroxytryptamine subtype 5-HT7A receptor. J Biol Chem 273(28):17469–17476. https://doi.org/10.1074/jbc.273.28.17469

    Article  CAS  PubMed  Google Scholar 

  140. Terrón JA, Falcón-Neri A (1999) Pharmacological evidence for the 5-HT7 receptor mediating smooth muscle relaxation in canine cerebral arteries. Br J Pharmacol 127(3):609–616. https://doi.org/10.1038/sj.bjp.0702580

    Article  PubMed  PubMed Central  Google Scholar 

  141. Terrón JA, Bouchelet I, Hamel E (2001) 5-HT7 receptor mRNA expression in human trigeminal ganglia. Neurosci Lett 302(1):9–12. https://doi.org/10.1016/s0304-3940(01)01617-2

    Article  PubMed  Google Scholar 

  142. Villalón CM, Centurión D, Luján-Estrada M, Terrón JA, Sánchez-López A (1997) Mediation of 5-HT-induced external carotid vasodilatation in GR 127935-pretreated vagosympathectomized dogs by the putative 5-HT7 receptor. Br J Pharmacol 120(7):1319–1327. https://doi.org/10.1038/sj.bjp.0701020

    Article  PubMed  PubMed Central  Google Scholar 

  143. Wang X, Fang Y, Liang J, Yan M, Hu R, Pan X (2014) 5-HT7 receptors are involved in neurogenic dural vasodilatation in an experimental model of migraine. J Mol Neurosci 54(2):164–170. https://doi.org/10.1007/s12031-014-0268-9

    Article  CAS  PubMed  Google Scholar 

  144. Morecroft I, MacLean MR (1998) 5-hydroxytryptamine receptors mediating vasoconstriction and vasodilation in perinatal and adult rabbit small pulmonary arteries. Br J Pharmacol 125(1):69–78. https://doi.org/10.1038/sj.bjp.0702055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wang X, Fang Y, Liang J, Yin Z, Miao J, Luo N (2010) Selective inhibition of 5-HT7 receptor reduces CGRP release in an experimental model for migraine. Headache 50(4):579–587. https://doi.org/10.1111/j.1526-4610.2010.01632.x

    Article  PubMed  Google Scholar 

  146. Terrón JA (2002) Is the 5-HT(7) receptor involved in the pathogenesis and prophylactic treatment of migraine? Eur J Pharmacol 439(1–3):1–11. https://doi.org/10.1016/s0014-2999(02)01436-x

    Article  PubMed  Google Scholar 

  147. Milovanović DD, Majkić-Sing N, Mirković D, Pavlović J (1999) Plasma and urinary serotonin and 5-hydroxyindol-3-acetic acid in adults with migraine and tension-type headache. Adv Exp Med Biol 467:191–197. https://doi.org/10.1007/978-1-4615-4709-9_25

    Article  PubMed  Google Scholar 

  148. Hyypp MT, Kangasniemi P (1977) Variation of plasma free tryptophan and CSF 5-HIAA during migraine. Headache 17(1):25–27. https://doi.org/10.1111/j.1526-4610.1977.hed1701025.x

    Article  CAS  PubMed  Google Scholar 

  149. Bousser MG, Elghozi JL, Laude D, Soisson T (1986) Urinary 5-HIAA in migraine: evidence of lowered excretion in young adult females. Cephalalgia 6(4):205–209. https://doi.org/10.1046/j.1468-2982.1986.0604205.x

    Article  CAS  PubMed  Google Scholar 

  150. Curzon G, Theaker P, Phillips B (1966) Excretion of 5-hydroxyindolyl acetic acid (5HIAA) in migraine. J Neurol Neurosurg Psychiatry 29(1):85–90. https://doi.org/10.1136/jnnp.29.1.85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Chen Y, Palm F, Lesch KP, Gerlach M, Moessner R, Sommer C (2011) 5-hydroxyindolacetic acid (5-HIAA), a main metabolite of serotonin, is responsible for complete Freund’s adjuvant-induced thermal hyperalgesia in mice. Mol Pain 7:21. https://doi.org/10.1186/1744-8069-7-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Emet M, Ozcan H, Ozel L, Yayla M, Halici Z, Hacimuftuoglu A (2016) A review of melatonin, its receptors and drugs. Eurasian J Med 48(2):135–141. https://doi.org/10.5152/eurasianjmed.2015.0267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Zlotos DP, Jockers R, Cecon E, Rivara S, Witt-Enderby PA (2014) MT1 and MT2 melatonin receptors: ligands, models, oligomers, and therapeutic potential. J Med Chem 57(8):3161–3185. https://doi.org/10.1021/jm401343c

