Skip to main content

Advertisement

Log in

MicroRNA-1297 participates in the repair of intestinal barrier injury in patients with HIV/AIDS via negative regulation of PLCβ1

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

To explore the role of the miRNA-1297/phospholipase Cβ1 (PLCβ1) axis in intestinal barrier injury. Abnormally expressed miR-1297 and its target gene PLCβ1 as well as their transcriptome sequencing were confirmed by bioinformatics analysis. Next, the intestinal barrier injury was induced by lipopolysaccharide (LPS) in the CCCHIE-2 cells. Subsequently, the impacts of miR-1297 and PLCβ1 on the transcriptome were estimated. QRT-PCR and Western blotting were conducted to detect the relative mRNA and protein expressions, respectively. The cell viability and permeability were analyzed by MTT assay and fluorescent yellow detection. miR-1297 was significantly upregulated in patients with human immunodeficiency virus/acquired immunodeficiency syndrome and targeted PLCβ1. Moreover, overexpressed PLCβ1 was mainly enriched in the transforming growth factor-beta signaling pathway, while the knockdown of miR-1297 was focused on the arginine biosynthesis pathway. The overexpression of miR-1297 could reduce the PLCβ1 expression and inhibit the viability of CCCHIE-2 cells injured by LPS, while the effect of the downregulation of miR-1297 was on the opposite. Western blotting and cell fluorescence localization experiments revealed that the inhibition of miR-1297 increased the expressions of PLCβ1 and ZO-1. In addition, the upregulation of miR-1297 strengthened the permeability in cells injured by LPS, as did the knockdown of PLCβ1. miR-1297 could restrain the repair of intestinal barrier injury via negatively regulating PLCβ1 and its tight junction downstream protein ZO-1 in CCC-HIE-2 cells injured by LPS, which indicated that PLCβ1 and miR-1297 might be important targets for the repair of intestinal barrier injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data are available on request to the authors.

References

  1. Celsi F, Catamo E, Kleiner G, Tricarico PM, Vuch J, Crovella S (2013) HLA-G/C, miRNAs, and their role in HIV infection and replication. Biomed Res Int 2013:693643. https://doi.org/10.1155/2013/693643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Peng Q, Wang H, Wang H, Li X, Lu X, Liu L, Zhou B, Chen Z (2013) Imbalances of gut-homing CD4+ T-cell subsets in HIV-1-infected Chinese patients. J Acquir Immune Defic Syndr 64:25–31. https://doi.org/10.1097/QAI.0b013e318293a114

    Article  PubMed  Google Scholar 

  3. Mavigner M, Cazabat M, Dubois M, Lfaqihi FE, Requena M, Pasquier C, Klopp P, Amar J, Alric L, Barange K, Vinel JP, Marchou B, Massip P, Izopet J, Delobel P (2012) Altered CD4+ T cell homing to the gut impairs mucosal immune reconstitution in treated HIV-infected individuals. J Clin Invest 122:62–69. https://doi.org/10.1172/JCI59011

    Article  CAS  PubMed  Google Scholar 

  4. Lu X, Li Z, Li Q, Jiao Y, Ji Y, Zhang H, Liu Z, Li W, Wu H (2016) Preferential loss of gut-homing α4β7 CD4(+) T cells and their circulating functional subsets in acute HIV-1 infection. Cell Mol Immunol 13:776–784. https://doi.org/10.1038/cmi.2015.60

