Skip to main content
Log in

Endothelial regulation of calmodulin expression and eNOS–calmodulin interaction in vascular smooth muscle

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Calmodulin (CaM) is a Ca2+ sensor protein that is required for numerous vascular smooth muscle cell (VSMC) functions. Since CaM is not expressed enough for its many target proteins, factors that modulate its expression and interactions with targets in VSMCs can have extensive effects on vascular functions. VSMCs receive many regulatory inputs from endothelial cells (ECs). However, it is unknown if ECs regulate vascular functions via controlling expression of CaM and its interactions in VSMCs. In this work, we tested the hypothesis that ECs also affect VSMC signaling via regulation of CaM expression and interactions with its target proteins in VSMCs. Using ECs and VSMCs isolated from the same vessels and grown in a co-culture system, we observed that the presence of proliferating ECs significantly upregulates total CaM expression in VSMCs. An imaging module was devised to concurrently measure free Ca2+ and CaM levels in VSMCs in co-culture with ECs. Using indo-1/AM and a CaM biosensor built from a modified CaM-binding sequence of endothelial nitric oxide synthase (eNOS), this system revealed that in response to a generic Ca2+ signal, free Ca2+-bound CaM level is enhanced ~ threefold in VSMCs in co-culture with proliferating ECs. Interestingly, VSMCs express eNOS and eNOS–CaM association in response to the same Ca2+ stimulus is also enhanced ~ threefold in VSMCs co-cultured with ECs. Mechanistically, the endothelium-dependent upregulation of CaM in VSMCs is not affected by inhibition of NO production or endothelin receptors but is prevented by inhibition of vascular endothelial growth factor receptors. Consistently, VEGF-A level is upregulated in VSMCs co-cultured with proliferating ECs. These data indicate a new role of the endothelium in regulating vascular functions via upregulating CaM and its interactions in VSMCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data in this study are available from the corresponding author on reasonable request.

References

  1. Vanhoutte PM, Shimokawa H, Feletou M, Tang EH (2017) Endothelial dysfunction and vascular disease—a 30th anniversary update. Acta Physiol (Oxf) 219:22–96. https://doi.org/10.1111/apha.12646

    Article  CAS  Google Scholar 

  2. Levitan IB (1999) It is calmodulin after all! Mediator of the calcium modulation of multiple ion channels. Neuron 22:645–648

    Article  CAS  Google Scholar 

  3. Saddouk FZ, Ginnan R, Singer HA (2017) Ca(2+)/calmodulin-dependent protein kinase II in vascular smooth muscle. Adv Pharmacol 78:171–202. https://doi.org/10.1016/bs.apha.2016.08.003

    Article  CAS  PubMed  Google Scholar 

  4. Adelstein RS, Conti MA, Pato MD (1980) Regulation of myosin light chain kinase by reversible phosphorylation and calcium-calmodulin. Ann N Y Acad Sci 356:142–150

    Article  CAS  Google Scholar 

  5. Geguchadze R, Zhi G, Lau KS, Isotani E, Persechini A, Kamm KE, Stull JT (2004) Quantitative measurements of Ca(2+)/calmodulin binding and activation of myosin light chain kinase in cells. FEBS Lett 557:121–124

    Article  CAS  Google Scholar 

  6. Shen X, Valencia CA, Szostak JW, Dong B, Liu R (2005) Scanning the human proteome for calmodulin-binding proteins. Proc Natl Acad Sci USA 102:5969–5974

    Article  CAS  Google Scholar 

  7. Kakiuchi S, Yasuda S, Yamazaki R, Teshima Y, Kanda K, Kakiuchi R, Sobue K (1982) Quantitative determinations of calmodulin in the supernatant and particulate fractions of mammalian tissues. J Biochem (Tokyo) 92:1041–1048

    Article  CAS  Google Scholar 

  8. Luby-Phelps K, Hori M, Phelps JM, Won D (1995) Ca(2+)-regulated dynamic compartmentalization of calmodulin in living smooth muscle cells. J Biol Chem 270:21532–21538