    Article  CAS  PubMed  Google Scholar 

  154. Calamini B, Santarsiero BD, Boutin JA, Mesecar AD (2008) Kinetic, thermodynamic and X-ray structural insights into the interaction of melatonin and analogues with quinone reductase 2. Biochem J 413(1):81–91. https://doi.org/10.1042/BJ20071373

    Article  CAS  PubMed  Google Scholar 

  155. Brydon L, Roka F, Petit L, de Coppet P, Tissot M, Barrett P, Morgan PJ, Nanoff C, Strosberg AD, Jockers R (1999) Dual signaling of human Mel1a melatonin receptors via G(i2), G(i3), and G(q/11) proteins. Mol Endocrinol 13(12):2025–2038. https://doi.org/10.1210/mend.13.12.0390

    Article  CAS  PubMed  Google Scholar 

  156. Chan KH, Wong YH (2013) A molecular and chemical perspective in defining melatonin receptor subtype selectivity. Int J Mol Sci 14(9):18385–18406. https://doi.org/10.3390/ijms140918385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kamal M, Marquez M, Vauthier V, Leloire A, Froguel P, Jockers R, Couturier C (2009) Improved donor/acceptor BRET couples for monitoring beta-arrestin recruitment to G protein-coupled receptors. Biotechnol J 4(9):1337–1344. https://doi.org/10.1002/biot.200900016

    Article  CAS  PubMed  Google Scholar 

  158. Doolen S, Krause DN, Dubocovich ML, Duckles SP (1998) Melatonin mediates two distinct responses in vascular smooth muscle. Eur J Pharmacol 345(1):67–69. https://doi.org/10.1016/s0014-2999(98)00064-8

    Article  CAS  PubMed  Google Scholar 

  159. Srinivasan V, Zakaria R, Jeet Singh H, Acuna-Castroviejo D (2012) Melatonin and its agonists in pain modulation and its clinical application. Arch Ital Biol 150(4):274–289. https://doi.org/10.4449/aib.v150i4.1391

    Article  PubMed  Google Scholar 

  160. Posa L, De Gregorio D, Gobbi G, Comai S (2018) Targeting melatonin MT2 receptors: a novel pharmacological avenue for inflammatory and neuropathic pain. Curr Med Chem 25(32):3866–3882. https://doi.org/10.2174/0929867324666170209104926

    Article  CAS  PubMed  Google Scholar 

  161. Posa L, Lopez-Canul M, Rullo L, De Gregorio D, Dominguez-Lopez S, Kaba Aboud M, Caputi FF, Candeletti S, Romualdi P, Gobbi G (2020) Nociceptive responses in melatonin MT2 receptor knockout mice compared to MT1 and double MT1 /MT2 receptor knockout mice. J Pineal Res 69(3):e12671. https://doi.org/10.1111/jpi.12671

    Article  CAS  PubMed  Google Scholar 

  162. Dubocovich ML, Markowska M (2005) Functional MT1 and MT2 melatonin receptors in mammals. Endocrine 27(2):101–110. https://doi.org/10.1385/ENDO:27:2:101

    Article  CAS  PubMed  Google Scholar 

  163. Smith NJ, Milligan G (2010) Allostery at G protein-coupled receptor homo- and heteromers: uncharted pharmacological landscapes. Pharmacol Rev 62(4):701–725. https://doi.org/10.1124/pr.110.002667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Ayoub MA, Levoye A, Delagrange P, Jockers R (2004) Preferential formation of MT1/MT2 melatonin receptor heterodimers with distinct ligand interaction properties compared with MT2 homodimers. Mol Pharmacol 66(2):312–321. https://doi.org/10.1124/mol.104.000398

    Article  CAS  PubMed  Google Scholar 

  165. Baba K, Benleulmi-Chaachoua A, Journé AS, Kamal M, Guillaume JL, Dussaud S, Gbahou F, Yettou K, Liu C, Contreras-Alcantara S, Jockers R, Tosini G (2013) Heteromeric MT1/MT2 melatonin receptors modulate photoreceptor function. Sci Signal 6(296):ra89. https://doi.org/10.1126/scisignal.2004302

