Skip to main content
Log in

The mesoionic compound MI-D changes energy metabolism and induces apoptosis in T98G glioma cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The mesoionic compound 4-phenyl-5-(4-nitro-cinnamoyl)-1,3,4-thiadiazolium-2-phenylamine chloride (MI-D) impairs mitochondrial oxidative phosphorylation and has a significant antitumour effect against hepatocarcinoma and melanoma. This study evaluated the cytotoxic effect of MI-D on T98G glioblastoma cells and investigated whether the impairment of oxidative phosphorylation promoted by MI-D is relevant to its cytotoxic effect. The effects of MI-D on T98G cells cultured in high glucose Dulbecco’s modified Eagle’s medium (DMEM) HG (glycolysis-dependent) and galactose plus glutamine-supplemented Dulbecco’s modified Eagle’s medium (DMEM) GAL (oxidative phosphorylation-dependent) were compared. T98G cells grown in DMEM GAL medium exhibited higher respiration rates and citrate synthase activity and lower lactate levels, confirming the metabolic shift to oxidative phosphorylation in these cells. MI-D significantly decreased the cell viability in a dose-dependent manner in both media; however, T98G cells cultured in DMEM GAL medium were more susceptible. The mesoionic significantly inhibited mitochondrial oxidative phosphorylation of glioma cells in both media. At the same time, lactate levels were not altered, indicating an absence of compensatory glycolysis activation. Additionally, MI-D increased the citrate synthase activity of cells in both media, which in DMEM HG-cultivated cells was followed by citrate accumulation. Apoptosis dependent on caspase-3 mediated the toxicity of MI-D on T98G cells. The higher susceptibility of glioma cells cultured in DMEM GAL medium to MI-D indicates that the impairment of mitochondrial functions is involved in mesoionic cytotoxicity. The results of this study indicate the potential use of MI-D for glioblastoma treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data collected and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Agnihotri S, Zadeh G (2016) Metabolic reprogramming in glioblastoma: the influence of cancer metabolism on epigenetics and unanswered questions. Neuro Oncol 18:160–172. https://doi.org/10.1093/neuonc/nov125

    Article  PubMed  Google Scholar 

  2. Colquhoun A (2017) Cell biology-metabolic crosstalk in glioma. Int J Biochem Cell Biol 89:171–181

    Article  CAS  Google Scholar 

  3. Hanif F, Muzaffar K, Perveen K et al (2017) Glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pacific J Cancer Prev 18:3–9. https://doi.org/10.22034/APJCP.2017.18.1.3

    Article  Google Scholar 

  4. Jhanwar-Uniyal M, Labagnara M, Friedman M et al (2015) Glioblastoma: Molecular pathways, stem cells and therapeutic targets. Cancers (Basel) 7:538–555. https://doi.org/10.3390/cancers7020538

    Article  CAS  Google Scholar 

  5. Pucko E, Matyja E, Koronkiewicz M et al (2018) Potent antitumour effects of novel pentabromobenzylisothioureas studied on human glial-derived tumour cell lines. Anticancer Res 38:2691–2705. https://doi.org/10.21873/anticanres.12511

    Article  CAS  PubMed  Google Scholar 

  6. Le Rhun E, Preusser M, Roth P et al (2019) Molecular targeted therapy of glioblastoma. Cancer Treat Rev 80:101896. https://doi.org/10.1016/j.ctrv.2019.101896

    Article  CAS  PubMed  Google Scholar 

  7. Zanders ED, Svensson F, Bailey DS (2019) Therapy for glioblastoma: is it working? Drug Discov Today 24:1193–1201. https://doi.org/10.1016/j.drudis.2019.03.008

    Article  PubMed  Google Scholar 

  8. Senff-Ribeiro A, Echevarria A, Silva EF et al (2004) Cytotoxic effect of a new 1,3,4-thiadiazolium mesoionic compound (MI-D) on cell lines of human melanoma. Br J Cancer 91:297–304. https://doi.org/10.1038/sj.bjc.6601946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Senff-Ribeiro A, Echevarria A, Silva ER et al (2004) Antimelanoma activity of 1,3,4-thiadiazolium mesoionics: a structure-activity relationship study. Anticancer Drugs 15:269–275