    Article  CAS  PubMed  Google Scholar 

  5. Bonsignori M, Zhou T, Sheng Z, Chen L, Gao F, Joyce MG, Ozorowski G, Chuang GY, Schramm CA, Wiehe K, Alam SM, Bradley T, Gladden MA, Hwang KK, Iyengar S, Kumar A, Lu X, Luo K, Mangiapani MC, Parks RJ, Song H, Acharya P, Bailer RT, Cao A, Druz A, Georgiev IS, Kwon YD, Louder MK, Zhang B, Zheng A, Hill BJ, Kong R, Soto C, Mullikin JC, Douek DC, Montefiori DC, Moody MA, Shaw GM, Hahn BH, Kelsoe G, Hraber PT, Korber BT, Boyd SD, Fire AZ, Kepler TB, Shapiro L, Ward AB, Mascola JR, Liao HX, Kwong PD, Haynes BF (2016) Maturation pathway from germline to broad HIV-1 neutralizer of a CD4-mimic antibody. Cell 165:449–463. https://doi.org/10.1016/j.cell.2016.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Estes JD, Harris LD, Klatt NR, Tabb B, Pittaluga S, Paiardini M, Barclay GR, Smedley J, Pung R, Oliveira KM, Hirsch VM, Silvestri G, Douek DC, Miller CJ, Haase AT, Lifson J, Brenchley JM (2010) Damaged intestinal epithelial integrity linked to microbial translocation in pathogenic simian immunodeficiency virus infections. PLoS Pathog 6:e1001052. https://doi.org/10.1371/journal.ppat.1001052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tugizov S (2016) Human immunodeficiency virus-associated disruption of mucosal barriers and its role in HIV transmission and pathogenesis of HIV/AIDS disease. Tissue Barriers 4:e1159276. https://doi.org/10.1080/21688370.2016.1159276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ameres SL, Zamore PD (2013) Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol 14:475–488. https://doi.org/10.1038/nrm3611

    Article  CAS  PubMed  Google Scholar 

  9. Shukla GC, Singh J, Barik S (2011) MicroRNAs: processing, maturation, target recognition and regulatory functions. Mol Cell Pharmacol 3:83–92

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Runtsch MC, Hu R, Alexander M, Wallace J, Kagele D, Petersen C, Valentine JF, Welker NC, Bronner MP, Chen X, Smith DP, Ajami NJ, Petrosino JF, Round JL, O’connell RM (2015) MicroRNA-146a constrains multiple parameters of intestinal immunity and increases susceptibility to DSS colitis. Oncotarget 6:28556–28572. https://doi.org/10.18632/oncotarget.5597

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nakato G, Hase K, Sato T, Kimura S, Sakakibara S, Sugiyama M, Obata Y, Hanazato M, Iwanaga T, Ohno H (2016) Epithelium-intrinsic MicroRNAs contribute to mucosal immune homeostasis by promoting M-cell maturation. PLoS ONE 11:e0150379. https://doi.org/10.1371/journal.pone.0150379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Neudecker V, Yuan X, Bowser JL, Eltzschig HK (2017) MicroRNAs in mucosal inflammation. J Mol Med 95:935–949. https://doi.org/10.1007/s00109-017-1568-7

    Article  CAS  PubMed  Google Scholar 

  13. Munshi SU, Panda H, Holla P, Rewari BB, Jameel S (2014) MicroRNA-150 is a potential biomarker of HIV/AIDS disease progression and therapy. PLoS ONE 9:e95920. https://doi.org/10.1371/journal.pone.0095920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Naidoo P, Naidoo RN, Ramkaran P, Muttoo S, Asharam K, Chuturgoon AA (2019) Maternal miRNA-146a G/C rs2910164 variation, HIV/AIDS and nitrogen oxide pollution exposure collectively affects foetal growth. Hum Exp Toxicol 38:82–94. https://doi.org/10.1177/0960327118781902

    Article  CAS  PubMed  Google Scholar 

  15. Lu G, Chang JT, Liu Z, Chen Y, Li M, Zhu JJ (2016) Phospholipase C beta 1: a candidate signature gene for proneural subtype high-grade glioma. Mol Neurobiol 53:6511–6525. https://doi.org/10.1007/s12035-015-9518-2

    Article  CAS  PubMed  Google Scholar 

  16. Lo Vasco VR, Cardinale G, Polonia P (2012) Deletion of PLCB1 gene in schizophrenia-affected patients. J Cell Mol Med 16:844–851. https://doi.org/10.1111/j.1582-4934.2011.01363.x

    Article  CAS  PubMed  Google Scholar 

  17. Montaña M, García Del Caño G, López De Jesús M, González-Burguera I, Echeazarra L, Barrondo S, Sallés J (2012) Cellular neurochemical characterization and subcellular localization of phospholipase C β1 in rat brain. Neuroscience 222:239–268. https://doi.org/10.1016/j.neuroscience.2012.06.039

