Skip to main content

Advertisement

Log in

Peroxisome proliferator-activator receptor γ and psoriasis, molecular and cellular biochemistry

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The pathophysiology of psoriasis is complex and has not been completely elucidated. Better understanding of the pathogenesis may contribute to further improvement of our therapeutic strategies controlling psoriasis. Emerging evidence points to a causative relationship between altered activity of peroxisome proliferator-activated receptor γ (PPARγ) and psoriasis. The present review focuses on deeper understanding of the possible role of PPARγ in the pathogenesis of psoriasis and the potential of PPARγ agonist to improve the treatment of psoriasis. PPARγ is decreased in psoriasis. PPARγ possibly has effects on the multiple aspects of the pathogenesis of psoriasis, including abnormal lipid metabolism, insulin resistance, immune cells, pro-inflammatory cytokines, keratinocytes, angiogenesis, oxidative stress, microRNAs and nuclear factor kappa B. As defective activation of PPARγ is involved in psoriasis development, PPARγ agonists may be promising agents for treatment of psoriasis. Pioglitazone appears an effective and safe option in the treatment of patients with psoriasis, but there are still concerns about its potential side effects. Research effort has recently been undertaken to explore the PPARγ-activating potential of natural products. Among them some have been studied clinically or preclinically for treatment of psoriasis with promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

This is a review article, not an original research. Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Grän F, Kerstan A, Serfling E, Goebeler M, Muhammad K (2020) Current developments in the immunology of psoriasis. Yale J Biol Med 93:97–110

    PubMed  PubMed Central  Google Scholar 

  2. Hegazy RA, Abdel Hay RM, Shaker O, Sayed SS, Abdel Halim DA (2012) Psoriasis and metabolic syndrome: is peroxisome proliferator-activated receptor-γ part of the missing link? Eur J Dermatol 22:622–628. https://doi.org/10.1684/ejd.2012.1789

    Article  CAS  PubMed  Google Scholar 

  3. Chang G, Wang J, Song J, Zhang Z, Zhang L (2020) Efficacy and safety of pioglitazone for treatment of plaque psoriasis: a systematic review and meta-analysis of randomized controlled trials. J Dermatolog Treat 31:680–686. https://doi.org/10.1080/09546634.2019.1610552

    Article  CAS  PubMed  Google Scholar 

  4. Li J, Guo C, Wu J (2021) The agonists of peroxisome proliferator-activated receptor-γ for liver fibrosis. Drug Des Devel Ther 15:2619–2628. https://doi.org/10.2147/DDDT.S310163

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ramot Y, Mastrofrancesco A, Camera E, Desreumaux P, Paus R, Picardo M (2015) The role of PPARγ-mediated signalling in skin biology and pathology: new targets and opportunities for clinical dermatology. Exp Dermatol 24:245–251. https://doi.org/10.1111/exd.12647

    Article  CAS  PubMed  Google Scholar 

  6. Sertznig P, Reichrath J (2011) Peroxisome proliferator-activated receptors (PPARs) in dermatology: challenge and promise. Dermatoendocrinology 3:130–135. https://doi.org/10.4161/derm.3.3.15025

    Article  CAS  Google Scholar 

  7. Lamas Bervejillo M, Ferreira AM (2019) Understanding peroxisome proliferator-activated receptors: from the structure to the regulatory actions on metabolism. Adv Exp Med Biol 1127:39–57. https://doi.org/10.1007/978-3-030-11488-6_3

    Article  CAS  PubMed  Google Scholar 

  8. Korbecki J, Bobiński R, Dutka M (2019) Self-regulation of the inflammatory response by peroxisome proliferator-activated receptors. Inflamm Res 68:443–458. https://doi.org/10.1007/s00011-019-01231-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Monsalve FA, Pyarasani RD, Delgado-Lopez F, Moore-Carrasco R (2013) Peroxisome proliferator-activated receptor targets for the treatment of metabolic diseases. Mediators Inflamm 2013:549627. https://doi.org/10.1155/2013/549627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Westergaard M, Henningsen J, Johansen C, Rasmussen S, Svendsen ML, Jensen UB, Schrøder HD, Staels B, Iversen L, Bolund L, Kragballe K, Kristiansen K (2003) Expression and localization of peroxisome proliferator-activated receptors and nuclear factor kappaB in normal and lesional psoriatic skin. J Invest Dermatol 121:1104–1117. https://doi.org/10.1046/j.1523-1747.2003.12536.x

    Article  CAS  PubMed  Google Scholar 

  11. Rivier M, Safonova I, Lebrun P, Griffiths CE, Ailhaud G, Michel S (1998) Differential expression of peroxisome proliferator-activated receptor subtypes during the differentiation of human keratinocytes. J Invest Dermatol 111:1116–1121. https://doi.org/10.1046/j.1523-1747.1998.00439.x

    Article  CAS  PubMed  Google Scholar 

  12. Tawdy A (2014) Role of PPAR receptors in both atopic dermatitis and psoriasis. J Vaccines Vacc 5:226. https://doi.org/10.4172/2157-7560.S1.022

    Article  Google Scholar 

  13. Sobolev V, Nesterova A, Soboleva A, Dvoriankova E, Piruzyan A, Mildzikhova D, Korsunskaya I, Svitich O (2020) The Model of PPARγ-Downregulated Signaling in Psoriasis. PPAR Res 2020:6529057. https://doi.org/10.1155/2020/6529057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xiao Y, Wang H, Wang C, Zeng B, Tang X, Zhang Y, Peng Y, Luo M, Huang P, Yang Z (2020) miR-203 promotes HaCaT cell overproliferation through targeting LXR-α and PPAR-γ. Cell Cycle 19:1928–1940. https://doi.org/10.1080/15384101.2020.1783934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zeng J, Tang Z, Zhang Y, Tong X, Dou J, Gao L, Ding S, Lu J (2021) Ozonated autohemotherapy elevates PPAR-γ expression in CD4+ T cells and serum HDL-C levels, a potential immunomodulatory mechanism for treatment of psoriasis. Am J Transl Res. 13:349–359

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Miao C, Li J, Li Y, Zhang X (2019) Obesity and dyslipidemia in patients with psoriasis: a case-control study. Medicine (Baltimore) 98:e16323. https://doi.org/10.1097/MD.0000000000016323

    Article  Google Scholar 

  17. He L, Qin S, Dang L, Song G, Yao S, Yang N, Li Y (2014) Psoriasis decreases the anti-oxidation and anti-inflammation properties of high-density lipoprotein. Biochim Biophys Acta 1841:1709–1715. https://doi.org/10.1016/j.bbalip.2014.09.008

    Article  CAS  PubMed  Google Scholar 

  18. Dormandy JA, Charbonnel B, Eckland DJ, Erdmann E, Massi-Benedetti M, Moules IK, Skene AM, Tan MH, Lefèbvre PJ, Murray GD, Standl E, Wilcox RG, Wilhelmsen L, Betteridge J, Birkeland K, Golay A, Heine RJ, Korányi L, Laakso M, Mokán M, Norkus A, Pirags V, Podar T, Scheen A, Scherbaum W, Schernthaner G, Schmitz O, Skrha J, Smith U, Taton J, PROactive Investigators (2005) Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 366:1279–1289. https://doi.org/10.1016/S0140-6736(05)67528-9