    Article  CAS  Google Scholar 

  9. Tran QK, Black DJ, Persechini A (2003) Intracellular coupling via limiting calmodulin. J Biol Chem 278:24247–24250

    Article  CAS  Google Scholar 

  10. Tran QK, Black DJ, Persechini A (2005) Dominant affectors in the calmodulin network shape the time courses of target responses in the cell. Cell Calcium 37:541–553

    Article  CAS  Google Scholar 

  11. Wu X, Bers DM (2007) Free and bound intracellular calmodulin measurements in cardiac myocytes. Cell Calcium 41:353–364

    Article  CAS  Google Scholar 

  12. Rakhilin SV, Olson PA, Nishi A, Starkova NN, Fienberg AA, Nairn AC, Surmeier DJ, Greengard P (2004) A network of control mediated by regulator of calcium/calmodulin-dependent signaling. Science 306:698–701

    Article  CAS  Google Scholar 

  13. Kim SA, Heinze KG, Waxham MN, Schwille P (2004) Intracellular calmodulin availability accessed with two-photon cross-correlation. Proc Natl Acad Sci USA 101:105–110. https://doi.org/10.1073/pnas.2436461100

    Article  CAS  PubMed  Google Scholar 

  14. Tran QK, Firkins R, Giles J, Francis S, Matnishian V, Tran P, VerMeer M, Jasurda J, Burgard MA, Gebert-Oberle B (2016) Estrogen enhances linkage in the vascular endothelial calmodulin network via a feedforward mechanism at the G protein-coupled estrogen receptor 1. J Biol Chem 291:10805–10823. https://doi.org/10.1074/jbc.M115.697334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tran QK, VerMeer M (2014) Biosensor-based approach identifies four distinct calmodulin-binding domains in the G protein-coupled estrogen receptor 1. PLoS ONE 9:e89669. https://doi.org/10.1371/journal.pone.0089669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tran QK, VerMeer M, Burgard MA, Hassan AB, Giles J (2015) Hetero-oligomeric complex between the G protein-coupled estrogen receptor 1 and the plasma membrane Ca2+-ATPase 4b. J Biol Chem 290:13293–13307. https://doi.org/10.1074/jbc.M114.628743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ehlers K, Clements R, VerMeer M, Giles J, Tran QK (2018) Novel regulations of the angiotensin II receptor type 1 by calmodulin. Biochem Pharmacol 152:187–200. https://doi.org/10.1016/j.bcp.2018.03.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fleming I, Fisslthaler B, Dimmeler S, Kemp BE, Busse R (2001) Phosphorylation of Thr(495) regulates Ca(2+)/calmodulin-dependent endothelial nitric oxide synthase activity. Circ Res 88:E68-75

    CAS  PubMed  Google Scholar 

  19. Tran QK, Leonard J, Black DJ, Nadeau OW, Boulatnikov IG, Persechini A (2009) Effects of combined phosphorylation at Ser-617 and Ser-1179 in endothelial nitric-oxide synthase on EC50(Ca2+) values for calmodulin binding and enzyme activation. J Biol Chem 284:11892–11899

    Article  CAS  Google Scholar 

  20. Persechini A (2002) Monitoring the intracellular free Ca(2+)-calmodulin concentration with genetically-encoded fluorescent indicator proteins. Methods Mol Biol 173:365–382

    CAS  PubMed  Google Scholar 

  21. Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    Article  CAS  Google Scholar 

  22. Moncada S, Higgs EA (2006) Nitric oxide and the vascular endothelium. Handb Exp Pharmacol 1:213–254

    Article  Google Scholar 

  23. Crutchley DJ, Ryan JW, Ryan US, Fisher GH (1983) Bradykinin-induced release of prostacyclin and thromboxanes from bovine pulmonary artery endothelial cells. Studies with lower homologs and calcium antagonists. Biochim Biophys Acta 751:99–107