    Article  CAS  PubMed  Google Scholar 

  166. Kamal M, Gbahou F, Guillaume JL, Daulat AM, Benleulmi-Chaachoua A, Luka M, Chen P, Kalbasi Anaraki D, Baroncini M, Mannoury la Cour C, Millan MJ, Prevot V, Delagrange P, Jockers R (2015) Convergence of melatonin and serotonin (5-HT) signaling at MT2/5-HT2C receptor heteromers. J Biol Chem 290(18):11537–11546. https://doi.org/10.1074/jbc.M114.559542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Gainetdinov RR, Hoener MC, Berry MD (2018) Trace amines and their receptors. Pharmacol Rev 70(3):549–620. https://doi.org/10.1124/pr.117.015305

    Article  CAS  PubMed  Google Scholar 

  168. Airaksinen MM, Lecklin A, Saano V, Tuomisto L, Gynther J (1987) Tremorigenic effect and inhibition of tryptamine and serotonin receptor binding by beta-carbolines. Pharmacol Toxicol 60(1):5–8. https://doi.org/10.1111/j.1600-0773.1987.tb01711.x

    Article  CAS  PubMed  Google Scholar 

  169. Yamada J, Sugimoto Y, Horisaka K (1989) The evidence for the involvement of the 5-HT1A receptor in 5-HT syndrome induced in mice by tryptamine. Jpn J Pharmacol 51(3):421–424. https://doi.org/10.1254/jjp.51.421

    Article  CAS  PubMed  Google Scholar 

  170. Anwar MA, Ford WR, Herbert AA, Broadley KJ (2013) Signal transduction and modulating pathways in tryptamine-evoked vasopressor responses of the rat isolated perfused mesenteric bed. Vascul Pharmacol 58(1–2):140–149. https://doi.org/10.1016/j.vph.2012.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Borowsky B, Adham N, Jones KA, Raddatz R, Artymyshyn R, Ogozalek KL, Durkin MM, Lakhlani PP, Bonini JA, Pathirana S, Boyle N, Pu X, Kouranova E, Lichtblau H, Ochoa FY, Branchek TA, Gerald C (2001) Trace amines: identification of a family of mammalian G protein-coupled receptors. Proc Natl Acad Sci USA 98(16):8966–8971. https://doi.org/10.1073/pnas.151105198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Lindemann L, Ebeling M, Kratochwil NA, Bunzow JR, Grandy DK, Hoener MC (2005) Trace amine-associated receptors form structurally and functionally distinct subfamilies of novel G protein-coupled receptors. Genomics 85(3):372–385. https://doi.org/10.1016/j.ygeno.2004.11.010

    Article  CAS  PubMed  Google Scholar 

  173. D’Andrea G, D’Amico D, Bussone G, Bolner A, Aguggia M, Saracco MG, Galloni E, De Riva V, Colavito D, Leon A, Rosteghin V, Perini F (2013) The role of tyrosine metabolism in the pathogenesis of chronic migraine. Cephalalgia 33(11):932–937. https://doi.org/10.1177/0333102413480755

    Article  PubMed  Google Scholar 

  174. Ryan RE Jr (1974) A clinical study of tyramine as an etiological factor in migraine. Headache 14(1):43–48. https://doi.org/10.1111/j.1526-4610.1974.hed1401043.x

    Article  PubMed  Google Scholar 

  175. D’Andrea G, Terrazzino S, Leon A, Fortin D, Perini F, Granella F, Bussone G (2004) Elevated levels of circulating trace amines in primary headaches. Neurology 62(10):1701–1705. https://doi.org/10.1212/01.wnl.0000125188.79106.29

    Article  CAS  PubMed  Google Scholar 

  176. D’Andrea G, Granella F, Leone M, Perini F, Farruggio A, Bussone G (2006) Abnormal platelet trace amine profiles in migraine with and without aura. Cephalalgia 26(8):968–972. https://doi.org/10.1111/j.1468-2982.2006.01141.x

    Article  CAS  PubMed  Google Scholar 

  177. Hannington E (1967) Preliminary report on tyramine headache. Br Med J 2(5551):550–551. https://doi.org/10.1136/bmj.2.5551.550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Sandler M, Youdim MB, Hanington E (1974) A phenylethylamine oxidising defect in migraine. Nature 250(464):335–337. https://doi.org/10.1038/250335a0

    Article  CAS  PubMed  Google Scholar 

  179. Sun-Edelstein C, Christina MD, Mauskop AMD (2009) Foods and supplements in the management of migraine headaches. Clin J Pain 25(5):446–452. https://doi.org/10.1097/AJP.0b013e31819a6f65