    Article  CAS  PubMed  Google Scholar 

  19. Savage DB, Tan GD, Acerini CL, Jebb SA, Agostini M, Gurnell M, Williams RL, Umpleby AM, Thomas EL, Bell JD, Dixon AK, Dunne F, Boiani R, Cinti S, Vidal-Puig A, Karpe F, Chatterjee VK, O’Rahilly S (2003) Human metabolic syndrome resulting from dominant-negative mutations in the nuclear receptor peroxisome proliferator-activated receptor-gamma. Diabetes 52:910–917. https://doi.org/10.2337/diabetes.52.4.910

    Article  CAS  PubMed  Google Scholar 

  20. Karadag AS, Ertugrul DT, Kalkan G, Bilgili SG, Celik HT, Takci Z, Balahoroglu R, Calka O (2013) The effect of acitretin treatment on insulin resistance, retinol-binding protein-4, leptin, and adiponectin in psoriasis vulgaris: a noncontrolled study. Dermatology 227:103–108. https://doi.org/10.1159/000351769

    Article  CAS  PubMed  Google Scholar 

  21. Polic MV, Miskulin M, Smolic M, Kralik K, Miskulin I, Berkovic MC, Curcic IB (2018) Psoriasis severity-a risk factor of insulin resistance independent of metabolic syndrome. Int J Environ Res Public Health 15:1486. https://doi.org/10.3390/ijerph15071486

    Article  CAS  PubMed Central  Google Scholar 

  22. Buerger C, Richter B, Woth K, Salgo R, Malisiewicz B, Diehl S, Hardt K, Boehncke S, Boehncke WH (2012) Interleukin-1β interferes with epidermal homeostasis through induction of insulin resistance: implications for psoriasis pathogenesis. J Invest Dermatol 132:2206–2214. https://doi.org/10.1038/jid.2012.123

    Article  CAS  PubMed  Google Scholar 

  23. Ormseth MJ, Oeser AM, Cunningham A, Bian A, Shintani A, Solus J, Tanner S, Stein CM (2013) Peroxisome proliferator-activated receptor γ agonist effect on rheumatoid arthritis: a randomized controlled trial. Arthritis Res Ther 15:R110. https://doi.org/10.1186/ar4290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nestle FO, Conrad C, Tun-Kyi A, Homey B, Gombert M, Boyman O, Burg G, Liu YJ, Gilliet M (2005) Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production. J Exp Med 202:135–143. https://doi.org/10.1084/jem.20050500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zaba LC, Fuentes-Duculan J, Eungdamrong NJ, Abello MV, Novitskaya I, Pierson KC, Gonzalez J, Krueger JG, Lowes MA (2009) Psoriasis is characterized by accumulation of immunostimulatory and Th1/Th17 cell-polarizing myeloid dendritic cells. J Invest Dermatol 129:79–88. https://doi.org/10.1038/jid.2008.194

    Article  CAS  PubMed  Google Scholar 

  26. Klotz L, Dani I, Edenhofer F, Nolden L, Evert B, Paul B, Kolanus W, Klockgether T, Knolle P, Diehl L (2007) Peroxisome proliferator-activated receptor gamma control of dendritic cell function contributes to development of CD4+ T cell anergy. J Immunol 178:2122–2131. https://doi.org/10.4049/jimmunol.178.4.2122

    Article  CAS  PubMed  Google Scholar 

  27. Benham H, Norris P, Goodall J, Wechalekar MD, FitzGerald O, Szentpetery A, Smith M, Thomas R, Gaston H (2013) Th17 and Th22 cells in psoriatic arthritis and psoriasis. Arthritis Res Ther 15:R136. https://doi.org/10.1186/ar4317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hontecillas R, Bassaganya-Riera J (2007) Peroxisome proliferator-activated receptor gamma is required for regulatory CD4+ T cell-mediated protection against colitis. J Immunol 178:2940–2949. https://doi.org/10.4049/jimmunol.178.5.2940

    Article  CAS  PubMed  Google Scholar 

  29. Klotz L, Burgdorf S, Dani I, Saijo K, Flossdorf J, Hucke S, Alferink J, Nowak N, Beyer M, Mayer G, Langhans B, Klockgether T, Waisman A, Eberl G, Schultze J, Famulok M, Kolanus W, Glass C, Kurts C, Knolle PA (2009) The nuclear receptor PPAR gamma selectively inhibits Th17 differentiation in a T cell-intrinsic fashion and suppresses CNS autoimmunity. J Exp Med 206:2079–2089. https://doi.org/10.1084/jem.20082771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nobs SP, Natali S, Pohlmeier L, Okreglicka K, Schneider C, Kurrer M, Sallusto F, Kopf M (2017) PPARγ in dendritic cells and T cells drives pathogenic type-2 effector responses in lung inflammation. J Exp Med 214:3015–3035. https://doi.org/10.1084/jem.20162069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sugiyama H, Gyulai R, Toichi E, Garaczi E, Shimada S, Stevens SR, McCormick TS, Cooper KD (2005) Dysfunctional blood and target tissue CD4+CD25high regulatory T cells in psoriasis: mechanism underlying unrestrained pathogenic effector T cell proliferation. J Immunol 174:164–173. https://doi.org/10.4049/jimmunol.174.1.164

    Article  CAS  PubMed  Google Scholar 

  32. Guri AJ, Mohapatra SK, Horne WT 2nd, Hontecillas R, Bassaganya-Riera J (2010) The role of T cell PPAR gamma in mice with experimental inflammatory bowel disease. BMC Gastroenterol 10:60. https://doi.org/10.1186/1471-230X-10-60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Reich K, Papp KA, Matheson RT, Tu JH, Bissonnette R, Bourcier M, Gratton D, Kunynetz RA, Poulin Y, Rosoph LA, Stingl G, Bauer WM, Salter JM, Falk TM, Blödorn-Schlicht NA, Hueber W, Sommer U, Schumacher MM, Peters T, Kriehuber E, Lee DM, Wieczorek GA, Kolbinger F, Bleul CC (2015) Evidence that a neutrophil-keratinocyte crosstalk is an early target of IL-17A inhibition in psoriasis. Exp Dermatol 24:529–535. https://doi.org/10.1111/exd.12710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Abdalla HB, Napimoga MH, Lopes AH, de Macedo Maganin AG, Cunha TM, Van Dyke TE, Clemente Napimoga JT (2020) Activation of PPAR-γ induces macrophage polarization and reduces neutrophil migration mediated by heme oxygenase 1. Int Immunopharmacol 84:106565. https://doi.org/10.1016/j.intimp.2020.106565

    Article  CAS  PubMed  Google Scholar 

  35. Samotij D, Nedoszytko B, Bartosińska J, Batycka-Baran A, Czajkowski R, Dobrucki IT, Dobrucki LW, Górecka-Sokołowska M, Janaszak-Jasienicka A, Krasowska D, Kalinowski L, Macieja-Stawczyk M, Nowicki RJ, Owczarczyk-Saczonek A, Płoska A, Purzycka-Bohdan D, Radulska A, Reszka E, Siekierzycka A, Słomiński A, Słomiński R, Sobalska-Kwapis M, Strapagiel D, Szczerkowska-Dobosz A, Szczęch J, Żmijewski M, Reich A (2020) Pathogenesis of psoriasis in the “omic” era. Part I. Epidemiology, clinical manifestation, immunological and neuroendocrine disturbances. Postepy Dermatol Alergol 37:135–153. https://doi.org/10.5114/ada.2020.94832

