Skip to main content

Advertisement

Log in

Alchemilla viridiflora Rothm.: the potent natural inhibitor of angiotensin I-converting enzyme

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Alchemilla viridiflora Rothm., Rosaceae is a herbaceous plant widespread in central Greece, Bulgaria, North Macedonia and Serbia with Kosovo. Liquid chromatography-mass spectrometry analysis leads to the identification of 20 compounds in methanol extract, mainly ellagitannins and flavonoid glycosides. Given that various plant extracts have traditionally been used to treat hypertension and that some of the analyzed methanol extract constituents have beneficial cardiovascular effects, we hypothesized that some of these effects are achieved by inhibiting angiotensin I-converting enzyme (ACE). The dose-dependent ACE inhibitory activities of A. viridiflora and miquelianin were observed with an IC50 of 2.51 ± 0.00 µg/mL of A. viridiflora extract compared to the IC50 of 5.4139 ± 0.00 µM for miquelianin. The contribution of the single compounds to the tested activity was further analyzed through the in silico experimental approach. Computational docking results showed that tiliroside, ellagic acid pentose and galloyl-hexahydroxydiphenoyl-glucose exhibited even better binding affinity for the ACE active site than miquelianin, for which ACE activity was confirmed by an in vitro assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Available upon responsible request.

Code availability

Not applicable.

References

  1. WHO (2019) Hypertension. https://www.who.int/news-room/fact-sheets/detail/hypertension. Accessed 13 Sept 2021

  2. Ettehad D, Emdin CA, Kiran A, Anderson SG, Callender T, Emberson J, Chalmers J, Rodgers A, Rahimi K (2016) Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet 387:957–967. https://doi.org/10.1016/S0140-6736(15)01225-8

    Article  PubMed  Google Scholar 

  3. Netherlands Pharmacovigilance Center Lareb (2015). https://www.lareb.nl/en/news/ace-inhibitors-and-hallucinations. Accessed 13 Sept 2021

  4. Siddesha J, D’Souza C, Vishwanath BS (2010) Inhibition of Angiotensin Converting Enzyme (ACE) by medicinal plants exhibiting antihypertensive activity. In: Govil JN, Singh VK (eds) Recent progress in medicinal plants. Drug plants III, vol 29. Studium Press, New Delhi, pp 269–308

    Google Scholar 

  5. Suručić R, Kundaković T, Lakušić B, Drakul D, Milovanović SR, Kovačević N (2017) Variations in chemical composition, vasorelaxant and angiotensin I-converting enzyme inhibitory activities of essential oil from aerial parts of Seseli pallasii Besser (Apiaceae). Chem Biodivers 14(5):e1600407. https://doi.org/10.1002/cbdv.201600407

    Article  CAS  Google Scholar 

  6. Ben Mansour M, Balti R, Rabaoui L, Bougatef A, Guerfel M (2013) Chemical composition, angiotensin I-converting enzyme (ACE) inhibitory, antioxidant and antimicrobial activities of the essential oil from south Tunisian Ajuga pseudoiva Rob Lamiaceae. Process Biochem 48:723–729. https://doi.org/10.1016/j.procbio.2013.02.022

    Article  CAS  Google Scholar 

  7. Zouari N, Fakhfakh N, Zouari S, Bougatef A, Karray A, Neffati M, Ayadi MA (2011) Chemical composition, angiotensin I-converting enzyme inhibitory, antioxidant and antimicrobial activities of essential oil of Tunisian Thymus algeriensis Boiss. et Reut. (Lamiaceae). Food Bioprod Process 89(4):257–265. https://doi.org/10.1016/j.fbp.2010.11.006

    Article  CAS  Google Scholar 

  8. Hajji M, Masmoudi O, Souissi N, Triki Y, Kammoun S, Nasri M (2010) Chemical composition, angiotensin I-converting enzyme (ACE) inhibitory, antioxidant and antimicrobial activities of the essential oil from Periploca laevigata root barks. Food Chem 121(3):724–731. https://doi.org/10.1016/j.foodchem.2010.01.021

    Article  CAS  Google Scholar 

  9. Liu JC, Hsu FL, Tsai JC, Chan P, Liu JY, Thomas GN, Tomlinson B, Lo MY, Lin JY (2003) Antihypertensive effects of tannins isolated from traditional Chinese herbs as non-specific inhibitors of angiontensin converting enzyme. Life Sci 73(12):1543–1555. https://doi.org/10.1016/S0024-3205(03)00481-8

    Article  CAS  PubMed  Google Scholar 

  10. Trendafilova A, Todorova M, Nikolova M, Gavrilova A, Vitkova A (2011) Flavonoid constituents and free radical scavenging activity of Alchemilla mollis. Nat Prod Commun 6(12):1851–1854. https://doi.org/10.1177/2F1934578X1100601216