    Article  CAS  PubMed  Google Scholar 

  18. Fukaya M, Uchigashima M, Nomura S, Hasegawa Y, Kikuchi H, Watanabe M (2008) Predominant expression of phospholipase Cbeta1 in telencephalic principal neurons and cerebellar interneurons, and its close association with related signaling molecules in somatodendritic neuronal elements. Eur J Neurosci 28:1744–1759. https://doi.org/10.1111/j.1460-9568.2008.06495.x

    Article  PubMed  Google Scholar 

  19. Zhou L, Li Y, Jiang W, Zhang H, Wen Z, Su Y, Wu F, Zhi Z, Shen Q, Li H, Xu X, Tang W (2018) Down-regulation of circ-PRKCI inhibits cell migration and proliferation in Hirschsprung disease by suppressing the expression of miR-1324 target PLCB1. Cell Cycle 17:1092–1101. https://doi.org/10.1080/15384101.2018.1480210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lu ML, Zhang Y, Li J, Fu Y, Li WH, Zhao GF, Li XH, Wei L, Liu GB, Huang H (2019) MicroRNA-124 inhibits colorectal cancer cell proliferation and suppresses tumor growth by interacting with PLCB1 and regulating Wnt/β-catenin signaling pathway. Eur Rev Med Pharmacol Sci 23:121–136. https://doi.org/10.26355/eurrev_201901_16756

    Article  PubMed  Google Scholar 

  21. Kang L, Zhang X, Ji L, Kou T, Smith SM, Zhao B, Guo X, Pineda-Torra I, Wu L, Hu X (2020) The colonic macrophage transcription factor RBP-J orchestrates intestinal immunity against bacterial pathogens. J Exp Med. https://doi.org/10.1084/jem.20190762

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mikami Y, Philips RL, Sciumè G, Petermann F, Meylan F, Nagashima H, Yao C, Davis FP, Brooks SR, Sun HW, Takahashi H, Poholek AC, Shih HY, Afzali B, Muljo SA, Hafner M, Kanno Y, O’shea JJ (2021) MicroRNA-221 and -222 modulate intestinal inflammatory Th17 cell response as negative feedback regulators downstream of interleukin-23. Immunity 54:514-525.e516. https://doi.org/10.1016/j.immuni.2021.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Goswami S, Hu X, Chen Q, Qiu J, Yang J, Poudyal D, Sherman BT, Chang W, Imamichi T (2021) Profiles of MicroRNAs in interleukin-27-induced HIV-resistant T cells: identification of a novel antiviral MicroRNA. J Acquir Immune Defic Syndr 86:378–387. https://doi.org/10.1097/qai.0000000000002565

    Article  CAS  PubMed  Google Scholar 

  24. Zhang T, Zhang L, Han D, Tursun K, Lu X (2020) Circular RNA hsa_Circ_101141 as a competing endogenous RNA facilitates tumorigenesis of hepatocellular carcinoma by regulating miR-1297/ROCK1 pathway. Cell Transplant 29:963689720948016. https://doi.org/10.1177/0963689720948016

    Article  PubMed  Google Scholar 

  25. Li X, Zhang Q, Yang Z (2020) Knockdown of hsa_circ_0058124 inhibits the proliferation of human lung cancer cells by up-regulation of miR-1297. Artif Cell Nanomed Biotechnol 48:584–593. https://doi.org/10.1080/21691401.2020.1725537

    Article  CAS  Google Scholar 

  26. Peng G, Meng H, Pan H, Wang W (2020) CircRNA 001418 promoted cell growth and metastasis of bladder carcinoma via EphA2 by miR-1297. Curr Mol Pharmacol. https://doi.org/10.2174/1874467213666200505093815

    Article  Google Scholar 

  27. Chen Z, Ma Y, Pan Y, Zhu H, Yu C, Sun C (2018) MiR-1297 suppresses pancreatic cancer cell proliferation and metastasis by targeting MTDH. Mol Cell Probes 40:19–26. https://doi.org/10.1016/j.mcp.2018.06.003

    Article  CAS  PubMed  Google Scholar 

  28. Gao W, Cao Y, Guo P, Bao X, Zhu H, Zheng J, Yao C, Chen D, Yu S, Chen B, Zhou S, Pang D, Chen W (2018) Downregulation of MiR-1297 predicts poor prognosis and enhances gastric cancer cell growth by targeting CREB1. Biomed Pharmacother 105:413–419. https://doi.org/10.1016/j.biopha.2018.05.094