    Article  PubMed  PubMed Central  Google Scholar 

  36. Heming M, Gran S, Jauch SL, Fischer-Riepe L, Russo A, Klotz L, Hermann S, Schäfers M, Roth J, Barczyk-Kahlert K (2018) Peroxisome proliferator-activated receptor-γ modulates the response of macrophages to lipopolysaccharide and glucocorticoids. Front Immunol 9:893. https://doi.org/10.3389/fimmu.2018.00893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao JL, Wei C, Xiao X, Dong YH, Tan B, Yu J, Chen G, Yuan Q, Du ZY, Sun YR, Hu J, Xie R (2020) Expression of TNF-α and IL-β can be suppressed via the PPAR-γ/mTOR signaling pathway in BV-2 microglia: a potential anti-inflammation mechanism. Mol Med Rep 22:3559–3565. https://doi.org/10.3892/mmr.2020.11418

    Article  CAS  PubMed  Google Scholar 

  38. Khare A, Chakraborty K, Raundhal M, Ray P, Ray A (2015) Cutting edge: dual function of PPARγ in CD11c+ cells ensures immune tolerance in the airways. J Immunol 195:431–435. https://doi.org/10.4049/jimmunol.1500474

    Article  CAS  PubMed  Google Scholar 

  39. Farnesi-de-Assunção TS, Alves CF, Carregaro V, de Oliveira JR, da Silva CA, Cheraim AB, Cunha FQ, Napimoga MH (2012) PPAR-γ agonists, mainly 15d-PGJ(2), reduce eosinophil recruitment following allergen challenge. Cell Immunol 273:23–29. https://doi.org/10.1016/j.cellimm.2011.11.010

    Article  CAS  PubMed  Google Scholar 

  40. Liu YH, Tsai YS, Lin SC, Liao NS, Jan MS, Liang CT, Hsu SW, Chen WC, Sung JM, Maeda N, Tsai PJ (2016) Quantitative PPARγ expression affects the balance between tolerance and immunity. Sci Rep 6:26646. https://doi.org/10.1038/srep26646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hontecillas R, Horne WT, Climent M, Guri AJ, Evans C, Zhang Y, Sobral BW, Bassaganya-Riera J (2011) Immunoregulatory mechanisms of macrophage PPAR-γ in mice with experimental inflammatory bowel disease. Mucosal Immunol 2011(4):304–313. https://doi.org/10.1038/mi.2010.75

    Article  CAS  Google Scholar 

  42. Boniface K, Bernard FX, Garcia M, Gurney AL, Lecron JC, Morel F (2005) IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes. J Immunol 174:3695–3702. https://doi.org/10.4049/jimmunol.174.6.3695

    Article  CAS  PubMed  Google Scholar 

  43. Ali G, Elsayed AK, Nandakumar M, Bashir M, Younis I, Abu Aqel Y, Memon B, Temanni R, Abubaker F, Taheri S, Abdelalim EM (2020) Keratinocytes derived from patient-specific induced pluripotent stem cells recapitulate the genetic signature of psoriasis disease. Stem Cells Dev. 29(7):383–400. https://doi.org/10.1089/scd.2019.0150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Piskin G, Sylva-Steenland RM, Bos JD, Teunissen MB (2006) In vitro and in situ expression of IL-23 by keratinocytes in healthy skin and psoriasis lesions: enhanced expression in psoriatic skin. J Immunol 176:1908–1915. https://doi.org/10.4049/jimmunol.176.3.1908

    Article  CAS  PubMed  Google Scholar 

  45. Mastrofrancesco A, Ottaviani M, Aspite N, Cardinali G, Izzo E, Graupe K, Zouboulis CC, Camera E, Picardo M (2010) Azelaic acid modulates the inflammatory response in normal human keratinocytes through PPARgamma activation. Exp Dermatol 19:813–820. https://doi.org/10.1111/j.1600-0625.2010.01107.x

    Article  CAS  PubMed  Google Scholar 

  46. Sankar L, Arumugam D, Boj S, Pradeep P (2017) Expression of angiogenic factors in psoriasis vulgaris. J Clin Diagn Res 11:23–27. https://doi.org/10.7860/JCDR/2017/23039.9525

    Article  Google Scholar 

  47. Kotlinowski J, Jozkowicz A (2016) PPAR gamma and angiogenesis: endothelial cells perspective. J Diabetes Res 2016:8492353. https://doi.org/10.1155/2016/8492353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kirmit A, Kader S, Aksoy M, Bal C, Nural C, Aslan O (2020) Trace elements and oxidative stress status in patients with psoriasis. Postepy Dermatol Alergol 37:333–339. https://doi.org/10.5114/ada.2020.94265

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tseng V, Sutliff RL, Hart CM (2019) Redox biology of peroxisome proliferator-activated receptor-γ in pulmonary hypertension. Antioxid Redox Signal 31:874–897. https://doi.org/10.1089/ars.2018.7695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Polvani S, Tarocchi M, Galli A (2012) PPARγ and oxidative stress: Con(β) Catenating NRF2 and FOXO. PPAR Res 2012:641087. https://doi.org/10.1155/2012/641087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Joyce CE, Zhou X, Xia J, Ryan C, Thrash B, Menter A, Zhang W, Bowcock AM (2011) Deep sequencing of small RNAs from human skin reveals major alterations in the psoriasis miRNAome. Hum Mol Genet 20:4025–4040. https://doi.org/10.1093/hmg/ddr331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dharap A, Pokrzywa C, Murali S, Kaimal B, Vemuganti R (2015) Mutual induction of transcription factor PPARγ and microRNAs miR-145 and miR-329. J Neurochem 135:139–146. https://doi.org/10.1111/jnc.13220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gu X, Nylander E, Coates PJ, Nylander K (2011) Effect of narrow-band ultraviolet B phototherapy on p63 and microRNA (miR-21 and miR-125b) expression in psoriatic epidermis. Acta Derm Venereol 91:392–397. https://doi.org/10.2340/00015555-1086

    Article  CAS  PubMed  Google Scholar 

  54. Meisgen F, Xu N, Wei T, Janson PC, Obad S, Broom O, Nagy N, Kauppinen S, Kemény L, Ståhle M, Pivarcsi A, Sonkoly E (2012) MiR-21 is up-regulated in psoriasis and suppresses T cell apoptosis. Exp Dermatol 21:312–314. https://doi.org/10.1111/j.1600-0625.2012.01462.x

    Article  CAS  PubMed  Google Scholar 

  55. Guinea-Viniegra J, Jiménez M, Schonthaler HB, Navarro R, Delgado Y, Concha-Garzón MJ, Tschachler E, Obad S, Daudén E, Wagner EF (2014) Targeting miR-21 to treat psoriasis. Sci Transl Med. 6:225. https://doi.org/10.1126/scitranslmed.3008089