    Article  CAS  PubMed  Google Scholar 

  11. Trendafilova A, Todorova M, Gavrilova A, Vitkova A (2012) Flavonoid glycosides from Bulgarian endemic Alchemilla achtarowii Pawl. Biochem Syst Ecol 43:156–158

    Article  CAS  Google Scholar 

  12. D’Agostino M, Dini I, Ramundo E, Senatore F (1998) Flavonoid glycosides of Alchemilla vulgaris L. Phytother Res 12:S162–S163. https://doi.org/10.1002/(SICI)1099-1573(1998)12:1+/3CS162::AID-PTR284/3E3.0.CO;2-P

    Article  Google Scholar 

  13. Nihoul-Ghenne L (1950) Presence of Alchemilla alpina L. Together with Alchemilla vulgaris L. in a tea for high blood pressure. J Pharm Belg 5:335–338

    CAS  PubMed  Google Scholar 

  14. Pieroni A, Giusti ME, Quave CL (2011) Cross-cultural ethnobiology in the Western Balkans: medical ethnobotany and ethnozoology among Albanians and Serbs in the Pešter Plateau, Sandžak, South-Western Serbia. Hum Ecol 39:333–349. https://doi.org/10.1007/s10745-011-9401-3

    Article  Google Scholar 

  15. Takir S, Sezgi B, Süzgeç-Selçuk S, Eroğlu-Özkan E, Beukelman KJ, Mat A, Uydeş-Doğan BS (2014) Endothelium-dependent vasorelaxant effect of Alchemilla vulgaris methanol extract: a comparison with the aqueous extract in rat aorta. Nat Prod Res 28(23):2182–2185. https://doi.org/10.1080/14786419.2014.926352

    Article  CAS  PubMed  Google Scholar 

  16. Takir S, Altun IH, Sezgi B, Suzgeç-Selçuk S, Mat A, Uydeş-Doğan BS (2015) Vasorelaxant and blood pressure lowering effects of Alchemilla vulgaris: a comparative study of methanol and aqueous extracts. Pharmacogn Mag 11(41):163–169

    Article  CAS  Google Scholar 

  17. Kolundžić M, Stanojković T, Radović J, Tačić A, Dodevska M, Milenković M, Sisto F, Masia C, Farronato G, Nikolić V, Kundaković T (2017) Cytotoxic and antimicrobial activities of Cantharellus cibarius Fr. (Cantarellaceae). J Med Food 20:790–796. https://doi.org/10.1089/jmf.2016.0176

    Article  CAS  PubMed  Google Scholar 

  18. Council of Europe (2019) European pharmacopoeia. Council of Europe, Strasbourg

    Google Scholar 

  19. Tutin TG, Burges NA (2010) Flora Europaea, Rosaceae to Umbelliferae, vol 2. Cambrige University Press, Cambridge

    Google Scholar 

  20. Kurtto A, Fröhner SE, Lampinen R (2007) Atlas Florae Europaeae. Distribution of vascular plants in Europe 14. Rosaceae (Alchemilla and Aphanes). The Committee for Mapping the Flora of Europe & Societas Biologica Fennica Vanamo, Helsinki

  21. Krivokuća M, Niketić M, Milenković M, Golić N, Masia C, Scaltrito MM, Sisto F, Kundaković T (2015) Anti-helicobacter pylori activity of four Alchemilla species (Rosaceae). Nat Prod Commun 10(8):1369–1371. https://doi.org/10.1177/2F1934578X1501000814

    Article  PubMed  Google Scholar 

  22. Fraisse D, Carnat A, Carnat AP, Lamaison JL (1999) Standardization of the aerial parts of Alchemilla. Ann Pharm Fr 57(5):401–405

    CAS  PubMed  Google Scholar 

  23. Kaya B, Menemen Y, Saltan FZ (2012) Flavonoid compounds identified in Alchemilla L. species collected in the north-eastern black sea region of Turkey. Afr J Tradit Complement Altern Med 9(3):418–425. https://doi.org/10.4314/2Fajtcam.v9i3.18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Aaby K, Ekeber D, Skrede G (2007) Characterization of phenolic compounds in strawberry (Fragaria x ananassa) fruits by different HPLC detectors and contribution of individual compounds to total antioxidant capacity. J Agric Food Chem 55:4395–4406. https://doi.org/10.1021/jf0702592

    Article  CAS  PubMed  Google Scholar 

  25. Singh A, Bajpai V, Kumar S, Sharma KR, Kumar B (2016) Profiling of gallic and ellagic acid derivatives in different plant parts of Terminalia arjuna by HPLC-ESI-QTOF-MS/MS. Nat Prod Commun 11(2):239–244. https://doi.org/10.1177/2F1934578X1601100227