    Article  PubMed  Google Scholar 

  180. Irsfeld M, Spadafore M, Prüß BM (2013) β-phenylethylamine, a small molecule with a large impact. Webmedcentral 4(9):4409

    PubMed  PubMed Central  Google Scholar 

  181. McCulloch J, Harper AM (1977) Phenylethylamine and cerebral blood flow. Possible involvement of phenylethylamine in migraine. Neurology 27(9):817–821. https://doi.org/10.1212/wnl.27.9.817

    Article  CAS  PubMed  Google Scholar 

  182. Heatley RV, Denburg JA, Bayer N, Bienenstock J (1982) Increased plasma histamine levels in migraine patients. Clin Allergy 12(2):145–149. https://doi.org/10.1111/j.1365-2222.1982.tb01633.x

    Article  CAS  PubMed  Google Scholar 

  183. Gazerani P, Pourpak Z, Ahmadiani A, Hemmati A, Kazemnejad A (2003) A correlation between migraine, histamine and immunoglobulin E. Iran J Allergy Asthma Immunol 2(1):17–24

    CAS  PubMed  Google Scholar 

  184. Rosario D, Pinto G (2004) Role of gender and serum Immunoglobulin E (IGE) levels on severity of migraine. J Clin Diagn Res 8(2):57–58. https://doi.org/10.7860/JCDR/2014/7516.4007

    Article  Google Scholar 

  185. Jarisch R, Wantke F (1996) Wine and headache. Int Arch Allergy Immunol 110(1):7–12. https://doi.org/10.1159/000237304

    Article  CAS  PubMed  Google Scholar 

  186. Wantke F, Götz M, Jarisch R (1993) Histamine-free diet: treatment of choice for histamine-induced food intolerance and supporting treatment for chronic headaches. Clin Exp Allergy 23(12):982–985. https://doi.org/10.1111/j.1365-2222.1993.tb00287.x

    Article  CAS  PubMed  Google Scholar 

  187. Zucchi R, Chiellini G, Scanlan TS, Grandy DK (2006) Trace amine-associated receptors and their ligands. Br J Pharmacol 149(8):967–978. https://doi.org/10.1038/sj.bjp.0706948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Harmeier A, Obermueller S, Meyer CA, Revel FG, Buchy D, Chaboz S, Dernick G, Wettstein JG, Iglesias A, Rolink A, Bettler B, Hoener MC (2015) Trace amine-associated receptor 1 activation silences GSK3β signaling of TAAR1 and D2R heteromers. Eur Neuropsychopharmacol 25(11):2049–2061. https://doi.org/10.1016/j.euroneuro.2015.08.011

    Article  CAS  PubMed  Google Scholar 

  189. Koh AHW, Chess-Williams R, Lohning AE (2019) Differential mechanisms of action of the trace amines octopamine, synephrine and tyramine on the porcine coronary and mesenteric artery. Sci Rep 9(1):10925. https://doi.org/10.1038/s41598-019-46627-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Broadley KJ, Broadley HD (2018) Non-adrenergic vasoconstriction and vasodilatation of guinea-pig aorta by β-phenylethylamine and amphetamine—role of nitric oxide determined with L-NAME and NO scavengers. Eur J Pharmacol 818:198–205. https://doi.org/10.1016/j.ejphar.2017.10.038

    Article  CAS  PubMed  Google Scholar 

  191. Leo D, Mus L, Espinoza S, Hoener MC, Sotnikova TD, Gainetdinov RR (2014) Taar1-mediated modulation of presynaptic dopaminergic neurotransmission: role of D2 dopamine autoreceptors. Neuropharmacology 81:283–291. https://doi.org/10.1016/j.neuropharm.2014.02.007

    Article  CAS  PubMed  Google Scholar 

  192. Wood PB (2008) Role of central dopamine in pain and analgesia. Expert Rev Neurother 8(5):781–797. https://doi.org/10.1586/14737175.8.5.781

    Article  CAS  PubMed  Google Scholar 

  193. DaSilva AF, Nascimento TD, Jassar H, Heffernan J, Toback RL, Lucas S, DosSantos MF, Bellile EL, Boonstra PS, Taylor JMG, Casey KL, Koeppe RA, Smith YR, Zubieta JK (2017) Dopamine D2/D3 imbalance during migraine attack and allodynia in vivo. Neurology 88(17):1634–1641. https://doi.org/10.1212/WNL.0000000000003861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Thobois S, Vingerhoets F, Fraix V, Xie-Brustolin J, Mollion H, Costes N, Mertens P, Benabid AL, Pollak P, Broussolle E (2004) Role of dopaminergic treatment in dopamine receptor down-regulation in advanced Parkinson disease: a positron emission tomographic study. Arch Neurol 61(11):1705–1709. https://doi.org/10.1001/archneur.61.11.1705