    Article  CAS  Google Scholar 

  56. Green DE, Murphy TC, Kang BY, Searles CD, Hart CM (2015) PPARγ ligands attenuate hypoxia-induced proliferation in human pulmonary artery smooth muscle cells through modulation of microRNA-21. PLoS ONE 10:e0133391. https://doi.org/10.1371/journal.pone.0133391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sonkoly E, Wei T, Janson PC, Sääf A, Lundeberg L, Tengvall-Linder M, Norstedt G, Alenius H, Homey B, Scheynius A, Ståhle M, Pivarcsi A (2007) MicroRNAs: novel regulators involved in the pathogenesis of psoriasis? PLoS ONE 2:e610. https://doi.org/10.1371/journal.pone.0000610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xu N, Brodin P, Wei T, Meisgen F, Eidsmo L, Nagy N, Kemeny L, Ståhle M, Sonkoly E, Pivarcsi A (2011) MiR-125b, a microRNA downregulated in psoriasis, modulates keratinocyte proliferation by targeting FGFR2. J Invest Dermatol 2011(131):1521–1529. https://doi.org/10.1038/jid.2011.55

    Article  CAS  Google Scholar 

  59. Pan M, Huang Y, Zhu X, Lin X, Luo D (2019) miR-125b-mediated regulation of cell proliferation through the Jagged-1/Notch signaling pathway by inhibiting BRD4 expression in psoriasis. Mol Med Rep 19:5227–5236. https://doi.org/10.3892/mmr.2019.10187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tili E, Michaille JJ, Cimino A, Costinean S, Dumitru CD, Adair B, Fabbri M, Alder H, Liu CG, Calin GA, Croce CM (2007) Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol 179:5082–5089. https://doi.org/10.4049/jimmunol.179.8.5082

    Article  CAS  PubMed  Google Scholar 

  61. Luo S, Wang J, Ma Y, Yao Z, Pan H (2015) PPARγ inhibits ovarian cancer cells proliferation through upregulation of miR-125b. Biochem Biophys Res Commun 462:85–90. https://doi.org/10.1016/j.bbrc.2015.04.023

    Article  CAS  PubMed  Google Scholar 

  62. Ichihara A, Jinnin M, Yamane K, Fujisawa A, Sakai K, Masuguchi S, Fukushima S, Maruo K, Ihn H (2011) microRNA-mediated keratinocyte hyperproliferation in psoriasis vulgaris. Br J Dermatol 165:1003–1010. https://doi.org/10.1111/j.1365-2133.2011.10497.x

    Article  CAS  PubMed  Google Scholar 

  63. Alatas ET, Kara M, Dogan G, Akın Belli A (2020) Blood microRNA expressions in patients with mild to moderate psoriasis and the relationship between microRNAs and psoriasis activity. An Bras Dermatol 95:702–707. https://doi.org/10.1016/j.abd.2020.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lee A, Papangeli I, Park Y, Jeong HN, Choi J, Kang H, Jo HN, Kim J, Chun HJ (2017) A PPARγ-dependent miR-424/503-CD40 axis regulates inflammation mediated angiogenesis. Sci Rep 7:2528. https://doi.org/10.1038/s41598-017-02852-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Moorchung N, Kulaar JS, Chatterjee M, Vasudevan B, Tripathi T, Dutta V (2014) Role of NF-κB in the pathogenesis of psoriasis elucidated by its staining in skin biopsy specimens. Int J Dermatol 53:570–574. https://doi.org/10.1111/ijd.12050

    Article  CAS  PubMed  Google Scholar 

  66. Scirpo R, Fiorotto R, Villani A, Amenduni M, Spirli C, Strazzabosco M (2015) Stimulation of nuclear receptor peroxisome proliferator-activated receptor-γ limits NF-κB-dependent inflammation in mouse cystic fibrosis biliary epithelium. Hepatology 62:1551–1562. https://doi.org/10.1002/hep.28000

    Article  CAS  PubMed  Google Scholar 

  67. Liu Y, Wang J, Luo S, Zhan Y, Lu Q (2020) The roles of PPARγ and its agonists in autoimmune diseases: a comprehensive review. J Autoimmun 113:102510. https://doi.org/10.1016/j.jaut.2020.102510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shahin D, Toraby EE, Abdel-Malek H, Boshra V, Elsamanoudy AZ, Shaheen D (2011) Effect of peroxisome proliferator-activated receptor gamma agonist (pioglitazone) and methotrexate on disease activity in rheumatoid arthritis (experimental and clinical study). Clin Med Insights Arthritis Musculoskelet Disord 4:1–10. https://doi.org/10.4137/CMAMD.S5951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pershadsingh HA, Sproul JA, Benjamin E, Finnegan J, Amin NM (1998) Treatment of psoriasis with troglitazone therapy. Arch Dermatol 134:1304–1305. https://doi.org/10.1001/archderm.134.10.1304

    Article  CAS  PubMed  Google Scholar 

  70. Ellis CN, Varani J, Fisher GJ, Zeigler ME, Pershadsingh HA, Benson SC, Chi Y, Kurtz TW (2000) Troglitazone improves psoriasis and normalizes models of proliferative skin disease: ligands for peroxisome proliferator-activated receptor-gamma inhibit keratinocyte proliferation. Arch Dermatol 136:609–616. https://doi.org/10.1001/archderm.136.5.609

    Article  CAS  PubMed  Google Scholar 

  71. Graham DJ, Green L, Senior JR, Nourjah P (2003) Troglitazone-induced liver failure: a case study. Am J Med 114:299–306. https://doi.org/10.1016/s0002-9343(02)01529-2

    Article  PubMed  Google Scholar 

  72. Ellis CN, Barker JN, Haig AE, Parker CA, Daly S, Jayawardene DA; Avandia Psoriasis Study Group (2007) Placebo response in two long-term randomized psoriasis studies that were negative for rosiglitazone. Am J Clin Dermatol 8:93–102. https://doi.org/10.2165/00128071-200708020-00005

    Article  Google Scholar 

  73. Kuenzli S, Saurat JH (2003) Effect of topical PPARbeta/delta and PPARgamma agonists on plaque psoriasis. A pilot study. Dermatology 206:252–256. https://doi.org/10.1159/000068897

    Article  CAS  PubMed  Google Scholar 

  74. Shafiq N, Malhotra S, Pandhi P, Gupta M, Kumar B, Sandhu K (2005) Pilot trial: Pioglitazone versus placebo in patients with plaque psoriasis (the P6). Int J Dermatol 44:328–333. https://doi.org/10.1111/j.1365-4632.2005.02504.x.Erratum.In:IntJDermatol.2005Jul;44(7):622.Sandhu,Kanial[correctedtoSandhu,Kamaldeep]

    Article  CAS  PubMed  Google Scholar 

  75. Hafez VG, Bosseila M, Abdel Halim MR, Shaker OG, Kamal M, Kareem HS (2015) Clinical effects of “pioglitazone”, an insulin sensitizing drug, on psoriasis vulgaris and its co-morbidities, a double blinded randomized controlled trialx1. J Dermatolog Treat 26:208–214. https://doi.org/10.3109/09546634.2014.932324

