Skip to main content
Log in

Binding sites of miRNA on the overexpressed genes of oral cancer using 7mer-seed match

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The microRNAs having a length of ~ 19–22 nucleotides are the small, non-coding RNAs. The evolution of microRNAs in many disorders may hold the key to tackle complex challenges. Oral cancer belongs to the group of head and neck cancer. It occurs in the mouth region that appears as an ulcer. In this study, we collected information on the overexpressed genes of oral cancer. The coding sequences of the genes were derived from NCBI and the entire set of human microRNAs present in miRBASE 21 was retrieved. The human microRNAs that can target the overexpressed genes of oral cancer were determined with the aid of our in-house software. The interaction between microRNAs and the overexpressed genes was evaluated with 7mer-m8 model of microRNA targeting. The genes DKK1 and APLN paired with only one miRNA i.e., miR-447 and miR-6087, respectively. But the genes INHBA and MMP1 were found to be targeted by 2 miRNAs, while the genes FN1, FAP, TGFPI, COL4A1, COL4A2, and LOXL2 were found to be targeted by 16, 5, 9, 18, 29, and 11 miRNAs. Subsequently, several measures such as free energy, translation efficiency, and cosine similarity metric were used to estimate the binding process. It was found that the target region’s stability was higher than the upstream and downstream zones. The overexpressed genes’ GC contents were calculated, revealing that the codons in target miRNA region were overall GC rich as well as GC3 rich. Lastly, gene ontology was performed to better understand each gene’s involvement in biological processes, molecular function, and cellular component. Our study showed the role of microRNAs in gene repression, which could possibly aid in the prognosis and diagnosis of oral cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the supplementary material of this article.

Code availability

Not applicable.

References

  1. Lieberman J (2018) Tapping the RNA world for therapeutics. Nat Struct Mol Biol 25(5):357–364

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ling H et al (2015) Junk DNA and the long non-coding RNA twist in cancer genetics. Oncogene 34(39):5003–5011

  3. Nana-Sinkam SP, Croce CM (2011) Non-coding RNAs in cancer initiation and progression and as novel biomarkers. Mol Oncol 5(6):483–491

  4. Ye Y, Shen A, Liu A (2019) Long non-coding RNA H19 and cancer: a competing endogenous RNA. Bull Cancer 106(12):1152–1159

    PubMed  Google Scholar 

  5. Klec C, Prinz F, Pichler M (2019) Involvement of the long noncoding RNA NEAT1 in carcinogenesis. Mol Oncol 13(1):46–60

    CAS  PubMed  Google Scholar 

  6. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–54

    CAS  PubMed  Google Scholar 

  7. Chen L et al (2019) Trends in the development of miRNA bioinformatics tools. Brief Bioinform 20(5):1836–1852

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Vishnoi A, Rani S (2017) MiRNA biogenesis and regulation of diseases: an overview. Methods Mol Biol 1509:1–10

    CAS  PubMed  Google Scholar 

  9. Cai Y et al (2009) A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinform 7(4):147–154

    CAS  Google Scholar 

  10. Lin S, Gregory RI (2015) MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 15(6):321–333

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Abreu FB, Liu X, Tsongalis GJ (2017) miRNA analysis in pancreatic cancer: the Dartmouth experience. Clin Chem Lab Med 55(5):755–762

    PubMed  Google Scholar 

  12. Irimie AI et al (2018) Current insights into oral cancer epigenetics. Int J Mol Sci 19(3):670

    PubMed Central  Google Scholar 

  13. Sasahira T, Kirita T (2018) Hallmarks of cancer-related newly prognostic factors of oral squamous cell carcinoma. Int J Mol Sci 19(8):2413

    PubMed Central  Google Scholar 

  14. Katsanos KH et al (2015) Oral cancer and oral precancerous lesions in inflammatory bowel diseases: a systematic review. J Crohns Colitis 9(11):1043–1052

    PubMed  Google Scholar 

  15. Jitender S et al (2016) Screening for oral cancer. J Exp Ther Oncol 11(4):303–307

    PubMed  Google Scholar 

  16. Rivera C (2015) Essentials of oral cancer. Int J Clin Exp Pathol 8(9):11884–11894

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Santosh AB, Jones T, Harvey J (2016) A review on oral cancer biomarkers: Understanding the past and learning from the present. J Cancer Res Ther 12(2):486–492

    CAS  PubMed  Google Scholar 

  18. Dumache R (2017) Early diagnosis of oral squamous cell carcinoma by salivary microRNAs. Clin Lab 63(11):1771–1776

    CAS  PubMed  Google Scholar 

  19. Wu Y et al (2017) MiR-375/SLC7A11 axis regulates oral squamous cell carcinoma proliferation and invasion. Cancer Med 6(7):1686–1697

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Farooqi AA, Tabassum S, Ahmad A (2017) MicroRNA-34a: a versatile regulator of myriads of targets in different cancers. Int J Mol Sci 18(10)

  21. Shah S et al (2016) miRNA 21: diagnostic prognostic and therapeutic marker for oral cancer. Microrna 5(3):175–179

  22. Zeljic K et al (2018) MicroRNA meta-signature of oral cancer: evidence from a meta-analysis. Ups J Med Sci 123(1):43–49