    Article  CAS  Google Scholar 

  24. Vanhoutte PM (2009) Endothelial dysfunction: the first step toward coronary arteriosclerosis. Circ J 73:595–601

    Article  CAS  Google Scholar 

  25. Moore DH, Ruska H (1957) The fine structure of capillaries and small arteries. J Biophys Biochem Cytol 3:457–462

    Article  CAS  Google Scholar 

  26. Rhodin JA (1967) The ultrastructure of mammalian arterioles and precapillary sphincters. J Ultrastruct Res 18:181–223

    Article  CAS  Google Scholar 

  27. Heberlein KR, Straub AC, Best AK, Greyson MA, Looft-Wilson RC, Sharma PR, Meher A, Leitinger N, Isakson BE (2010) Plasminogen activator inhibitor-1 regulates myoendothelial junction formation. Circ Res 106:1092–1102. https://doi.org/10.1161/CIRCRESAHA.109.215723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Heberlein KR, Straub AC, Isakson BE (2009) The myoendothelial junction: breaking through the matrix? Microcirculation 16:307–322. https://doi.org/10.1080/10739680902744404

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chadha PS, Liu L, Rikard-Bell M, Senadheera S, Howitt L, Bertrand RL, Grayson TH, Murphy TV, Sandow SL (2011) Endothelium-dependent vasodilation in human mesenteric artery is primarily mediated by myoendothelial gap junctions intermediate conductance calcium-activated K+ channel and nitric oxide. J Pharmacol Exp Ther 336:701–708. https://doi.org/10.1124/jpet.110.165795

    Article  CAS  PubMed  Google Scholar 

  30. Sandow SL, Tare M, Coleman HA, Hill CE, Parkington HC (2002) Involvement of myoendothelial gap junctions in the actions of endothelium-derived hyperpolarizing factor. Circ Res 90:1108–1113

    Article  CAS  Google Scholar 

  31. Griesbeck O, Baird GS, Campbell RE, Zacharias DA, Tsien RY (2001) Reducing the environmental sensitivity of yellow fluorescent protein. Mech Appl J Biol Chem 276:29188–29194

    CAS  Google Scholar 

  32. Pandolfi A, Grilli A, Cilli C, Patruno A, Giaccari A, Di Silvestre S, De Lutiis MA, Pellegrini G, Capani F, Consoli A, Felaco M (2003) Phenotype modulation in cultures of vascular smooth muscle cells from diabetic rats: association with increased nitric oxide synthase expression and superoxide anion generation. J Cell Physiol 196:378–385. https://doi.org/10.1002/jcp.10325

    Article  CAS  PubMed  Google Scholar 

  33. Buchwalow IB, Podzuweit T, Bocker W, Samoilova VE, Thomas S, Wellner M, Baba HA, Robenek H, Schnekenburger J, Lerch MM (2002) Vascular smooth muscle and nitric oxide synthase. FASEB J 16:500–508

    Article  CAS  Google Scholar 

  34. Kim HJ, Jang JH, Zhang YH, Yoo HY, Kim SJ (2019) Fast relaxation and desensitization of angiotensin II contraction in the pulmonary artery via AT1R and Akt-mediated phosphorylation of muscular eNOS. Pflugers Arch 471:1317–1330. https://doi.org/10.1007/s00424-019-02305-z

    Article  CAS  PubMed  Google Scholar 

  35. Teng B, Murthy KS, Kuemmerle JF, Grider JR, Sase K, Michel T, Makhlouf GM (1998) Expression of endothelial nitric oxide synthase in human and rabbit gastrointestinal smooth muscle cells. Am J Physiol 275:G342–G351

    CAS  PubMed  Google Scholar 

  36. Kang TM (2019) Unconventional eNOS in pulmonary artery smooth muscles: why should it be there? Pflugers Arch 471:1245–1246. https://doi.org/10.1007/s00424-019-02308-w

    Article  CAS  PubMed  Google Scholar 

  37. Bredt DS, Snyder SH (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci USA 87:682–685

    Article  CAS  Google Scholar 

  38. Amiri F, Virdis A, Neves MF, Iglarz M, Seidah NG, Touyz RM, Reudelhuber TL, Schiffrin EL (2004) Endothelium-restricted overexpression of human endothelin-1 causes vascular remodeling and endothelial dysfunction. Circulation 110:2233–2240. https://doi.org/10.1161/01.CIR.0000144462.08345.B9