    Article  CAS  PubMed  Google Scholar 

  76. Zhang JZ, Ding Y, Xiang F, Yu SR, Zhang DZ, Guan MM, Kang XJ (2020) Effectiveness and safety of different doses of pioglitazone in psoriasis: a meta-analysis of randomized controlled trials. Chin Med J (Engl) 133:444–451. https://doi.org/10.1097/CM9.0000000000000642

    Article  Google Scholar 

  77. Chen P, Chen X, Lei L, Zhang Y, Xiang J, Zhou J, Lv J (2020) The efficacy and safety of pioglitazone in psoriasis vulgaris: a meta-analysis of randomized controlled trials. Medicine 99:e21549. https://doi.org/10.1097/MD.0000000000021549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bongartz T, Coras B, Vogt T, Schölmerich J, Müller-Ladner U (2005) Treatment of active psoriatic arthritis with the PPARgamma ligand pioglitazone: an open-label pilot study. Rheumatology (Oxford) 44:126–129. https://doi.org/10.1093/rheumatology/keh423

    Article  CAS  Google Scholar 

  79. Takahara M, Shiraiwa T, Kaneto H, Yasuda T, Kuroda A, Sakamoto F, Naka T, Miyashita K, Sakamoto K, Matsuoka T, Shimomura I, Matsuhisa M (2010) Improvement of psoriatic arthritis by pioglitazone treatment in a type 2 diabetic patient. Diabetes Res Clin Pract 90:e9–e10. https://doi.org/10.1016/j.diabres.2010.05.020

    Article  CAS  PubMed  Google Scholar 

  80. Abidi A, Rizvi DA, Saxena K, Chaudhary S, Ahmad A (2020) The evaluation of efficacy and safety of methotrexate and pioglitazone in psoriasis patients: a randomized, open-labeled, active-controlled clinical trial. Indian J Pharmacol 52:16–22. https://doi.org/10.4103/ijp.IJP_88_19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lajevardi V, Hallaji Z, Daklan S, Abedini R, Goodarzi A, Abdolreza M (2015) The efficacy of methotrexate plus pioglitazone vs. methotrexate alone in the management of patients with plaque-type psoriasis: a single-blinded randomized controlled trial. Int J Dermatol 54:95–101. https://doi.org/10.1111/ijd.12585

    Article  CAS  PubMed  Google Scholar 

  82. Mittal R, Malhotra S, Pandhi P, Kaur I, Dogra S (2009) Efficacy and safety of combination Acitretin and Pioglitazone therapy in patients with moderate to severe chronic plaque-type psoriasis: a randomized, double-blind, placebo-controlled clinical trial. Arch Dermatol 145:387–393. https://doi.org/10.1001/archdermatol.2009.5

    Article  CAS  PubMed  Google Scholar 

  83. Ghiasi M, Ebrahimi S, Lajevardi V, Taraz M, Azizpour A (2019) Efficacy and safety of pioglitazone plus phototherapy versus phototherapy in patients with plaque type psoriasis: a Double Blinded Randomized Controlled Trial. J Dermatolog Treat 30:664–667. https://doi.org/10.1080/09546634.2018.1544702

    Article  CAS  PubMed  Google Scholar 

  84. Ip W, Kirchhof MG (2017) Glycemic control in the treatment of psoriasis. Dermatology 233:23–29. https://doi.org/10.1159/000472149

    Article  CAS  PubMed  Google Scholar 

  85. Vijay SK, Mishra M, Kumar H, Tripathi K (2009) Effect of pioglitazone and rosiglitazone on mediators of endothelial dysfunction, markers of angiogenesis and inflammatory cytokines in type-2 diabetes. Acta Diabetol 46:27–33. https://doi.org/10.1007/s00592-008-0054-7

    Article  CAS  PubMed  Google Scholar 

  86. Xu P, Xu K, Wang J, Jiang JP, Chen LQ (2011) Pioglitazone: a promising therapeutic tool in sodium taurocholate-induced severe acute pancreatitis. Dig Dis Sci 56:1082–1089. https://doi.org/10.1007/s10620-010-1393-0

    Article  CAS  PubMed  Google Scholar 

  87. Kaplan J, Nowell M, Chima R, Zingarelli B (2014) Pioglitazone reduces inflammation through inhibition of NF-κB in polymicrobial sepsis. Innate Immun 20:519–528. https://doi.org/10.1177/1753425913501565

    Article  CAS  PubMed  Google Scholar 

  88. Lan LF, Zheng L, Yang X, Ji XT, Fan YH, Zeng JS (2015) Peroxisome proliferator-activated receptor-γ agonist pioglitazone ameliorates white matter lesion and cognitive impairment in hypertensive rats. CNS Neurosci Ther 21:410–416. https://doi.org/10.1111/cns.12374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Charkhpour M, Ghavimi H, Ghanbarzadeh S, Yousefi B, Khorrami A, Mesgari M, Hassanzadeh K (2015) Protective effect of pioglitazone on morphine-induced neuroinflammation in the rat lumbar spinal cord. J Biomed Sci 22:82. https://doi.org/10.1186/s12929-015-0187-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Liu Y, Qu Y, Liu L, Zhao H, Ma H, Si M, Cheng L, Nie L (2019) PPAR-γ agonist pioglitazone protects against IL-17 induced intervertebral disc inflammation and degeneration via suppression of NF-κB signaling pathway. Int Immunopharmacol 72:138–147. https://doi.org/10.1016/j.intimp.2019.04.012

    Article  CAS  PubMed  Google Scholar 

  91. Akbari R, Behdarvand T, Afarin R, Yaghooti H, Jalali MT, Mohammadtaghvaei N (2021) Saroglitazar improved hepatic steatosis and fibrosis by modulating inflammatory cytokines and adiponectin in an animal model of non-alcoholic steatohepatitis. BMC Pharmacol Toxicol 22:53. https://doi.org/10.1186/s40360-021-00524-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cippitelli A, Domi E, Ubaldi M, Douglas JC, Li HW, Demopulos G, Gaitanaris G, Roberto M, Drew PD, Kane CJM, Ciccocioppo R (2017) Protection against alcohol-induced neuronal and cognitive damage by the PPARγ receptor agonist pioglitazone. Brain Behav Immun 64:320–329. https://doi.org/10.1016/j.bbi.2017.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Drew PD, Johnson JW, Douglas JC, Phelan KD, Kane CJ (2015) Pioglitazone blocks ethanol induction of microglial activation and immune responses in the hippocampus, cerebellum, and cerebral cortex in a mouse model of fetal alcohol spectrum disorders. Alcohol Clin Exp Res 39:445–454. https://doi.org/10.1111/acer.12639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zou JN, Xiao J, Hu SS, Fu CS, Zhang XL, Zhang ZX, Lu YJ, Chen WJ, Ye ZB (2017) Toll-like Receptor 4 Signaling Pathway in the Protective Effect of Pioglitazone on Experimental Immunoglobulin A Nephropathy. Chin Med J (Engl) 130:906–913. https://doi.org/10.4103/0366-6999.204101

    Article  CAS  Google Scholar 

  95. Corsini I, Polvani S, Tarocchi M, Tempesti S, Marroncini G, Generoso M, Bresci C, Gozzini E, Bianconi T, Galli A, Dani C (2017) Peroxisome proliferator-activated receptor-γ agonist pioglitazone reduces the development of necrotizing enterocolitis in a neonatal preterm rat model. Pediatr Res 81:364–368. https://doi.org/10.1038/pr.2016.214

