Skip to main content

Advertisement

Log in

Polymorphisms of fibronectin-1 (rs3796123; rs1968510; rs10202709; rs6725958; and rs35343655) are not associated with bronchopulmonary dysplasia in preterm infants

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Bronchopulmonary dysplasia (BPD) is a chronic lung disease that mainly affects premature newborns. Many different factors, increasingly genetic, are involved in the pathogenesis of BPD. The aim of the study is to investigate the possible influence of fibronectin SNP on the occurrence of BPD. The study included 108 infants born between 24 and 32 weeks of gestation. BPD was diagnosed based on the National Institutes of Health Consensus definition. The 5 FN1 gene polymorphisms assessed in the study were the following: rs3796123; rs1968510; rs10202709; rs6725958; and rs35343655. BPD developed in 30 (27.8%) out of the 108 preterm infants. Incidence of BPD was higher in infants with lower APGAR scores and low birthweight. Investigation did not confirm any significant prevalence for BPD development in any genotypes and alleles of FN1. Further studies should be performed to confirm the role of genetic factors in etiology and pathogenesis of BPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Jobe AH (2015) Animal models, learning lessons to prevent and treat neonatal chronic lung disease. Front Med 7(2):49. https://doi.org/10.3389/fmed.2015.00049

    Article  Google Scholar 

  2. Xu YP (2016) Bronchopulmonary dysplasia in preterm infants born at less than 32 weeks gestation. Glob Pediatr Health. https://doi.org/10.1177/2333794X16668773

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wadhawan R, Vohr BR, Fanaroff AA, Perritt RL, Duara S, Stoll BJ, Goldberg R, Laptook A, Poole K, Wright LL et al (2003) Does labor influence neonatal and neurodevelopmental outcomes of extremely-low-birth-weight infants who are born by cesarean delivery? Am J Obstet Gynecol 189:501–506. https://doi.org/10.1067/S0002-9378(03)00360-0

    Article  PubMed  Google Scholar 

  4. Stoll BJ, Hansen NI, Bell EF et al (2010) Neonatal outcomes of extremely preterm infants from the NICHD neonatal research network. Pediatrics 126(3):443–456

    Article  PubMed  Google Scholar 

  5. Charafeddine L et al (1999) Atypical chronic lung disease patterns in neonates. Pediatrics 103:759–765

    Article  CAS  PubMed  Google Scholar 

  6. Lavoie PM, Pham C, Jang KL (2008) Heritability of bronchopulmonary dysplasia, defined according to the consensus statement of the national institutes of health. Pediatrics 122:479–485. https://doi.org/10.1542/peds.2007-2313

    Article  PubMed  Google Scholar 

  7. D’Angio CT, Maniscalco WM (2004) Bronchopulmonary dysplasia in preterm infants: pathophysiology and management strategies. Paediatr Drugs 6(5):303–330. https://doi.org/10.2165/00148581-200406050-00004

    Article  PubMed  Google Scholar 

  8. Pasha AB, Chen XQ, Zhou GP (2018) Bronchopulmonary dysplasia: pathogenesis and treatment. Exp Ther Med 16(6):4315–4321. https://doi.org/10.3892/etm.2018.6780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Colunga Biancatelli RML, Solopov P, Dimitropoulou C, Catravas JD (2021) Age-dependent chronic lung injury and pulmonary fibrosis following single exposure to hydrochloric acid. Int J Mol Sci 22(16):8833. https://doi.org/10.3390/ijms22168833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Henderson B, Nair S, Pallas J, Williams MA (2011) Fibronectin: a multidomain host adhesin targeted by bacterial fibronectin-binding proteins. FEMS Microbiol Rev 35:147–200. https://doi.org/10.1111/j.1574-6976.2010.00243.x

    Article  CAS  PubMed  Google Scholar 

  11. Clemmensen I (1981) Fibronectin and its role in connective tissue diseases. Eur J Clin Invest 11(3):145–146

    Article  CAS  PubMed  Google Scholar 

  12. Hynes RO (1986) Fibronectins. Sci Am 254(6):42–51. https://doi.org/10.1038/scientificamerican0686-42

    Article  CAS  PubMed  Google Scholar 

  13. Fischer HS, Schmölzer GM, Cheung PY, Bührer C (2018) Sustained inflations and avoiding mechanical ventilation to prevent death or bronchopulmonary dysplasia: a meta-analysis. Eur Respir Rev. https://doi.org/10.1183/16000617.0083-2018