    Article  CAS  Google Scholar 

  10. Pereira RA, Pires ARA, Echevarria A et al (2021) The toxicity of 1,3,4-thiadiazolium mesoionic derivatives on hepatocarcinoma cells (HepG2) is associated with mitochondrial dysfunction. Chem Biol Interact 349:109675. https://doi.org/10.1016/j.cbi.2021.109675

    Article  CAS  PubMed  Google Scholar 

  11. Gozzi GJ, Andrade R, Valdameri G et al (2015) Selective cytotoxicity of 1,3,4-thiadiazolium mesoionic derivatives on hepatocarcinoma cells (HepG2). PLoS ONE. https://doi.org/10.1371/journal.pone.0130046

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kier LB, Roche EB (1967) Medicinal chemistry of the mesoionic compounds. J Pharm Sci 56:149–168. https://doi.org/10.1002/jps.2600560202

    Article  CAS  PubMed  Google Scholar 

  13. Shinzato TO, Grynberg N, Gomes R et al (1989) Antitumor activity of new mesoionic compounds against three murine tumors. J Med Sci Res 17:865–866

    CAS  Google Scholar 

  14. Parone PA, James D, Martinou JC (2002) Mitochondria: regulating the inevitable. Biochimie 84:105–111. https://doi.org/10.1016/s0300-9084(02)01380-9

    Article  CAS  PubMed  Google Scholar 

  15. Xie L, Shi F, Tan Z et al (2018) Mitochondrial network structure homeostasis and cell death. Cancer Sci 109:3686–3694. https://doi.org/10.1111/cas.13830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cadena SMSC, Carnieri EGS, Echevarria A, De Oliveira MBM (1998) Effect of MI-D, a new mesoionic compound, on energy-linked functions of rat liver mitochondria. FEBS Lett 440:46–50. https://doi.org/10.1016/S0014-5793(98)01427-6

    Article  CAS  PubMed  Google Scholar 

  17. Moreland DE (1994) Effects of toxicants on oxidative phosphorylation and photophosphorylation. In: Hodgson E, Levi P (eds) Introduction to biochemical toxicological. Appleton & Lange, Norwalk, pp 345–366

    Google Scholar 

  18. Fulda S, Galluzzi L, Kroemer G (2010) Targeting mitochondria for cancer therapy. Nat Publ Gr 9:447–464. https://doi.org/10.1038/nrd3137

    Article  CAS  Google Scholar 

  19. Liberti MV, Locasale JW, Biology C, Biology C (2016) The Warburg effect: How does it benefit cancer cells ? Trends Biochem Sci 41:211–218. https://doi.org/10.1016/j.tibs.2015.12.001.The

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aguer C, Gambarotta D, Mailloux RJ et al (2011) Galactose enhances oxidative metabolism and reveals mitochondrial dysfunction in human primary muscle cells. PLoS ONE. https://doi.org/10.1371/journal.pone.0028536

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gohil VM, Sheth SA, Nilsson R et al (2010) Discovery and therapeutic potential of drugs that shift energy metabolism from mitochondrial respiration to glycolysis. Nat Biotechnol 28:249–255. https://doi.org/10.1038/nbt.1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Marroquin LD, Hynes J, Dykens JA et al (2007) Circumventing the crabtree effect: replacing media glucose with galactose increases susceptibility of hepG2 cells to mitochondrial toxicants. Toxicol Sci 97:539–547. https://doi.org/10.1093/toxsci/kfm052

    Article  CAS  PubMed  Google Scholar 

  23. Grynberg N, Santos AC, Echevarria A (1997) Synthesis and in vivo antitumor activity of new heterocyclic derivatives of the 1,3,4-thiadiazolium-2-aminide class. Anticancer Drugs 8:88

    Article  CAS  Google Scholar 

  24. Dos Santos ACS, Echevarria A (2001) Eletronic effects on 13C NMR chemical shifts of substituted 1,3,4-thiadiazolium salts. Magn Reson Chem 39:182–186

    Article  Google Scholar 

  25. ATCC (2014) ATCC animal cell culture guide: tips and techniques for continuous cell lines. ATCC, Manassas

    Google Scholar 

  26. Reilly TP, Bellevue FH, Woster PM, Svensson CK (1998) Comparison of the in vitro cytotoxicity of hydroxylamine metabolites of sulfamethoxazole and dapsone*. Biochem Pharmacol 55:803–810. https://doi.org/10.1016/s0006-2952(97)00547-9