    Article  CAS  PubMed  Google Scholar 

  96. Goldminz AM, Au SC, Kim N, Gottlieb AB, Lizzul PF (2013) NF-κB: an essential transcription factor in psoriasis. J Dermatol Sci 69:89–94. https://doi.org/10.1016/j.jdermsci.2012.11.002

    Article  CAS  PubMed  Google Scholar 

  97. Zhu W, Yan H, Li S, Nie W, Fan F, Zhu J (2016) PPAR-γ agonist pioglitazone regulates dendritic cells immunogenicity mediated by DC-SIGN via the MAPK and NF-κB pathways. Int Immunopharmacol 41:24–34. https://doi.org/10.1016/j.intimp.2016.09.028

    Article  CAS  PubMed  Google Scholar 

  98. Klotz L, Schmidt M, Giese T, Sastre M, Knolle P, Klockgether T, Heneka MT (2005) Proinflammatory stimulation and pioglitazone treatment regulate peroxisome proliferator-activated receptor gamma levels in peripheral blood mononuclear cells from healthy controls and multiple sclerosis patients. J Immunol 175:4948–4955. https://doi.org/10.4049/jimmunol.175.8.4948

    Article  CAS  PubMed  Google Scholar 

  99. Collino M, Aragno M, Mastrocola R, Gallicchio M, Rosa AC, Dianzani C, Danni O, Thiemermann C, Fantozzi R (2006) Modulation of the oxidative stress and inflammatory response by PPAR-gamma agonists in the hippocampus of rats exposed to cerebral ischemia/reperfusion. Eur J Pharmacol 530:70–80. https://doi.org/10.1016/j.ejphar.2005.11.049

    Article  CAS  PubMed  Google Scholar 

  100. Zhang XY, Xiao YQ, Zhang Y, Ye W (2013) Protective effect of pioglitazone on retinal ischemia/reperfusion injury in rats. Invest Ophthalmol Vis Sci 54:3912–3921. https://doi.org/10.1167/iovs.13-11614

    Article  CAS  PubMed  Google Scholar 

  101. Machado MMF, Bassani TB, Cóppola-Segovia V, Moura ELR, Zanata SM, Andreatini R, Vital MABF (2019) PPAR-γ agonist pioglitazone reduces microglial proliferation and NF-κB activation in the substantia nigra in the 6-hydroxydopamine model of Parkinson’s disease. Pharmacol Rep 71:556–564. https://doi.org/10.1016/j.pharep.2018.11.005

    Article  CAS  PubMed  Google Scholar 

  102. Gbr AA, Abdel Baky NA, Mohamed EA, Zaky HS (2021) Cardioprotective effect of pioglitazone and curcumin against diabetic cardiomyopathy in type 1 diabetes mellitus: impact on CaMKII/NF-κB/TGF-β1 and PPAR-γ signaling pathway. Naunyn Schmiedebergs Arch Pharmacol 394:349–360. https://doi.org/10.1007/s00210-020-01979-y

    Article  CAS  PubMed  Google Scholar 

  103. Wang L, Waltenberger B, Pferschy-Wenzig EM, Blunder M, Liu X, Malainer C, Blazevic T, Schwaiger S, Rollinger JM, Heiss EH, Schuster D, Kopp B, Bauer R, Stuppner H, Dirsch VM, Atanasov AG (2014) Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review. Biochem Pharmacol 92:73–89. https://doi.org/10.1016/j.bcp.2014.07.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hegde VL, Singh UP, Nagarkatti PS, Nagarkatti M (2015) Critical role of mast cells and peroxisome proliferator-activated receptor γ in the induction of myeloid-derived suppressor cells by marijuana cannabidiol in vivo. J Immunol 194:5211–5222. https://doi.org/10.4049/jimmunol.1401844

    Article  CAS  PubMed  Google Scholar 

  105. Wilkinson JD, Williamson EM (2007) Cannabinoids inhibit human keratinocyte proliferation through a non-CB1/CB2 mechanism and have a potential therapeutic value in the treatment of psoriasis. J Dermatol Sci 45:87–92. https://doi.org/10.1016/j.jdermsci.2006.10.009

    Article  CAS  PubMed  Google Scholar 

  106. Burstein S (2005) PPAR-gamma: a nuclear receptor with affinity for cannabinoids. Life Sci 77:1674–1684. https://doi.org/10.1016/j.lfs.2005.05.039

    Article  CAS  PubMed  Google Scholar 

  107. Sangiovanni E, Fumagalli M, Pacchetti B, Piazza S, Magnavacca A, Khalilpour S, Melzi G, Martinelli G, Dell’Agli M (2019) Cannabis sativa L. extract and cannabidiol inhibit in vitro mediators of skin inflammation and wound injury. Phytother Res 33:2083–2093. https://doi.org/10.1002/ptr.6400

    Article  CAS  PubMed  Google Scholar 

  108. Palmieri B, Laurino C, Vadalà M (2019) A therapeutic effect of cbd-enriched ointment in inflammatory skin diseases and cutaneous scars. Clin Ter 170:e93–e99. https://doi.org/10.7417/CT.2019.2116

    Article  CAS  PubMed  Google Scholar 

  109. Vincenzi C, Tosti A (2020) Efficacy and tolerability of a shampoo containing broad-spectrum Cannabidiol in the treatment of scalp inflammation in patients with mild to moderate scalp psoriasis or seborrheic dermatitis. Skin Appendage Disord 6:355–361. https://doi.org/10.1159/000510896

    Article  PubMed  PubMed Central  Google Scholar 

  110. Park JY, Kawada T, Han IS, Kim BS, Goto T, Takahashi N, Fushiki T, Kurata T, Yu R (2004) Capsaicin inhibits the production of tumor necrosis factor alpha by LPS-stimulated murine macrophages, RAW 264.7: a PPARgamma ligand-like action as a novel mechanism. FEBS Lett 572:266–270. https://doi.org/10.1016/j.febslet.2004.06.084.Erratum.In:FEBSLett.2004Sep24;575(1-3):141

    Article  CAS  PubMed  Google Scholar 

  111. Bernstein JE, Parish LC, Rapaport M, Rosenbaum MM, Roenigk HH Jr (1986) Effects of topically applied capsaicin on moderate and severe psoriasis vulgaris. J Am Acad Dermatol 15:504–507. https://doi.org/10.1016/s0190-9622(86)70201-6

    Article  CAS  PubMed  Google Scholar 

  112. Kürkçüoğlu N, Alaybeyi F (1990) Topical capsaicin for psoriasis. Br J Dermatol 123:549–550. https://doi.org/10.1111/j.1365-2133.1990.tb01467.x

    Article  PubMed  Google Scholar 

  113. Ellis CN, Berberian B, Sulica VI, Dodd WA, Jarratt MT, Katz HI, Prawer S, Krueger G, Rex IH Jr, Wolf JE (1993) A double-blind evaluation of topical capsaicin in pruritic psoriasis. J Am Acad Dermatol 29:438–442. https://doi.org/10.1016/0190-9622(93)70208-b