    Article  PubMed  Google Scholar 

  14. Jin R et al (2020) IL-33-induced neutrophil extracellular traps degrade fibronectin in a murine model of bronchopulmonary dysplasia. Cell Death Discov. https://doi.org/10.1038/s41420-020-0267-2

    Article  PubMed  PubMed Central  Google Scholar 

  15. Isayama T, Lee SK, Yang J, Lee D, Daspal S, Dunn M, Shah PS (2017) Revisiting the definition of bronchopulmonary dysplasia. JAMA Pediatr 171:271. https://doi.org/10.1001/jamapediatrics.2016.4141

    Article  PubMed  Google Scholar 

  16. Avila JJ, Lympany PA, Pantelidis P, Welsh KI, Black CM, Du Bois RM (1999) Fibronectin gene polymorphisms associated with fibrosing alveolitis in systemic sclerosis. Am J Respir Cell Mol Biol 20:106–112. https://doi.org/10.1165/ajrcmb.20.1.3232

    Article  CAS  PubMed  Google Scholar 

  17. Murat M, Aekeper A, Yuan LY, Alim T, Du GJ, Abdusamat A, Wu GW, Aniwer Y (2015) Correlation between the development of calcium oxalate stones and polymorphisms in the fibronectin gene in the Uighur population of the Xinjiang region of China. Genet Mol Res 14:13728–13734. https://doi.org/10.4238/2015.October.28.35

    Article  CAS  PubMed  Google Scholar 

  18. Natarajan G, Shankaran S (2016) Short- and long-term outcomes of moderate and late preterm infants. Am J Perinatol 33:305–317. https://doi.org/10.1055/s-0035-1571150

    Article  PubMed  Google Scholar 

  19. Thébaud B, Goss KN, Laughon M, Whitsett JA, Abman SH, Steinhorn RH, Aschner JL, Davis PG, McGrath-Morrow SA, Soll RF et al (2019) Bronchopulmonary dysplasia. Nat Rev Dis Prim. https://doi.org/10.1038/s41572-019-0127-7

    Article  PubMed  Google Scholar 

  20. Kalikkot Thekkeveedu R, Guaman MC, Shivanna B (2017) Bronchopulmonary dysplasia: a review of pathogenesis and pathophysiology. Respir Med 132:170–177

    Article  PubMed  Google Scholar 

  21. Dani C, Corsini I, Bertini G, Pratesi S, Barp J, Rubaltelli FF (2011) Effect of multiple INSURE procedures in extremely preterm infants. J Matern Fetal Neonatal Med 24(12):1427–1431

    Article  PubMed  Google Scholar 

  22. Gortner L, Misselwitz B (2011) Rates of bronchopulmonary dysplasia in very preterm neonates in Europe: results from the MOSAIC cohort. Neonatology 99:112–117. https://doi.org/10.1159/000313024

    Article  PubMed  Google Scholar 

  23. Islam JA, Keller RL, Aschner JL, Hartert TV, Moore PE et al (2015) Understanding the short- and long-term respiratory outcomes of prematurity and bronchopulmonary dysplasia. Am J Respir Crit Care Med 192(2):134–156. https://doi.org/10.1164/rccm.201412-2142PP

    Article  PubMed  PubMed Central  Google Scholar 

  24. Carraro S, Giordano G, Pirillo P, Maretti M, Reniero F, Cogo PE, Perilongo G, Stocchero M, Baraldi E et al (2015) Airway metabolic anomalies in adolescents with bronchopulmonary dysplasia: new insights from the metabolomic approach. J Pediatr 166(2):234–239. https://doi.org/10.1016/j.jpeds.2014.08.049

    Article  CAS  PubMed  Google Scholar 

  25. Korhonen PH, Suursalmi P, Kopeli T, Nieminen R, Lehtimäki L, Luukkaala T, Korppi SA, Moilanen E, Tammela OK et al (2015) Inflammatory activity at school age in very low birth weight bronchopulmonary dysplasia survivors. Pediatr Pulmonol 50(7):683–690. https://doi.org/10.1002/ppul.23038