    Article  CAS  PubMed  Google Scholar 

  39. Browatzki M, Schmidt J, Kubler W, Kranzhofer R (2000) Endothelin-1 induces interleukin-6 release via activation of the transcription factor NF-kappaB in human vascular smooth muscle cells. Basic Res Cardiol 95:98–105

    Article  CAS  Google Scholar 

  40. Ruetten H, Thiemermann C (1997) Endothelin-1 stimulates the biosynthesis of tumour necrosis factor in macrophages: ET-receptors, signal transduction and inhibition by dexamethasone. J Physiol Pharmacol 48:675–688

    CAS  PubMed  Google Scholar 

  41. Ishida A, Murray J, Saito Y, Kanthou C, Benzakour O, Shibuya M, Wijelath ES (2001) Expression of vascular endothelial growth factor receptors in smooth muscle cells. J Cell Physiol 188:359–368. https://doi.org/10.1002/jcp.1121

    Article  CAS  PubMed  Google Scholar 

  42. Grosskreutz CL, Anand-Apte B, Duplaa C, Quinn TP, Terman BI, Zetter B, D’Amore PA (1999) Vascular endothelial growth factor-induced migration of vascular smooth muscle cells in vitro. Microvasc Res 58:128–136. https://doi.org/10.1006/mvre.1999.2171

    Article  CAS  PubMed  Google Scholar 

  43. Hassan GS, Jacques D, D’Orleans-Juste P, Magder S, Bkaily G (2018) Physical contact between human vascular endothelial and smooth muscle cells modulates cytosolic and nuclear calcium homeostasis. Can J Physiol Pharmacol 96:655–661. https://doi.org/10.1139/cjpp-2018-0093

    Article  CAS  PubMed  Google Scholar 

  44. Thomas WG, Pipolo L, Qian H (1999) Identification of a Ca2+/calmodulin-binding domain within the carboxyl-terminus of the angiotensin II (AT1A) receptor. FEBS Lett 455:367–371

    Article  CAS  Google Scholar 

  45. Zhang R, Liu Z, Qu Y, Xu Y, Yang Q (2013) Two distinct calmodulin binding sites in the third intracellular loop and carboxyl tail of angiotensin II (AT1A) receptor. PLoS ONE 8:e65266. https://doi.org/10.1371/journal.pone.0065266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gebert-Oberle B, Giles J, Clayton S, Tran QK (2019) Calcium/calmodulin regulates signaling at the alpha1A adrenoceptor. Eur J Pharmacol 848:70–79. https://doi.org/10.1016/j.ejphar.2019.01.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chan Y, Fish JE, D’Abreo C, Lin S, Robb GB, Teichert AM, Karantzoulis-Fegaras F, Keightley A, Steer BM, Marsden PA (2004) The cell-specific expression of endothelial nitric-oxide synthase: a role for DNA methylation. J Biol Chem 279:35087–35100. https://doi.org/10.1074/jbc.M405063200

    Article  CAS  PubMed  Google Scholar 

  48. Bair SM, Choueiri TK, Moslehi J (2013) Cardiovascular complications associated with novel angiogenesis inhibitors: emerging evidence and evolving perspectives. Trends Cardiovasc Med 23:104–113. https://doi.org/10.1016/j.tcm.2012.09.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported in part by NIH Grant HL112184 and by Iowa Osteopathic and Educational Research Grant #12-14-01 to QK-T.

Author information

Authors and Affiliations

Authors

Contributions

QT-T conceived the study and designed experiments. MGS, MVM, and JG carried out the experiments and data analysis. QK-T wrote the paper. All authors reviewed the manuscript.

Corresponding author

Correspondence to Quang-Kim Tran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stencel, M.G., VerMeer, M., Giles, J. et al. Endothelial regulation of calmodulin expression and eNOS–calmodulin interaction in vascular smooth muscle. Mol Cell Biochem 477, 1489–1498 (2022). https://doi.org/10.1007/s11010-022-04391-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04391-7

Keywords

Navigation