    Article  PubMed  Google Scholar 

  26. Duckstein SM, Lotterm EM, Meyer U, Lindequist U, Stintzing FC (2012) Phenolic constituents from Alchemilla vulgaris L. and Alchemilla mollis (Buser) Rothm. at different dates of harvest. Z Naturforsch C J Biosci 67:529–540

    Article  CAS  Google Scholar 

  27. Wu S, Tian L (2017) Diverse phytochemicals and bioactivities in the ancient fruit and modern functional food pomegranate (Punica granatum). Molecules 22(10):1606. https://doi.org/10.3390/molecules22101606

    Article  CAS  PubMed Central  Google Scholar 

  28. Samardžić S (2018) Comparative chemical and pharmacological investigation of lyophilized flower infusions of reprezentatives of the genus Filipendula Miller in Serbia. Dissertation, University of Belgrade

  29. Samardžić S, Arsenijević J, Božić D, Milenković M, Tešević V, Maksimović Z (2018) Antioxidant, anti-inflammatory and gastroprotective activity of Filipendula ulmaria (L.) Maxim. and Filipendula vulgaris Moench. J Ethnopharmacol 213:132–137. https://doi.org/10.1016/j.jep.2017.11.013

    Article  CAS  PubMed  Google Scholar 

  30. Grochowski DM, Skalicka-Woźniak K, Orhan IE, Xiao J, Locatelli M, Piwowarski JP, Granica S, Tomczyk M (2017) A comprehensive review of agrimoniin. Ann N Y Acad Sci 1401(1):166–180. https://doi.org/10.1111/nyas.13421

    Article  CAS  PubMed  Google Scholar 

  31. Ghareeb MA, Sobeh M, El-Maadawy WH, Mohammed HS, Khalil H, Botros S, Wink M (2019) Chemical profiling of polyphenolics in Eucalyptus globulus and evaluation of its hepato-renal protective potential against cyclophosphamide induced toxicity in mice. Antioxidants 8(9):415. https://doi.org/10.3390/antiox8090415

    Article  CAS  PubMed Central  Google Scholar 

  32. McDougall GJ, Allwood JW, Pereira-Caro G, Brown EM, Latimer C, Dobson G, Stewart D, Ternan NG, Lawther R, O’Connor G, Rowland I, Crozier A, Gill CIR (2017) The composition of potentially bioactive triterpenoid glycosides in red raspberry is influenced by tissue, extraction procedure and genotype. Food Funct 8(10):3469–3479. https://doi.org/10.1039/C7FO00846E

    Article  CAS  PubMed  Google Scholar 

  33. Xia B, Bai L, Li X, Xiong J, Xu P, Xue M (2015) Structural analysis of metabolites of asiatic acid and its analogue madecassic acid in zebrafish using LC/IT-MSn. Molecules 20(2):3001–3019. https://doi.org/10.3390/molecules20023001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mad T, Sterk H, Mittelbach M, Rechberger GN (2006) Tandem mass spectrometric analysis of a complex triterpene saponin mixture of Chenopodium quinoa. J Am Soc Mass Spectrom 17(6):795–806. https://doi.org/10.1016/j.jasms.2006.02.013

    Article  CAS  Google Scholar 

  35. ESCOP Monograph of Alchemillae herba (2013) ESCOP monographs: the scientific foundation for herbal medicinal products. European Scientific Cooperative on Phytotherapy, Exeter

    Google Scholar 

  36. Afshar FH, Maggi F, Ferrari S, Peron G, Acqua SD (2015) Secondary metabolites of Alchemilla persica growing in Iran (East Azarbaijan). Nat Prod Commun 10:1705–1708. https://doi.org/10.1177/2F1934578X1501001018

    Article  PubMed  Google Scholar 

  37. Spínola V, Pinto J, Llorent-Martínez EJ, Tomás H, Castilho PC (2019) Evaluation of Rubus grandifolius L. (wild blackberries) activities targeting management of type-2 diabetes and obesity using in vitro models. Food Chem Toxicol 123:443–452. https://doi.org/10.1016/j.fct.2018.11.006

    Article  CAS  PubMed  Google Scholar 

  38. Sójka M, Janowski M, Grzelak-Błaszczyk K (2019) Stability and transformations of raspberry (Rubus idaeus L.) ellagitannins in aqueous solutions. Eur Food Res Technol 245:1113–1122. https://doi.org/10.1007/s00217-018-3212-3

    Article  CAS  Google Scholar 

  39. Zhu M, Dong X, Guo M (2015) Phenolic profiling of Duchesnea indica combining macroporous resin chromatography (MRC) with HPLC-ESI-MS/MS and ESI-IT-MS. Molecules 20(12):22463–22475. https://doi.org/10.3390/molecules201219859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Olafsdottir ES, Omarsdottir S, Jaroszewski JW (2001) Constituents of three Icelandic Alchemilla species. Biochem Syst Ecol 29(9):959–962. https://doi.org/10.1016/s0305-1978(01)00038-2