    Article  CAS  PubMed  Google Scholar 

  114. Feng X, Qin H, Shi Q, Zhang Y, Zhou F, Wu H, Ding S, Niu Z, Lu Y, Shen P (2014) Chrysin attenuates inflammation by regulating M1/M2 status via activating PPARγ. Biochem Pharmacol 89:503–514. https://doi.org/10.1016/j.bcp.2014.03.016

    Article  CAS  PubMed  Google Scholar 

  115. Li HJ, Wu NL, Pu CM, Hsiao CY, Chang DC, Hung CF (2020) Chrysin alleviates imiquimod-induced psoriasis-like skin inflammation and reduces the release of CCL20 and antimicrobial peptides. Sci Rep 10:2932. https://doi.org/10.1038/s41598-020-60050-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wang HM, Zhao YX, Zhang S, Liu GD, Kang WY, Tang HD, Ding JQ, Chen SD (2010) PPARgamma agonist curcumin reduces the amyloid-beta-stimulated inflammatory responses in primary astrocytes. J Alzheimers Dis 20:1189–1199. https://doi.org/10.3233/JAD-2010-091336

    Article  CAS  PubMed  Google Scholar 

  117. Mazidi M, Karimi E, Meydani M, Ghayour-Mobarhan M, Ferns GA (2016) Potential effects of curcumin on peroxisome proliferator-activated receptor-γ in vitro and in vivo. World J Methodol 6:112–117. https://doi.org/10.5662/wjm.v6.i1.112

    Article  PubMed  PubMed Central  Google Scholar 

  118. Sun J, Zhao Y, Hu J (2013) Curcumin inhibits imiquimod-induced psoriasis-like inflammation by inhibiting IL-1beta and IL-6 production in mice. PLoS ONE 8:e67078. https://doi.org/10.1371/journal.pone.0067078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhao Y, Sun J, Dou W, Hu JH (2015) Curcumin inhibits proliferation of interleukin-22-treated HaCaT cells. Int J Clin Exp Med 8:9580–9584

    PubMed  PubMed Central  Google Scholar 

  120. Skyvalidas DΝ, Mavropoulos A, Tsiogkas S, Dardiotis E, Liaskos C, Mamuris Z, Roussaki-Schulze A, Sakkas LI, Zafiriou E, Bogdanos DP (2020) Curcumin mediates attenuation of pro-inflammatory interferon γ and interleukin 17 cytokine responses in psoriatic disease, strengthening its role as a dietary immunosuppressant. Nutr Res 75:95–108. https://doi.org/10.1016/j.nutres.2020.01.005

    Article  CAS  PubMed  Google Scholar 

  121. Heng MC, Song MK, Harker J, Heng MK (2000) Drug-induced suppression of phosphorylase kinase activity correlates with resolution of psoriasis as assessed by clinical, histological and immunohistochemical parameters. Br J Dermatol 143:937–949. https://doi.org/10.1046/j.1365-2133.2000.03767.x

    Article  CAS  PubMed  Google Scholar 

  122. Antiga E, Bonciolini V, Volpi W, Del Bianco E, Caproni M (2015) Oral Curcumin (Meriva) is effective as an adjuvant treatment and is able to reduce il-22 serum levels in patients with psoriasis vulgaris. Biomed Res Int 2015:283634. https://doi.org/10.1155/2015/283634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bilia AR, Bergonzi MC, Isacchi B, Antiga E, Caproni M (2018) Curcumin nanoparticles potentiate therapeutic effectiveness of acitrein in moderate-to-severe psoriasis patients and control serum cholesterol levels. J Pharm Pharmacol 70:919–928. https://doi.org/10.1111/jphp.12910

    Article  CAS  PubMed  Google Scholar 

  124. Jin N, Lin J, Yang C, Wu C, He J, Chen Z, Yang Q, Chen J, Zheng G, Lv L, Liang H, Chen J, Ruan Z (2020) Enhanced penetration and anti-psoriatic efficacy of curcumin by improved smartPearls technology with the addition of glycyrrhizic acid. Int J Pharm 578:119101. https://doi.org/10.1016/j.ijpharm.2020.119101

    Article  CAS  PubMed  Google Scholar 

  125. Sun L, Liu Z, Wang L, Cun D, Tong HHY, Yan R, Chen X, Wang R, Zheng Y (2017) Enhanced topical penetration, system exposure and anti-psoriasis activity of two particle-sized, curcumin-loaded PLGA nanoparticles in hydrogel. J Control Release 254:44–54. https://doi.org/10.1016/j.jconrel.2017.03.385

    Article  CAS  PubMed  Google Scholar 

  126. Mao KL, Fan ZL, Yuan JD, Chen PP, Yang JJ, Xu J, ZhuGe DL, Jin BH, Zhu QY, Shen BX, Sohawon Y, Zhao YZ, Xu HL (2017) Skin-penetrating polymeric nanoparticles incorporated in silk fibroin hydrogel for topical delivery of curcumin to improve its therapeutic effect on psoriasis mouse model. Colloids Surf B Biointerfaces 160:704–714. https://doi.org/10.1016/j.colsurfb.2017.10.029

    Article  CAS  PubMed  Google Scholar 

  127. Kang NW, Kim MH, Sohn SY, Kim KT, Park JH, Lee SY, Lee JY, Kim DD (2018) Curcumin-loaded lipid-hybridized cellulose nanofiber film ameliorates imiquimod-induced psoriasis-like dermatitis in mice. Biomaterials 2018182:245–258. https://doi.org/10.1016/j.biomaterials.2018.08.030

    Article  CAS  Google Scholar 

  128. Jin T, Kim OY, Shin MJ, Choi EY, Lee SS, Han YS, Chung JH (2014) Fisetin up-regulates the expression of adiponectin in 3T3-L1 adipocytes via the activation of silent mating type information regulation 2 homologue 1 (SIRT1)-deacetylase and peroxisome proliferator-activated receptors (PPARs). J Agric Food Chem 62:10468–10474. https://doi.org/10.1021/jf502849j

    Article  CAS  PubMed  Google Scholar 

  129. Chamcheu JC, Esnault S, Adhami VM, Noll AL, Banang-Mbeumi S, Roy T, Singh SS, Huang S, Kousoulas KG, Mukhtar H (2019) Fisetin, a 3,7,3’,4’-tetrahydroxyflavone inhibits the PI3K/Akt/mTOR and MAPK pathways and ameliorates psoriasis pathology in 2D and 3D organotypic human inflammatory skin models. Cells 8:1089. https://doi.org/10.3390/cells8091089

    Article  CAS  PubMed Central  Google Scholar 

  130. Xu L, Liu JT, Li K, Wang SY, Xu S (2019) Genistein inhibits Ang II-induced CRP and MMP-9 generations via the ER-p38/ERK1/2-PPARγ-NF-κB signaling pathway in rat vascular smooth muscle cells. Life Sci 2019216:140–146. https://doi.org/10.1016/j.lfs.2018.11.036

    Article  CAS  Google Scholar 

  131. Dang ZC, Audinot V, Papapoulos SE, Boutin JA, Löwik CW (2003) Peroxisome proliferator-activated receptor gamma (PPARgamma ) as a molecular target for the soy phytoestrogen genistein. J Biol Chem 278:962–967. https://doi.org/10.1074/jbc.M209483200

