Skip to main content

Advertisement

Log in

HIF1A promotes miR-210/miR-424 transcription to modulate the angiogenesis in HUVECs and HDMECs via sFLT1 under hypoxic stress

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Angiogenesis is a critical process during human skin wound healing. However, hypoxia might lead to the dysfunction of the cellular interplay of endothelial cells and subcutaneous fibroblasts, resulting in the deregulation of angiogenesis. HIF1A is a key regulatory of the recovery of intracellular homeostasis under hypoxia. In the present study, the detailed role and mechanism of HIF1A in the angiogenesis under hypoxia were investigated. Via bioinformatic analyses on microarray profiles (GSE1041 and GSE17944), solube fms-related tyrosine kinase 1 (sFLT1, also known as sVEGFR1) and miR-210/miR-424 might be involved in HIF1A function on the angiogenesis under hypoxia in human umbilical vascular endothelium cells (HUVECs) and human dermal microvascular endothelial cells (HDMECs). In the present study, we identified sFLT1 as a downregulated gene in response to hypoxia and HIF1A overexpression in HUVECs and HDMECs. sFLT1 overexpression inhibited the capacity of migration and angiogenesis and significantly reversed the inducible effects of HIF1A on the migration and angiogenesis in both cell lines. miR-210 and miR-424 were upregulated by hypoxia and targeted sFLT1 3′-UTR to negatively modulate its expression. HIF1A modulated sFLT1 expression, VEGF signaling, and the migration and angiogenesis in HUVECs and HDMECs via miR-210/miR-424. Regarding the molecular mechanism, HIF1A bound the promoter region of miR-210 and miR-424 to activate their transcription, while miR-210/miR-424 bound sFLT1 3′-UTR to suppress its expression. In summary, HIF1A/miR-210/miR-424/sFLT1 axis modulates the angiogenesis in HUVECs and HDMECs upon hypoxic condition via VEGF signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

Consent for publication

Not applicable.

References

  1. Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341(10):738–746

    Article  CAS  PubMed  Google Scholar 

  2. Han G, Ceilley R (2017) Chronic wound healing: a review of current management and treatments. Adv Ther 34(3):599–610

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dawes KE et al (1994) Characterization of fibroblast mitogens and chemoattractants produced by endothelial cells exposed to hypoxia. Am J Respir Cell Mol Biol 10(5):552–559

    Article  CAS  PubMed  Google Scholar 

  4. Ke Q, Costa M (2006) Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 70(5):1469–1480

    Article  CAS  PubMed  Google Scholar 

  5. Jones V, Grey JE, Harding KG (2006) Wound dressings. BMJ 332(7544):777–780

    Article  PubMed  PubMed Central  Google Scholar 

  6. Semenza GL (2012) Hypoxia-inducible factors in physiology and medicine. Cell 148(3):399–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stroka DM et al (2001) HIF-1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia. FASEB J 15(13):2445–2453

    Article  CAS  PubMed  Google Scholar 

  8. Rezvani HR et al (2011) HIF-1alpha in epidermis: oxygen sensing, cutaneous angiogenesis, cancer, and non-cancer disorders. J Investig Dermatol 131(9):1793–1805

    Article  CAS  PubMed  Google Scholar 

  9. Zhang X et al (2013) Wound healing improvement with PHD-2 silenced fibroblasts in diabetic mice. PLoS ONE 8(12):e84548

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tonnesen MG, Feng X, Clark RA (2000) Angiogenesis in wound healing. J Investig Dermatol Symp Proc 5(1):40–46

    Article  CAS  PubMed  Google Scholar 

  11. Toksoy A et al (2007) Biphasic expression of stromal cell-derived factor-1 during human wound healing. Br J Dermatol 157(6):1148–1154

    Article  CAS  PubMed  Google Scholar 

  12. Kendall RL, Thomas KA (1993) Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci USA 90(22):10705–10709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Suarez Y, Sessa WC (2009) MicroRNAs as novel regulators of angiogenesis. Circ Res 104(4):442–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu H et al (2018) LncRNA XIST/miR-34a axis modulates the cell proliferation and tumor growth of thyroid cancer through MET-PI3K-AKT signaling. J Exp Clin Cancer Res 37(1):279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li L et al (2018) The role of lncRNA XIST/miR-211 axis in modulating the proliferation and apoptosis of osteoarthritis chondrocytes through CXCR4 and MAPK signaling. Biochem Biophys Res Commun 503(4):2555–2562

    Article  CAS  PubMed  Google Scholar 

  16. Jones WS et al (2012) Alteration in angiogenic and anti-angiogenic forms of vascular endothelial growth factor-A in skeletal muscle of patients with intermittent claudication following exercise training. Vasc Med 17(2):94–100

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yang M et al (2017) Role of the JAK2/STAT3 signaling pathway in the pathogenesis of type 2 diabetes mellitus with macrovascular complications. OncoTarget 8(57):96958–96969

    Article  PubMed  PubMed Central  Google Scholar 

  18. Goldman C et al (1998) Paracrine expression of a native soluble vascular endothelial growth factor receptor inhibits tumor growth, metastasis, and mortality rate. Proc Natl Acad Sci USA 95(15):8795–8800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ziche M et al (1997) Nitric oxide synthase lies downstream from vascular endothelial growth factor-induced but not basic fibroblast growth factor-induced angiogenesis. J Clin Investig 99(11):2625–2634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Takahashi H, Shibuya M (2005) The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci (Lond) 109(3):227–241