    Article  CAS  PubMed  Google Scholar 

  29. Yang NQ, Luo XJ, Zhang J, Wang GM, Guo JM (2016) Crosstalk between Meg3 and miR-1297 regulates growth of testicular germ cell tumor through PTEN/PI3K/AKT pathway. Am J Transl Res 8:1091–1099

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang C, Li Q, Liu F, Chen X, Nesa EU, Guan S, Liu B, Han L, Tan B, Wang D, Chen P, Liu X, Zhang H, Sun Y, Cheng Y (2016) Serum miR-1297: a promising diagnostic biomarker in esophageal squamous cell carcinoma. Biomarkers 21:517–522. https://doi.org/10.3109/1354750x.2016.1160291

    Article  PubMed  Google Scholar 

  31. Liu C, Wang C, Wang J, Huang H (2016) miR-1297 promotes cell proliferation by inhibiting RB1 in liver cancer. Oncol Lett 12:5177–5182. https://doi.org/10.3892/ol.2016.5326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ju HQ, Lu YX, Chen DL, Tian T, Mo HY, Wei XL, Liao JW, Wang F, Zeng ZL, Pelicano H, Aguilar M, Jia WH, Xu RH (2016) Redox regulation of stem-like cells though the CD44v-xCT axis in colorectal cancer: mechanisms and therapeutic implications. Theranostics 6:1160–1175. https://doi.org/10.7150/thno.14848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang Y, Xue J, Kuang H, Zhou X, Liao L, Yin F (2017) microRNA-1297 inhibits the growth and metastasis of colorectal cancer by suppressing cyclin D2 expression. DNA Cell Biol 36:991–999. https://doi.org/10.1089/dna.2017.3829

    Article  CAS  PubMed  Google Scholar 

  34. Wang Z, He S, Guo P, Guo X, Zheng J (2017) MicroRNA-1297 inhibits metastasis and epithelial-mesenchymal transition by targeting AEG-1 in cervical cancer. Oncol Rep 38:3121–3129. https://doi.org/10.3892/or.2017.5979

    Article  CAS  PubMed  Google Scholar 

  35. Van Spaendonk H, Ceuleers H, Witters L, Patteet E, Joossens J, Augustyns K, Lambeir AM, De Meester I, De Man JG, De Winter BY (2017) Regulation of intestinal permeability: the role of proteases. World J Gastroenterol 23:2106–2123. https://doi.org/10.3748/wjg.v23.i12.2106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen WY, Wang M, Zhang J, Barve SS, Mcclain CJ, Joshi-Barve S (2017) Acrolein disrupts tight junction proteins and causes endoplasmic reticulum stress-mediated epithelial cell death leading to intestinal barrier dysfunction and permeability. Am J Pathol 187:2686–2697. https://doi.org/10.1016/j.ajpath.2017.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Aljameeli A, Thakkar A, Thomas S, Lakshmikanthan V, Iczkowski KA, Shah GV (2016) Calcitonin receptor-zonula occludens-1 interaction is critical for calcitonin-stimulated prostate cancer metastasis. PLoS ONE 11:e0150090. https://doi.org/10.1371/journal.pone.0150090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang Y, Peng F, Xie G, Chen ZQ, Li HG, Tang T, Luo JK (2016) Rhubarb attenuates blood-brain barrier disruption via increased zonula occludens-1 expression in a rat model of intracerebral hemorrhage. Exp Ther Med 12:250–256. https://doi.org/10.3892/etm.2016.3330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhao H, Ahirwar DK, Oghumu S, Wilkie T, Powell CA, Nasser MW, Satoskar AR, Li DY, Ganju RK (2016) Endothelial Robo4 suppresses breast cancer growth and metastasis through regulation of tumor angiogenesis. Mol Oncol 10:272–281. https://doi.org/10.1016/j.molonc.2015.10.007