    Article  PubMed  Google Scholar 

  195. Lee SA, Suh Y, Lee S, Jeong J, Kim SJ, Kim SJ, Park SK (2017) Functional expression of dopamine D2 receptor is regulated by tetraspanin 7-mediated postendocytic trafficking. FASEB J 31(6):2301–2313. https://doi.org/10.1096/fj.201600755RR

    Article  CAS  PubMed  Google Scholar 

  196. Booth RG, Fang L, Wilczynski A, Sivendren S, Sun Z, Travers S, Bruysters M, Sansuk K, Leurs R (2008) Molecular determinants of ligand-directed signaling for the histamine H1 receptor. Inflamm Res 57(1):S43-44. https://doi.org/10.1007/s00011-007-0621-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Parsons ME, Ganellin CR (2006) Histamine and its receptors. Br J Pharmacol 147(Suppl 1):S127-135. https://doi.org/10.1038/sj.bjp.0706440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Gutzmer R, Langer K, Lisewski M, Mommert S, Rieckborn D, Kapp A, Werfel T (2002) Expression and function of histamine receptors 1 and 2 on human monocyte-derived dendritic cells. J Allergy Clin Immunol 109(3):524–531. https://doi.org/10.1067/mai.2002.121944

    Article  CAS  PubMed  Google Scholar 

  199. Yuan H, Silberstein SD (2018) Histamine and Migraine. Headache 58(1):184–193. https://doi.org/10.1111/head.13164

    Article  PubMed  Google Scholar 

  200. Moniri NH, Covington-Strachan D, Booth RG (2004) Ligand-directed functional heterogeneity of histamine H1 receptors: novel dual-function ligands selectively activate and block H1-mediated phospholipase C and adenylyl cyclase signaling. J Pharmacol Exp Ther 311(1):274–281. https://doi.org/10.1124/jpet.104.070086

    Article  CAS  PubMed  Google Scholar 

  201. Mitsuhashi M, Mitsuhashi T, Payan DG (1989) Multiple signaling pathways of histamine H2 receptors. Agents Actions Suppl 33:289–294. https://doi.org/10.1007/978-3-0348-7309-3_20

    Article  Google Scholar 

  202. Morisset S, Rouleau A, Ligneau X, Gbahou F, Tardivel-Lacombe J, Stark H, Schunack W, Ganellin CR, Schwartz JC, Arrang JM (2000) High constitutive activity of native H3 receptors regulates histamine neurons in brain. Nature 408(6814):860–864. https://doi.org/10.1038/35048583

    Article  CAS  PubMed  Google Scholar 

  203. Arrang JM, Morisset S, Rouleau A, Gbahou F, Ligneau X, Tardivel-Lacombe J, Stark H, Schunack E, Ganellin CR, Schwartz J (2003) Constitutive activity of the recombinant and native histamine H3 receptor. Int Congr Ser 1249:139–151. https://doi.org/10.1016/S0531-5131(03)00617-4

    Article  CAS  Google Scholar 

  204. Lovenberg TW, Roland BL, Wilson SJ, Jiang X, Pyati J, Huvar A, Jackson MR, Erlander MG (1999) Cloning and functional expression of the human histamine H3 receptor. Mol Pharmacol 55(6):1101–1107. https://doi.org/10.1124/mol.55.6.1101

    Article  CAS  PubMed  Google Scholar 

  205. Strakhova MI, Nikkel AL, Manelli AM, Hsieh GC, Esbenshade TA, Brioni JD, Bitner RS (2009) Localization of histamine H4 receptors in the central nervous system of human and rat. Brain Res 1250:41–48. https://doi.org/10.1016/j.brainres.2008.11.018

    Article  CAS  PubMed  Google Scholar 

  206. Schneider EH, Schnell D, Papa D, Seifert R (2009) High constitutive activity and a G-protein-independent high-affinity state of the human histamine H(4)-receptor. Biochemistry 48(6):1424–1438. https://doi.org/10.1021/bi802050d