    Article  CAS  PubMed  Google Scholar 

  27. Sladowski D, Steer SJ, Clothier RH, Balls M (1993) An improved MTT assay. J Immunol Methods 157:203–207. https://doi.org/10.1016/0022-1759(93)90088-O

    Article  CAS  PubMed  Google Scholar 

  28. Parhamifar L, Andersen H, Moghimi SM (2019) Lactate dehydrogenase assay for assessment of polycation cytotoxicity. Methods Mol Biol. https://doi.org/10.1007/978-1-4939-9092-4_18

    Article  PubMed  Google Scholar 

  29. Ruas JS, Siqueira-Santos ES, Amigo I et al (2016) Underestimation of the maximal capacity of the mitochondrial electron transport system in oligomycin-treated cells. PLoS ONE 11:1–20. https://doi.org/10.1371/journal.pone.0150967

    Article  CAS  Google Scholar 

  30. Czok R, Lamprecht W (1974) Pyruvate, phosphoenolpyruvate and D-glycerate-2-phosphate. Methods Enzym Anal 3:1446–1451

    Google Scholar 

  31. Gutmann I, Wahlefeld A (1974) D-(+)-lactate determination with lactate dehydrogenase and NAD. Methods Enzym Anal 3:1464–1468

    Google Scholar 

  32. Board M, Hummt S, Newsholme EA (1990) Maximum activities of key enzymes of glycolysis, glutaminolysis, pentose phosphate pathway and tricarboxylic acid cycle in normal, neoplastic and suppressed cells. Biochem J 265:503–509. https://doi.org/10.1042/bj2650503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Curthoys NP, Lowry OH (1973) The distribution of glutaminase isoenzymes in the various structures of the nephron in normal, acidotic, and alkalotic rat kidney. J Biol Chem 248:162–168

    Article  CAS  Google Scholar 

  34. Kenny J, Bao Y, Hamm B et al (2003) Bacterial expression, purification, and characterization of rat kidney-type mitochondrial glutaminase. Protein Expr Purif 31:140–148. https://doi.org/10.1016/S1046-5928(03)00161-X

    Article  CAS  PubMed  Google Scholar 

  35. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  36. Corrẽa TCS, Brohem CA, Winnischofer SMB et al (2006) Downregulation of the RECK-tumor and metastasis suppressor gene in glioma invasiveness. J Cell Biochem 99:156–167. https://doi.org/10.1002/jcb.20917

    Article  CAS  PubMed  Google Scholar 

  37. Cadena SMSC, Carnieri EGS, Echevarria A, de Oliveira MBM (2002) Interference of MI-D, a new mesoionic compound, on artificial and native membranes. Cell Biochem Funct 20:31–37. https://doi.org/10.1002/cbf.932

    Article  CAS  PubMed  Google Scholar 

  38. Djafarzadeh S, Jakob SM (2017) High-resolution respirometry to assess mitochondrial function in permeabilized and intact cells. J Vis Exp 2017:1–11. https://doi.org/10.3791/54985

    Article  CAS  Google Scholar 

  39. Huang L, Wang C, Xu H, Peng G (2020) Targeting citrate as a novel therapeutic strategy in cancer treatment. BBA 1873:188332. https://doi.org/10.1016/j.bbcan.2019.188332

    Article  CAS  Google Scholar 

  40. Fox R, Aubert M (2007) Flow cytometric detection of activated caspase-3. Methods Mol Biol 414:47–56. https://doi.org/10.1385/1-59745-339-0:47

    Article  Google Scholar 

  41. Riganti C, Donadelli M (2020) Mitochondrial metabolic alterations in cancer cells and related therapeutic targets. Semin Cell Dev Biol 98:1–3. https://doi.org/10.1016/j.semcdb.2019.10.005

    Article  PubMed  Google Scholar 

  42. Jose C, Bellance N, Rossignol R (2011) Choosing between glycolysis and oxidative phosphorylation: a tumor’s dilemma? Biochim Biophys Acta 1807:552–561. https://doi.org/10.1016/j.bbabio.2010.10.012

    Article  CAS  PubMed  Google Scholar 

  43. Rossignol R, Gilkerson R, Aggeler R et al (2004) Energy substrate modulates mitochondrial structures and oxidative capacityin cancer cells. Cancer Res 64:985–993. https://doi.org/10.1158/0008-5472.can-03-1101