    Article  CAS  PubMed  Google Scholar 

  41. Felser C, Schimmer O (1999) Flavonoid glycosides from Alchemilla speciosa. Planta Med 65(7):668–670. https://doi.org/10.1055/s-2006-960845

    Article  CAS  PubMed  Google Scholar 

  42. Tasić-Kostov M, Arsić I, Pavlović D, Stojanović S, Najman S, Naumović S, Tadić V (2019) Towards a modern approach to traditional use: in vitro and in vivo evaluation of Alchemilla vulgaris L. gel wound healing potential. J Ethnopharmacol 238:111789. https://doi.org/10.1016/j.jep.2019.03.016

    Article  CAS  PubMed  Google Scholar 

  43. Renda G, Özel A, Barut B, Korkmaz B, Šoral M, Kandemir Ü, Liptaj T (2018) Bioassay guided isolation of active compounds from Alchemilla barbatiflora Juz. Rec Nat Prod 12(1):76–85. https://doi.org/10.25135/rnp.07.17.07.117

    Article  CAS  Google Scholar 

  44. Denev P, Kratchanova M, Ciz M, Lojek A, Vasicek O, Blazheva D, Nedelcheva P, Vojtek L, Hyrsl P (2014) Antioxidant, antimicrobial and neutrophil-modulating activities of herb extracts. Acta Biochim Pol 61:359–367. https://doi.org/10.18388/abp.2014_1907

    Article  PubMed  Google Scholar 

  45. Barbosa-Filho JM, Martins VKM, Rabelo LA, Moura MD, Silva MS, Cunha EVL, Souza MFV, Almeida RN, Medeiros IA (2006) Natural products inhibitors of the angiotensin converting enzyme (ACE): a review between 1980–2000. Rev Bras Farmacogn 16(3):421–446. https://doi.org/10.1590/S0102-695X2006000300021

    Article  Google Scholar 

  46. Silva GC, Pereira AC, Rezende BA, da Silva FJP, Cruz JS, de Souza MDFV, Gomes RA, Teles YCF, Cortes SF, Lemos VS (2013) Mechanism of the antihypertensive and vasorelaxant effects of the flavonoid tiliroside in resistance arteries. Planta Med 79(12):1003–1008. https://doi.org/10.1055/s-0032-1328765

    Article  CAS  PubMed  Google Scholar 

  47. Larrosa M, García-Conesa MT, Espín JC, Tomás-Barberán FA (2010) Ellagitannins, ellagic acid and vascular health. Mol Aspects Med 31(6):513–539. https://doi.org/10.1016/j.mam.2010.09.005

    Article  CAS  PubMed  Google Scholar 

  48. Yılmaz B, Usta C (2013) Ellagic acid-induced endothelium-dependent and endothelium-independent vasorelaxation in rat thoracic aortic rings and the underlying mechanism. Phytother Res 27(2):285–289. https://doi.org/10.1002/ptr.4716

    Article  CAS  PubMed  Google Scholar 

  49. Looi D, Goh BH, Khan SU, Ahemad N, Palanisamy UD (2021) Metabolites of the ellagitannin, geraniin inhibit human ACE; in vitro and in silico evidence. Int J Food Sci Nutr 72(4):470–477. https://doi.org/10.1080/09637486.2020.1830263

    Article  CAS  PubMed  Google Scholar 

  50. Santos MC, Toson NSB, Pimentel MCB, Bordignon SAL, Mendez ASL, Henriques AT (2020) Polyphenols composition from leaves of Cuphea spp. and inhibitor potential, in vitro, of angiotensin I-converting enzyme (ACE). J Ethnopharmacol 255:112781. https://doi.org/10.1016/j.jep.2020.112781

    Article  CAS  PubMed  Google Scholar 

  51. Fang L, Geng M, Liu C, Wang J, Min W, Liu J (2019) Structural and molecular basis of angiotensin-converting enzyme by computational modeling: Insights into the mechanisms of different inhibitors. PLoS ONE 14(4):e0215609. https://doi.org/10.1371/journal.pone.0215609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by the Ministry of Education, Science and Technological Development, Republic of Serbia through Grant Agreement with University of Belgrade-Faculty of Pharmacy No: 451-03-9/2021-14/200161.

Author information

Authors and Affiliations

Authors

Contributions

All authors JR, RS, MN and TK contributed to the study conception and design. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tatjana Kundaković-Vasović.

Ethics declarations

Conflict of interest

The authors confirm that this article content has no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radović, J., Suručić, R., Niketić, M. et al. Alchemilla viridiflora Rothm.: the potent natural inhibitor of angiotensin I-converting enzyme. Mol Cell Biochem 477, 1893–1903 (2022). https://doi.org/10.1007/s11010-022-04410-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04410-7

Keywords

Navigation