    Article  CAS  PubMed  Google Scholar 

  207. Alstadhaug KB (2014) Histamine in migraine and brain. Headache 54(2):246–259. https://doi.org/10.1111/head.12293

    Article  PubMed  Google Scholar 

  208. Ebeigbe AB, Talabi OO (2014) Vascular effects of histamine. Niger J Physiol Sci 29(1):7–10

    PubMed  Google Scholar 

  209. Lockwood JM, Wilkins BW, Halliwill JR (2004) H1 receptor-mediated vasodilatation contributes to postexercise hypotension. J Physiol 563(Pt 2):633–642. https://doi.org/10.1113/jphysiol.2004.080325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Campos HA, Montenegro M, Velasco M, Romero E, Alvarez R, Urbina A (1999) Treadmill exercise-induced stress causes a rise of blood histamine in normotensive but not in primary hypertensive humans. Eur J Pharmacol 383(1):69–73. https://doi.org/10.1016/s0014-2999(99)00598-1

    Article  CAS  PubMed  Google Scholar 

  211. Chiba S, Tsukada M (1997) Mechanisms for histamine H1 receptor-mediated vasodilation in isolated canine lingual arteries. Eur J Pharmacol 329(1):63–68. https://doi.org/10.1016/s0014-2999(97)10105-4

    Article  CAS  PubMed  Google Scholar 

  212. Bedarida G, Bushell E, Blaschke TF, Hoffman BB (1995) H1- and H2-histamine receptor-mediated vasodilation varies with aging in humans. Clin Pharmacol Ther 58(1):73–80. https://doi.org/10.1016/0009-9236(95)90074-8

    Article  CAS  PubMed  Google Scholar 

  213. Maintz L, Novak N (2007) Histamine and histamine intolerance. Am J Clin Nutr 85(5):1185–1196. https://doi.org/10.1093/ajcn/85.5.1185

    Article  CAS  PubMed  Google Scholar 

  214. Millan-Guerrero RO, Isais-Millán R, Benjamín TH, Tene CE (2006) Nalpha-methyl histamine safety and efficacy in migraine prophylaxis: phase III study. Can J Neurol Sci 33(2):195–199. https://doi.org/10.1017/s0317167100004960

    Article  PubMed  Google Scholar 

  215. McLeod RL, Aslanian R, del Prado M, Duffy R, Egan RW, Kreutner W, McQuade R, Hey JA (1998) Sch 50971, an orally active histamine H3 receptor agonist, inhibits central neurogenic vascular inflammation and produces sedation in the guinea pig. J Pharmacol Exp Ther 287(1):43–50

    CAS  PubMed  Google Scholar 

  216. Millán-Guerrero RO, Baltazar-Rodríguez LM, Cárdenas-Rojas MI, Ramírez-Flores M, Isais-Millán S, Delgado-Enciso I, Caballero-Hoyos R, Trujillo-Hernández B (2011) A280V polymorphism in the histamine H3 receptor as a risk factor for migraine. Arch Med Res 42(1):44–47. https://doi.org/10.1016/j.arcmed.2011.01.009

    Article  CAS  PubMed  Google Scholar 

  217. Mehta P, Miszta P, Rzodkiewicz P, Michalak O, Krzeczyński P, Filipek S (2020) Enigmatic histamine receptor H4 for potential treatment of multiple inflammatory, autoimmune, and related diseases. Life 10(4):50. https://doi.org/10.3390/life10040050

    Article  CAS  PubMed Central  Google Scholar 

  218. Sanna MD, Ghelardini C, Thurmond RL, Masini E, Galeotti N (2017) Behavioral phenotype of histamine H4 receptor knockout mice: focus on central neuronal functions. Neuropharmacology 114:48–57. https://doi.org/10.1016/j.neuropharm.2016.11.023

    Article  CAS  PubMed  Google Scholar 

  219. Smith FM, Haskelberg H, Tracey DJ, Moalem-Taylor G (2007) Role of histamine H3 and H4 receptors in mechanical hyperalgesia following peripheral nerve injury. NeuroImmunoModulation 14(6):317–325. https://doi.org/10.1159/000125048

    Article  CAS  PubMed  Google Scholar 

  220. Popiolek-Barczyk K, Łażewska D, Latacz G, Olejarz A, Makuch W, Stark H, Kieć-Kononowicz K, Mika J (2018) Antinociceptive effects of novel histamine H3 and H4 receptor antagonists and their influence on morphine analgesia of neuropathic pain in the mouse. Br J Pharmacol 175(14):2897–2910. https://doi.org/10.1111/bph.14185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Lundberg JO, Weitzberg E, Gladwin MT (2008) The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov 7(2):156–167. https://doi.org/10.1038/nrd2466