    Article  CAS  PubMed  Google Scholar 

  40. Zhang S, Xu W (2019) Inhibition of CREB-mediated ZO-1 and activation of NF-κB-induced IL-6 by colonic epithelial MCT4 destroys intestinal barrier function. Cell Prolif 52:e12673. https://doi.org/10.1111/cpr.12673

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hamada K, Shitara Y, Sekine S, Horie T (2010) Zonula Occludens-1 alterations and enhanced intestinal permeability in methotrexate-treated rats. Cancer Chemother Pharmacol 66:1031–1038. https://doi.org/10.1007/s00280-010-1253-9

    Article  CAS  PubMed  Google Scholar 

  42. Lee B, Diaz GA (2015) Blood ammonia and glutamine as predictors of hyperammonemic crises in patients with urea cycle disorder. Genet Med 17:561–568. https://doi.org/10.1038/gim.2014.148

    Article  CAS  PubMed  Google Scholar 

  43. Tepper RE, Simon D, Brandt LJ, Nutovits R, Lee MJ (1994) Intestinal permeability in patients infected with the human immunodeficiency virus. Am J Gastroenterol 89:878–882

    CAS  PubMed  Google Scholar 

  44. Ye P (2012) Modulation of epithelial tight junctions by TGF-beta 3 in cultured oral epithelial cells. Aust Dent J 57:11–17. https://doi.org/10.1111/j.1834-7819.2011.01651.x

    Article  CAS  PubMed  Google Scholar 

  45. Inagaki-Ohara K, Dewi FN, Hisaeda H, Smith AL, Jimi F, Miyahira M, Abdel-Aleem AS, Horii Y, Nawa Y (2006) Intestinal intraepithelial lymphocytes sustain the epithelial barrier function against Eimeria vermiformis infection. Infect Immun 74:5292–5301. https://doi.org/10.1128/iai.02024-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vogel KR, Arning E, Wasek BL, Bottiglieri T, Gibson KM (2013) Characterization of 2-(methylamino)alkanoic acid capacity to restrict blood-brain phenylalanine transport in Pah enu2 mice: preliminary findings. Mol Genet Metab 110(Suppl):S71-78. https://doi.org/10.1016/j.ymgme.2013.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sukhotnik I, Helou H, Mogilner J, Lurie M, Bernsteyn A, Coran AG, Shiloni E (2005) Oral arginine improves intestinal recovery following ischemia-reperfusion injury in rat. Pediatr Surg Int 21:191–196. https://doi.org/10.1007/s00383-004-1318-0

    Article  PubMed  Google Scholar 

  48. Sukhotnik I, Mogilner JG, Lerner A, Coran AG, Lurie M, Miselevich I, Shiloni E (2005) Parenteral arginine impairs intestinal adaptation following massive small bowel resection in a rat model. Pediatr Surg Int 21:460–465. https://doi.org/10.1007/s00383-005-1461-2

    Article  PubMed  Google Scholar 

  49. Stadelmann B, Merino MC, Persson L, Svärd SG (2012) Arginine consumption by the intestinal parasite Giardia intestinalis reduces proliferation of intestinal epithelial cells. PLoS ONE 7:e45325. https://doi.org/10.1371/journal.pone.0045325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by the Basic Research Plan of Yunnan Province (Joint Project of Kunming Medical College) (No. 2019FE001 (-221)).

Author information

Authors and Affiliations

Authors

Contributions

JG conceived and supervised the study; YB and JG designed the experiments; YB and HG performed the experiments; BY provided new tools and reagents; FC and ZZ collected and analyzed the data; YB wrote the manuscript; JG made manuscript revisions.

Corresponding author

Correspondence to Jianyuan Gao.

Ethics declarations

Competing interest

The authors declare that they have no competing interests, and all authors could confirm its accuracy.

Ethical approval and consent to participate

This study was approved by the Ethics Committee of the First Affiliated Hospital of Kunming Medical University and was in accordance with the National Institutes of Health guide for the care and use of laboratory animals for the care and use of laboratory animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, Y., Guo, H., Yang, B. et al. MicroRNA-1297 participates in the repair of intestinal barrier injury in patients with HIV/AIDS via negative regulation of PLCβ1. Mol Cell Biochem 477, 2133–2147 (2022). https://doi.org/10.1007/s11010-022-04426-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04426-z

Keywords

Navigation