    Article  CAS  PubMed  Google Scholar 

  44. Domenis R, Bisetto E, Rossi D et al (2012) Glucose-modulated mitochondria adaptation in tumor cells: a focus on ATP synthase and inhibitor factor 1. Int J Mol Sci 13:1933–1950. https://doi.org/10.3390/ijms13021933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kanzawa T, Germano IM, Kondo Y et al (2003) Inhibition of telomerase activity in malignant glioma cells correlates with their sensitivity to temozolomide. Br J Cancer 89:922–929. https://doi.org/10.1038/sj.bjc.6601193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brandt AP, Gozzi GJ, Pires ARA et al (2016) Impairment of oxidative phosphorylation increases the toxicity of SYD-1 on hepatocarcinoma cells (HepG2). Chem Biol Interact 256:154–160. https://doi.org/10.1016/j.cbi.2016.07.007

    Article  CAS  PubMed  Google Scholar 

  47. Molina JR, Sun Y, Protopopova M et al (2018) An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat Med 24:1036–1046. https://doi.org/10.1038/s41591-018-0052-4

    Article  CAS  PubMed  Google Scholar 

  48. Rodrigues-Silva E, Siqueira-Santos ES, Ruas JS et al (2017) Evaluation of mitochondrial respiratory function in highly glycolytic glioma cells reveals low ADP phosphorylation in relation to oxidative capacity. J Neurooncol 133:519–529. https://doi.org/10.1007/s11060-017-2482-0

    Article  CAS  PubMed  Google Scholar 

  49. El SSM, El-magd RMA, Shishido Y (2012) D-Amino acid oxidase-induced oxidative stress, 3-bromopyruvate and citrate inhibit angiogenesis, exhibiting potent anticancer effects. J Bioenerg Biomembr 44:513–523. https://doi.org/10.1007/s10863-012-9455-y

    Article  CAS  Google Scholar 

  50. Eguchi Y, Shimizu S, Tsujimoto Y (1997) Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res 57:1835–1840

    CAS  PubMed  Google Scholar 

  51. Atlante A, Giannattasio S, Bobba A et al (2005) An increase in the ATP levels occurs in cerebellar granule cells en route to apoptosis in which ATP derives from both oxidative phosphorylation and anaerobic glycolysis. Biochim Biophys Acta 1708:50–62. https://doi.org/10.1016/j.bbabio.2005.01.009

    Article  CAS  PubMed  Google Scholar 

  52. Bradbury DA, Simmons TD, Slater KJ, Crouch SPM (2000) Measurement of the ADP: ATP ratio in human leukaemic cell lines can be used as an indicator of cell viability, necrosis and apoptosis. J Immunol Methods 240:79–92. https://doi.org/10.1016/s0022-1759(00)00178-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Luis Paulo Silveira Alves for helping with the flow cytometric analysis.

Funding

This study was supported by the Brazilian research funding agencies CNPq (Conselho Nacional para o Desenvolvimento Científico e Tecnológico) and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior). SMSCC also received grant support from CNPq (process 423759/2016-7). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MLCF: formal analysis, investigation, methodology, validation, writing, design of experiments. AdRAP: investigation, methodology, validation, design of experiments, conceptualization. IRB: investigation, review. AE: investigation, resources, review, conceptualization. GHP: investigation, review; SMBW: review, edition, resources, conceptualization. GRN: analysis of data, review, edition, resources, conceptualization. SMSCC: formal analysis, writing, review, edition, resources, conceptualization, supervision. All authors have approved the final manuscript and have agreed to be accountable for all the aspects of the work.

Corresponding author

Correspondence to Sílvia Maria Suter Correia Cadena.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Ethical approval

The authors declare that this manuscript is original, has not been published before and is not currently being considered for publication. The study was performed using glioma T98G cells acquired from American Type Culture Collection - ATCC (Material and Methods section) and was approved by the local commission from the Graduate Program in Science - Biochemistry - Federal University of Paraná - Brazil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corrêa-Ferreira, M.L., do Rocio Andrade Pires, A., Barbosa, I.R. et al. The mesoionic compound MI-D changes energy metabolism and induces apoptosis in T98G glioma cells. Mol Cell Biochem 477, 2033–2045 (2022). https://doi.org/10.1007/s11010-022-04423-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04423-2

Keywords

Navigation