    PubMed  PubMed Central  Google Scholar 

  23. Bhattacharya A et al (2020) Oncogenes overexpressed in metastatic oral cancers from patients with pain: potential pain mediators released in exosomes. Sci Rep 10(1):1–13

    Google Scholar 

  24. Simkin A et al (2020) Evolutionary dynamics of microRNA target sites across vertebrate evolution. PLoS Genet 16(2):e1008285

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Helwak A et al (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153(3):654–665

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kertesz M et al (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39(10)1278–1284

  27. Zheng X et al (2020) Prediction of miRNA targets by learning from interaction sequences. PLOS ONE 15(5):e0232578

    CAS  PubMed  PubMed Central  Google Scholar 

  28. SantaLucia J (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci 95(4):1460–1465

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Riffo-Campos Á, Riquelme I, Brebi-Mieville P (2016) Tools for sequence-based miRNA target prediction: what to choose? Int J Mol Sci 17(12):1987

    PubMed Central  Google Scholar 

  30. Ni M et al (2010) Correlation between sequence conservation and structural thermodynamics of microRNA precursors from human, mouse, and chicken genomes. BMC Evol Biol 10(1):329

    PubMed  PubMed Central  Google Scholar 

  31. Zhang B et al (2006) Evidence that miRNAs are different from other RNAs. Cell Mol Life Sci CMLS 63(2):246–254

    CAS  PubMed  Google Scholar 

  32. Dilucca M et al (2015) Codon bias patterns of E. coli’s interacting proteins. PloS One 10(11):e0142127

    PubMed  PubMed Central  Google Scholar 

  33. Freedberg M et al (2020) Identifying site- and stimulation-specific TMS-evoked EEG potentials using a quantitative cosine similarity metric. PLoS One 15(1):e0216185

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Conesa A et al (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676

    CAS  PubMed  Google Scholar 

  35. Rakhmetullina A et al (2020) In silico prediction of human genes as potential targets for rice miRNAs. Comput Biol Chem 87:107305

    CAS  PubMed  Google Scholar 

  36. Courel M et al (2019) GC content shapes mRNA storage and decay in human cells. Elife. https://doi.org/10.7554/eLife.49708

    Article  PubMed  PubMed Central  Google Scholar 

  37. Uddin A, Paul N, Chakraborty S (2019) The codon usage pattern of genes involved in ovarian cancer. Ann N Y Acad Sci 1:67–78

    Google Scholar 

  38. Cottrell KA, Szczesny P, Djuranovic S (2017) Translation efficiency is a determinant of the magnitude of miRNA-mediated repression. Sci Rep 7(1):14884

    PubMed  PubMed Central  Google Scholar 

  39. Gu W et al (2012) Translation efficiency in upstream region of microRNA targets in Arabidopsis thaliana. Evolut Bioinform 8:EBO.S10362

    Google Scholar 

  40. Correia de Sousa M et al (2019) Deciphering miRNAs’ action through miRNA editing. Int J Mol Sci 20(24):6249

    PubMed Central  Google Scholar 

  41. Acunzo M et al (2015) MicroRNA and cancer—a brief overview. Adv Biol Regul 57:1–9

    CAS  PubMed  Google Scholar 

  42. Agarwal V et al (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife. https://doi.org/10.7554/eLife.05005

    Article  PubMed  PubMed Central  Google Scholar 

  43. McGeary SE et al (2019) The biochemical basis of microRNA targeting efficacy. Science. https://doi.org/10.1126/science.aav1741

    Article  PubMed  PubMed Central  Google Scholar 

  44. Friedman RC et al (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Peterson SM et al (2014) Common features of microRNA target prediction tools. Front Genet 5:23

    PubMed  PubMed Central  Google Scholar 

  46. Yue D, Liu H, Huang Y (2009) Survey of computational algorithms for microRNA target prediction. Curr Genomics 10(7):478–492

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kakimoto Y et al (2016) MicroRNA stability in FFPE tissue samples: dependence on GC content. PLoS One 11(9):e0163125

    PubMed  PubMed Central  Google Scholar 

  48. Grimson A et al (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27(1):91–105

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Fabris L et al (2016) The potential of microRNAs as prostate cancer biomarkers. Eur Urol 70(2):312–322

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee H et al (2016) Biogenesis and regulation of the let-7 miRNAs and their functional implications. Protein Cell 7(2):100–113

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Assam University, Silchar-788011, Assam, India for providing the necessary research facility.

Funding

The work was not funded.

Author information

Authors and Affiliations

Authors

Contributions

MM—Conceptualization, Formal analysis, Methodology, and Writing—original draft. DN—Formal analysis, Methodology, and Writing—review & editing. JJG—Review and editing. SC—Conceptualization, Methodology, Validation, Formal data analysis, Investigation, Writing—original draft, Data curation, and Supervision, review & final editing.

Corresponding author

Correspondence to Supriyo Chakraborty.

Ethics declarations

Conflict of interest

The authors declare that no competing interest exists in this work.

Ethical statement

Not applicable, the analysis is solely based on nucleic acid sequence data publicly available in databases.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moustafa, M.A.A., Nath, D., Georrge, J.J. et al. Binding sites of miRNA on the overexpressed genes of oral cancer using 7mer-seed match. Mol Cell Biochem 477, 1507–1526 (2022). https://doi.org/10.1007/s11010-022-04375-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04375-7

Keywords

Navigation