    Article  PubMed  Google Scholar 

  26. Shahzad T, Radajewski S, Chao CM, Bellusci S, Ehrhardt H (2016) Pathogenesis of bronchopulmonary dysplasia: when inflammation meets organ development. Mol Cell Pediatr 3(1):23. https://doi.org/10.1186/s40348-016-0051-9

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mao Y, Schwarzbauer JE (2005) Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol 24:389–399. https://doi.org/10.1016/j.matbio.2005.06.008

    Article  CAS  PubMed  Google Scholar 

  28. Sinkin RA, Roberts M, LoMonaco MB, Sanders RJ, Metlay LA (1998) Fibronectin expression in bronchopulmonary dysplasia. Pediatr Dev Pathol 1:494–502. https://doi.org/10.1007/s100249900068

    Article  CAS  PubMed  Google Scholar 

  29. Mižíková I, Morty RE (2015) The extracellular matrix in bronchopulmonary dysplasia: target and source. Front Med 2:91. https://doi.org/10.3389/fmed.2015.00091

    Article  Google Scholar 

  30. Duan J, Zhang X, Zhang S, Hua S, Feng Z (2017) MiR-206 inhibits FN1 expression and proliferation and promotes apoptosis of rat type II alveolar epithelial cells. Exp Ther Med 13:3203–3208. https://doi.org/10.3892/etm.2017.4430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. de Vasconcellos JF, Jackson WM, Dimtchev A, Nesti LJ (2020) A microRNA signature for impaired wound-healing and ectopic bone formation in humans. J Bone Joint Surg Am 102:1891–1899. https://doi.org/10.2106/JBJS.19.00896

    Article  PubMed  Google Scholar 

  32. Kallapur SG, Pryhuber GS (2015) Bronchopulmonary dysplasia: the search for answers continues. Clin Perinatol 42:xix–xx. https://doi.org/10.1016/j.clp.2015.09.001

    Article  PubMed  Google Scholar 

  33. Onaran M, Yilmaz A, Şen I, Ergun MA, Çamtosun A, Küpeli B, Menevşe S, Bozkirli I (2009) A HindIII polymorphism of fibronectin gene is associated with nephrolithiasis. Urology 74:1004–1007. https://doi.org/10.1016/j.urology.2009.05.010

    Article  PubMed  Google Scholar 

  34. Lee CS, Fu H, Baratang N, Rousseau J, Kumra H, Sutton VR, Niceta M, Ciolfi A, Yamamoto G, Bertola D et al (2017) Mutations in fibronectin cause a subtype of spondylometaphyseal dysplasia with “corner fractures.” Am J Hum Genet 101:815–823. https://doi.org/10.1016/j.ajhg.2017.09.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang HY, Su SL, Peng YJ, Wang CC, Lee HS, Salter DM, Lee CH (2014) An intron polymorphism of the fibronectin gene is associated with end-stage knee osteoarthritis in a Han Chinese population: two independent case: control studies. BMC Musculoskelet Disord 15:1–9. https://doi.org/10.1186/1471-2474-15-173

    Article  CAS  Google Scholar 

  36. Qin S, Zhang B, Xiao G, Sun X, Li G, Huang G, Gao X, Li X, Wang H, Yang C et al (2016) Fibronectin protects lung cancer cells against docetaxel-induced apoptosis by promoting Src and caspase-8 phosphorylation. Tumor Biol 37:13509–13520. https://doi.org/10.1007/s13277-016-5206-8

    Article  CAS  Google Scholar 

  37. Siemianowicz K, Gminski J, Francuz T, Syzdol M, Polanska D, Machalski M, Brulinski K, Magiera-Molendowska H (2001) Fibronectin gene polymorphism in patients with lung cancer. Oncol Rep. https://doi.org/10.3892/or.8.6.1289

    Article  PubMed  Google Scholar 

  38. Sun Y, Zhao C, Ye Y, Wang Z, He Y, Li Y, Mao H (2020) High expression of fibronectin 1 indicates poor prognosis in gastric cancer. Oncol Lett 19:93–102. https://doi.org/10.3892/ol.2019.11088