    Article  CAS  PubMed  Google Scholar 

  132. Wang A, Wei J, Lu C, Chen H, Zhong X, Lu Y, Li L, Huang H, Dai Z, Han L (2019) Genistein suppresses psoriasis-related inflammation through a STAT3-NF-κB-dependent mechanism in keratinocytes. Int Immunopharmacol 69:270–278. https://doi.org/10.1016/j.intimp.2019.01.054

    Article  CAS  PubMed  Google Scholar 

  133. Quan Q, Wang J, Li X, Wang Y (2013) Ginsenoside Rg1 decreases Aβ(1–42) level by upregulating PPARγ and IDE expression in the hippocampus of a rat model of Alzheimer’s disease. PLoS ONE 8:e59155. https://doi.org/10.1371/journal.pone.0059155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Shi Q, He Q, Chen W, Long J, Zhang B (2019) Ginsenoside Rg1 abolish imiquimod-induced psoriasis-like dermatitis in BALB/c mice via downregulating NF-κB signaling pathway. J Food Biochem 43:e13032. https://doi.org/10.1111/jfbc.13032

    Article  PubMed  Google Scholar 

  135. Rebhun JF, Glynn KM, Missler SR (2015) Identification of glabridin as a bioactive compound in licorice (Glycyrrhiza glabra L.) extract that activates human peroxisome proliferator-activated receptor gamma (PPARγ). Fitoterapia 106:55–61. https://doi.org/10.1016/j.fitote.2015.08.004

    Article  CAS  PubMed  Google Scholar 

  136. Li P, Li Y, Jiang H, Xu Y, Liu X, Che B, Tang J, Liu G, Tang Y, Zhou W, Zhang L, Dong C, Chen H, Zhang K, Du Z (2018) Glabridin, an isoflavan from licorice root, ameliorates imiquimod-induced psoriasis-like inflammation of BALB/c mice. Int Immunopharmacol 59:243–251. https://doi.org/10.1016/j.intimp.2018.04.018

    Article  CAS  PubMed  Google Scholar 

  137. Bhargava P, Verma VK, Malik S, Khan SI, Bhatia J, Arya DS (2019) Hesperidin regresses cardiac hypertrophy by virtue of PPAR-γ agonistic, anti-inflammatory, antiapoptotic, and antioxidant properties. J Biochem Mol Toxicol 33:e22283. https://doi.org/10.1002/jbt.22283

    Article  CAS  PubMed  Google Scholar 

  138. Li X, Xie X, Zhang L, Meng Y, Li N, Wang M, Zhai C, Liu Z, Di T, Zhang L, Li P (2019) Hesperidin inhibits keratinocyte proliferation and imiquimod-induced psoriasis-like dermatitis via the IRS-1/ERK1/2 pathway. Life Sci 219:311–321. https://doi.org/10.1016/j.lfs.2019.01.019

    Article  CAS  PubMed  Google Scholar 

  139. Kim N, Lee S, Kang J, Choi YA, Lee B, Kwon TK, Jang YH, Kim SH (2020) Hispidulin alleviates imiquimod-induced psoriasis-like skin inflammation by inhibiting splenic Th1/Th17 cell population and keratinocyte activation. Int Immunopharmacol 87:106767. https://doi.org/10.1016/j.intimp.2020.106767

    Article  CAS  PubMed  Google Scholar 

  140. Atanasov AG, Wang JN, Gu SP, Bu J, Kramer MP, Baumgartner L, Fakhrudin N, Ladurner A, Malainer C, Vuorinen A, Noha SM, Schwaiger S, Rollinger JM, Schuster D, Stuppner H, Dirsch VM, Heiss EH (2013) Honokiol: a non-adipogenic PPARγ agonist from nature. Biochim Biophys Acta 1830:4813–4819. https://doi.org/10.1016/j.bbagen.2013.06.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wen J, Wang X, Pei H, Xie C, Qiu N, Li S, Wang W, Cheng X, Chen L (2015) Anti-psoriatic effects of Honokiol through the inhibition of NF-κB and VEGFR-2 in animal model of K14-VEGF transgenic mouse. J Pharmacol Sci 128:116–124. https://doi.org/10.1016/j.jphs.2015.05.008

    Article  CAS  PubMed  Google Scholar 

  142. Liu Q, Yang QM, Hu HJ, Yang L, Yang YB, Chou GX, Wang ZT (2014) Bioactive diterpenoids and flavonoids from the aerial parts of Scoparia dulcis. J Nat Prod 77:1594–1600. https://doi.org/10.1021/np500150f

    Article  CAS  PubMed  Google Scholar 

  143. Li P, Wang Y, Luo J, Zeng Q, Wang M, Bai M, Zhou H, Wang J, Jiang H (2020) Downregulation of OCTN2 by cytokines plays an important role in the progression of inflammatory bowel disease. Biochem Pharmacol 178:114115. https://doi.org/10.1016/j.bcp.2020.114115

    Article  CAS  PubMed  Google Scholar 

  144. Zhou W, Hu M, Zang X, Liu Q, Du J, Hu J, Zhang L, Du Z, Xiang Z (2020) Luteolin attenuates imiquimod-induced psoriasis-like skin lesions in BALB/c mice via suppression of inflammation response. Biomed Pharmacother 131:110696. https://doi.org/10.1016/j.biopha.2020.110696

    Article  CAS  PubMed  Google Scholar 

  145. Weng Z, Patel AB, Vasiadi M, Therianou A, Theoharides TC (2014) Luteolin inhibits human keratinocyte activation and decreases NF-κB induction that is increased in psoriatic skin. PLoS ONE 9:e90739. https://doi.org/10.1371/journal.pone.0090739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kjær TN, Thorsen K, Jessen N, Stenderup K, Pedersen SB (2015) Resveratrol ameliorates imiquimod-induced psoriasis-like skin inflammation in mice. PLoS ONE 10:e0126599. https://doi.org/10.1371/journal.pone.0126599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wu L, Guo C, Wu J (2020) Therapeutic potential of PPARγ natural agonists in liver diseases. J Cell Mol Med 24:2736–2748. https://doi.org/10.1111/jcmm.15028

    Article  PubMed  PubMed Central  Google Scholar 

  148. Cheng CY, Lin YK, Yang SC, Alalaiwe A, Lin CJ, Fang JY, Lin CF (2020) Percutaneous absorption of resveratrol and its oligomers to relieve psoriasiform lesions: In silico, in vitro and in vivo evaluations. Int J Pharm 585:119507. https://doi.org/10.1016/j.ijpharm.2020.119507

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Study Design: XL. Literature review: XL, XM, ZS, and JL. Manuscript Preparation: XL, XM, ZS, and JL.

Corresponding author

Correspondence to Xiran Lin.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This is a review article, not an original research. Ethical approval is not applicable to this article as no human participants, their data or biological material were involved in the current study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Meng, X., Song, Z. et al. Peroxisome proliferator-activator receptor γ and psoriasis, molecular and cellular biochemistry. Mol Cell Biochem 477, 1905–1920 (2022). https://doi.org/10.1007/s11010-022-04417-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04417-0

Keywords

Navigation