    Article  CAS  PubMed  Google Scholar 

  222. Shiva S, Wang X, Ringwood LA, Xu X, Yuditskaya S, Annavajjhala V, Miyajima H, Hogg N, Harris ZL, Gladwin MT (2006) Ceruloplasmin is a NO oxidase and nitrite synthase that determines endocrine NO homeostasis. Nat Chem Biol 2(9):486–493. https://doi.org/10.1038/nchembio813

    Article  CAS  PubMed  Google Scholar 

  223. D’Andrea G, Gucciardi A, Giordano G, Bussone G, Leon A (2021) Study of arginine metabolism in medication overuse chronic migraine: possible defect in NO synthesis. Neurol Sci. https://doi.org/10.1007/s10072-021-05672-7

    Article  PubMed  Google Scholar 

  224. D’Andrea G, Cananzi AR, Perini F, Alecci M, Zamberlan F, Hasselmark L, Welch KM (1994) Decreased collagen-induced platelet aggregation and increased platelet arginine levels in migraine: a possible link with the NO pathway. Cephalalgia 14(5):352–356. https://doi.org/10.1046/j.1468-2982.1994.1405352.x

    Article  CAS  PubMed  Google Scholar 

  225. Gallai V, Floridi A, Mazzotta G, Codini M, Tognoloni M, Vulcano MR, Sartori M, Russo S, Alberti A, Michele F, Sarchielli P (1996) L-arginine/nitric oxide pathway activation in platelets of migraine patients with and without aura. Acta Neurol Scand 94(2):151–160. https://doi.org/10.1111/j.1600-0404.1996.tb07046.x

    Article  CAS  PubMed  Google Scholar 

  226. Rhodes PM, Leone AM, Francis PL, Struthers AD, Moncada S (1995) The L-arginine:nitric oxide pathway is the major source of plasma nitrite in fasted humans. Biochem Biophys Res Commun 209(2):590–596. https://doi.org/10.1006/bbrc.1995.1541

    Article  CAS  PubMed  Google Scholar 

  227. D’Amico D, Ferraris A, Leone M, Catania A, Carlin A, Grazzi L, Bussone G (2002) Increased plasma nitrites in migraine and cluster headache patients in interictal period: basal hyperactivity of L-arginine-NO pathway? Cephalalgia 22(1):33–36. https://doi.org/10.1046/j.1468-2982.2002.00304.x

    Article  CAS  PubMed  Google Scholar 

  228. Shukla R, Barthwal MK, Srivastava N, Nag D, Seth PK, Srimal RC, Dikshit M (2001) Blood nitrite levels in patients with migraine during headache-free period. Headache 41(5):475–481. https://doi.org/10.1046/j.1526-4610.2001.01085.x

    Article  CAS  PubMed  Google Scholar 

  229. Reyhani A, Celik Y, Karadag H, Gunduz O, Asil T, Sut N (2017) High asymmetric dimethylarginine, symmetric dimethylarginine and L-arginine levels in migraine patients. Neurol Sci 38(7):1287–1291. https://doi.org/10.1007/s10072-017-2970-1

    Article  PubMed  Google Scholar 

  230. Erdélyi-Bótor S, Komáromy H, Kamson DO, Kovács N, Perlaki G, Orsi G, Molnár T, Illes Z, Nagy L, Kéki S, Deli G, Bosnyák E, Trauninger A, Pfund Z (2017) Serum L-arginine and dimethylarginine levels in migraine patients with brain white matter lesions. Cephalalgia 37(6):571–580. https://doi.org/10.1177/0333102416651454

    Article  PubMed  Google Scholar 

  231. Moncada S, Higgs A (1993) The L-arginine-nitric oxide pathway. N Engl J Med 329(27):2002–2012. https://doi.org/10.1056/NEJM199312303292706

    Article  CAS  PubMed  Google Scholar 

  232. Tulloh R (2009) Etiology, diagnosis, and pharmacologic treatment of pediatric pulmonary hypertension. Paediatr Drugs 11(2):115–128. https://doi.org/10.2165/00148581-200911020-00003

    Article  PubMed  Google Scholar 

  233. Zhao Y, Vanhoutte PM, Leung SW (2015) Vascular nitric oxide: beyond eNOS. J Pharmacol Sci 129(2):83–94. https://doi.org/10.1016/j.jphs.2015.09.002