    Article  CAS  PubMed  Google Scholar 

  39. Libring S, Shinde A, Chanda MK, Nuru M, George H, Saleh AM, Abdullah A, Kinzer-Ursem TL, Calve S, Wendt MK et al (2020) The dynamic relationship of breast cancer cells and fibroblasts in fibronectin accumulation at primary and metastatic tumor sites. Cancers. https://doi.org/10.3390/cancers12051270

    Article  PubMed  PubMed Central  Google Scholar 

  40. Nakata K, Ujike H, Sakai A, Takaki M, Imamura T, Tanaka Y, Kuroda S (2003) Association study between the fibronectin gene and schizophrenia. Am J Med Genet Neuropsychiatr Genet 116:41–44. https://doi.org/10.1002/ajmg.b.10796

    Article  Google Scholar 

  41. Szpecht D, Al-Saad SR, Karbowski LM, Kosik K, Kurzawińska G, Szymankiewicz M, Drews K, Seremak-Mrozikiewicz A (2020) Role of fibronectin-1 polymorphism genes with the pathogenesis of intraventricular hemorrhage in preterm infants. Child Nerv Syst 36:1729–1736. https://doi.org/10.1007/s00381-020-04598-3

    Article  Google Scholar 

  42. Rezvani M, Wilde J, Vitt P, Mailaparambil B, Grychtol R, Krueger M, Heinzmann A (2013) Association of a FGFR-4 gene polymorphism with bronchopulmonary dysplasia and neonatal respiratory distress. Dis Mark 35:633–640. https://doi.org/10.1155/2013/932356

    Article  CAS  Google Scholar 

  43. Weinstein M, Xu X, Ohyama K, Deng CX (1998) FGFR-3 and FGFR-4 function cooperatively to direct alveogenesis in the murine lung. Development 125(18):3615–3623

    Article  CAS  PubMed  Google Scholar 

  44. Floros J, Londono D, Gordon D, Silveyra P, Diangelo SL, Viscardi RM, Worthen GS, Shenberger J, Wang G, Lin Z et al (2012) IL-18R1 and IL-18RAP SNPs may be associated with bronchopulmonary dysplasia in African-American infants. Pediatr Res 71:107–114. https://doi.org/10.1038/pr.2011.14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Winters AH, LeVan TD, Vogel SN, Chesko KL, Pollin TI, Viscardi RM (2013) Single nucleotide polymorphism in toll-like receptor 6 is associated with a decreased risk for ureaplasma respiratory tract colonization and bronchopulmonary dysplasia in preterm infants. Pediatr Infect Dis J 32:898–904. https://doi.org/10.1097/INF.0b013e31828fc693

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yang H, Su S, Peng Y, Wang C, Lee H, Salter D, Lee C (2014) An intron polymorphism of the fibronectin gene is associated with end-stage knee osteoarthritis in a Han Chinese population: two independent case: control studies. BMC Musculoskelet Disord 15(1):173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Murat M, Aekeper A, Yuan L, Alim T, Du G, Abdusamat A et al (2015) Correlation between the development of calcium oxalate stones and polymorphisms in the fibronectin gene in the Uighur population of the Xinjiang region of China. Genet Mol Res 14(4):13728–13734

    Article  CAS  PubMed  Google Scholar 

  48. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40(15):e115. https://doi.org/10.1093/nar/<br>gks596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

KK and DS designed research; KK, KG, AS, DS, JAA, SRA, and LMK collected and analyzed the data; KK, DS, JAA, AS, SRA, LMK, MS-B, KD, AS-M, and GK performed research; GK was responsible for PCR procedure. All authors commented on the manuscript at all grades.

Corresponding author

Correspondence to Katarzyna Kosik.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Ethics Committee of Poznan University of Medical Sciences (66/14 and 799/16).

Informed consent

Informed consent was obtained from all subjects involved in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 193 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosik, K., Sowińska, A., Seremak-Mrozikiewicz, A. et al. Polymorphisms of fibronectin-1 (rs3796123; rs1968510; rs10202709; rs6725958; and rs35343655) are not associated with bronchopulmonary dysplasia in preterm infants. Mol Cell Biochem 477, 1645–1652 (2022). https://doi.org/10.1007/s11010-022-04397-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04397-1

Keyword

Navigation