    Article  CAS  Google Scholar 

  21. Daubman S (2010) MicroRNAs in angiogenesis and vascular smooth muscle cell function. Circ Res 106(3):423–425

    Article  CAS  PubMed  Google Scholar 

  22. Pourrajab F et al (2015) MicroRNAs; easy and potent targets in optimizing therapeutic methods in reparative angiogenesis. J Cell Mol Med 19(12):2702–2714

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li J et al (2015) LncTar: a tool for predicting the RNA targets of long noncoding RNAs. Brief Bioinform 16(5):806–812

    Article  CAS  PubMed  Google Scholar 

  24. Shafighi M et al (2012) The role of androgens on hypoxia-inducible factor (HIF)-1alpha-induced angiogenesis and on the survival of ischemically challenged skin flaps in a rat model. Microsurgery 32(6):475–481

    Article  PubMed  Google Scholar 

  25. Yu X et al (2016) CXCL16 induces angiogenesis in autocrine signaling pathway involving hypoxia-inducible factor 1alpha in human umbilical vein endothelial cells. Oncol Rep 35(3):1557–1565

    Article  CAS  PubMed  Google Scholar 

  26. Dzietko M et al (2013) Delayed VEGF treatment enhances angiogenesis and recovery after neonatal focal rodent stroke. Transl Stroke Res 4(2):189–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Morgan R et al (2007) Neovascularization following traumatic brain injury: possible evidence for both angiogenesis and vasculogenesis. Neurol Res 29(4):375–381

    Article  CAS  PubMed  Google Scholar 

  28. Holzer LA et al (2013) Expression of VEGF, its receptors, and HIF-1alpha in Dupuytren’s disease. Acta Orthop 84(4):420–425

    Article  PubMed  PubMed Central  Google Scholar 

  29. Shimotake J et al (2010) Vascular endothelial growth factor receptor-2 inhibition promotes cell death and limits endothelial cell proliferation in a neonatal rodent model of stroke. Stroke 41(2):343–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23(5):1011–1027

    Article  CAS  PubMed  Google Scholar 

  31. Kureishi Y et al (2000) The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. Nat Med 6(9):1004–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bolanos JP, Almeida A (1999) Roles of nitric oxide in brain hypoxia–ischemia. Biochim Biophys Acta 1411(2–3):415–436

    Article  CAS  PubMed  Google Scholar 

  33. Kaur C, Ling EA (2008) Blood brain barrier in hypoxic-ischemic conditions. Curr Neurovasc Res 5(1):71–81

    Article  CAS  PubMed  Google Scholar 

  34. Thau-Zuchman O et al (2010) Vascular endothelial growth factor increases neurogenesis after traumatic brain injury. J Cereb Blood Flow Metab 30(5):1008–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kashiwagi S et al (2005) NO mediates mural cell recruitment and vessel morphogenesis in murine melanomas and tissue-engineered blood vessels. J Clin Investig 115(7):1816–1827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Banerjee J, Sen CK (2015) microRNA and wound healing. Adv Exp Med Biol 888:291–305

    Article  PubMed  PubMed Central  Google Scholar 

  37. Valencia-Sanchez MA et al (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20(5):515–524

    Article  CAS  PubMed  Google Scholar 

  38. Hassel D et al (2012) MicroRNA-10 regulates the angiogenic behavior of zebrafish and human endothelial cells by promoting vascular endothelial growth factor signaling. Circ Res 111(11):1421–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zeng L et al (2014) MicroRNA-210 overexpression induces angiogenesis and neurogenesis in the normal adult mouse brain. Gene Ther 21(1):37–43

    Article  CAS  PubMed  Google Scholar 

  40. Lou YL et al (2012) miR-210 activates notch signaling pathway in angiogenesis induced by cerebral ischemia. Mol Cell Biochem 370(1–2):45–51

    Article  CAS  PubMed  Google Scholar 

  41. Kulshreshtha R et al (2007) A microRNA signature of hypoxia. Mol Cell Biol 27(5):1859–1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Devlin C et al (2011) miR-210: more than a silent player in hypoxia. IUBMB Life 63(2):94–100

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Huang X et al (2009) Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol Cell 35(6):856–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ghosh G et al (2010) Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-alpha isoforms and promotes angiogenesis. J Clin Investig 120(11):4141–4154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (No. 81501709) and Natural Science Foundation of Hunan Province, China (No. 2021JJ30928).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by BF, XW and HZ. The first draft of the manuscript was written by HZ. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bairong Fang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11010_2022_4428_MOESM1_ESM.tif

Supplementary file1 (TIF 147 kb) Fig. S1 HUVEC cells were co-transfected with NC (negative control) or HIF1A-overexpressing vector and wt-miR-210/miR-424 or mut-miR-210/miR-424 and examined for the promoter activity. **P < 0.01, compared to NC group

Supplementary file2 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Wang, X. & Fang, B. HIF1A promotes miR-210/miR-424 transcription to modulate the angiogenesis in HUVECs and HDMECs via sFLT1 under hypoxic stress. Mol Cell Biochem 477, 2107–2119 (2022). https://doi.org/10.1007/s11010-022-04428-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04428-x

Keywords

Navigation