    Article  CAS  PubMed  Google Scholar 

  234. Förstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33(7):829–837. https://doi.org/10.1093/eurheartj/ehr304

    Article  CAS  PubMed  Google Scholar 

  235. Pradhan AA, Bertels Z, Akerman S (2018) Targeted nitric oxide synthase inhibitors for migraine. Neurotherapeutics 15(2):391–401. https://doi.org/10.1007/s13311-018-0614-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Moncada S, Higgs EA (2006) The discovery of nitric oxide and its role in vascular biology. Br J Pharmacol 147(Suppl 1):S193-201. https://doi.org/10.1038/sj.bjp.0706458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Palmer JE, Guillard FL, Laurijssens BE, Wentz AL, Dixon RM, Williams PM (2009) A randomised, single-blind, placebo-controlled, adaptive clinical trial of GW274150, a selective iNOS inhibitor, in the treatment of acute migraine. Cephalalgia 29:124

    Google Scholar 

  238. Høivik HO, Laurijssens BE, Harnisch LO, Twomey CK, Dixon RM, Kirkham AJ, Williams PM, Wentz AL, Lunnon MW (2010) Lack of efficacy of the selective iNOS inhibitor GW274150 in prophylaxis of migraine headache. Cephalalgia 30(12):1458–1467. https://doi.org/10.1177/0333102410370875

    Article  PubMed  Google Scholar 

  239. Akerman S, Williamson DJ, Kaube H, Goadsby PJ (2002) Nitric oxide synthase inhibitors can antagonize neurogenic and calcitonin gene-related peptide induced dilation of dural meningeal vessels. Br J Pharmacol 137(1):62–68. https://doi.org/10.1038/sj.bjp.0704842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Hemmens B, Mayer B (1998) Enzymology of nitric oxide synthases. Methods Mol Biol 100:1–32. https://doi.org/10.1385/1-59259-749-1:1

    Article  CAS  PubMed  Google Scholar 

  241. el Karib AO, Sheng J, Betz AL, Malvin RL (1993) The central effects of a nitric oxide synthase inhibitor (Nω-omega-nitro-L-arginine) on blood pressure and plasma renin. Clin Exp Hypertens 15(5):819–832. https://doi.org/10.3109/10641969309041644

    Article  PubMed  Google Scholar 

  242. Toda N, Ayajiki K, Okamura T (2009) Control of systemic and pulmonary blood pressure by nitric oxide formed through neuronal nitric oxide synthase. J Hypertens 27(10):1929–1940. https://doi.org/10.1097/HJH.0b013e32832e8ddf

    Article  CAS  PubMed  Google Scholar 

  243. Togashi H, Sakuma I, Yoshioka M, Kobayashi T, Yasuda H, Kitabatake A, Saito H, Gross SS, Levi R (1992) A central nervous system action of nitric oxide in blood pressure regulation. J Pharmacol Exp Ther 262(1):343–347

    CAS  PubMed  Google Scholar 

  244. Bhatt DK, Gupta S, Jansen-Olesen I, Andrews JS, Olesen J (2013) NXN-188, a selective nNOS inhibitor and a 5-HT1B/1D receptor agonist, inhibits CGRP release in preclinical migraine models. Cephalalgia 33(2):87–100. https://doi.org/10.1177/0333102412466967

    Article  PubMed  Google Scholar 

  245. Toda N, Toda H, Hatano Y (2007) Nitric oxide: involvement in the effects of anesthetic agents. Anesthesiology 107(5):822–842. https://doi.org/10.1097/01.anes.0000287213.98020.b6

    Article  CAS  PubMed  Google Scholar 

  246. Deng YK, Ding JF, Liu J, Yang YY (2015) Analgesic effects of melatonin on post-herpetic neuralgia. Int J Clin Exp Med 8(4):5004–5009

    PubMed  PubMed Central  Google Scholar 

  247. Chen JQ, Zeng YM, Dai TJ, Tang QF (2015) Intrathecal L-arginine reduces the antinociception of sevoflurane in formalin-induced pain in rats. Neurosci Lett 590:156–160. https://doi.org/10.1016/j.neulet.2015.02.006

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by RGB. The first draft of the manuscript was written by RGB and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Roger Gregory Biringer.

Ethics declarations

Conflict of interest

The author declares that he has no conflicts of interest or competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biringer, R.G. Migraine signaling pathways: amino acid metabolites that regulate migraine and predispose migraineurs to headache. Mol Cell Biochem 477, 2269–2296 (2022). https://doi.org/10.1007/s11010-022-04438-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04438-9

Keywords

Navigation