Skip to main content
Log in

Identification and management of GCK-MODY complicating pregnancy in Chinese patients with gestational diabetes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Precise differentiation of glucokinase (GCK) monogenic diabetes from gestational diabetes mellitus (GDM) is critical for accurate management of the pregnancy outcome. We screened GCK-MODY complicating pregnancies in Chinese GDM patients, explored the pathogenesis of novel GCK mutations, and evaluated the patients’ pregnancy outcome and management. The GCK gene from 411 GDM patients was screened with PCR–direct sequencing and multiplex ligation-dependent probe amplification (MLPA) and 15 GCK mutations were identified. We also retrospectively analyzed a total of 65 pregnancies from 21 GCK-MODY families, wherein 41 were from 15 maternal families and 24 were from six paternal families. Bioinformatic analysis and biochemical functional study were conducted to identify novel GCK mutations. In total, we identified 21 GCK mutations: 15 from the 411 GDM patients and six from 24 fathers. Of th Asp78Asn (GAC → AAC), Met87Arg (ATG → AGG), Leu451Val (CTT → GTT), Leu451Pro (CTG → CCG) and 1019 + 20G > A e mutations, five, i.e., were novel and deleterious, with markedly decreased enzyme activity and thermal stability. The unaffected offspring of GCK mutation-affected mothers were heavier than affected offspring (p < 0.001). Of 21 insulin-treated affected mothers, 10 had maternal hypoglycemia (47.6%) and seven had perinatal complications (33.3%), and the affected offspring of the insulin-treated affected mothers had significantly lower birth weights than that of the 20 diet-control affected mothers (p = 0.031). In this study, the prevalence of GCK-MODY complicating pregnancy in Chinese GDM patients was 3.6% (15/411). The defective GCK may contribute to the hyperglycemia in GCK-MODY. Insulin therapy is not beneficial for GCK-MODY complicating pregnancy and therefore should not be recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supporting materials.

Abbreviations

FPG:

Fasting plasma glucose

FPR:

False-positive rate

G-6-P:

Glucose-6-phosphate

GCK-WT:

GCK-wild type

GCK::

Glucokinase

GDM:

Gestational diabetes mellitus

2hPG:

2-H postprandial glucose

mGCKs:

GCK mutants

OGTT:

Oral glucose tolerance test

TG:

Triglyceride

References

  1. Zhu WW, Yang HX, Wei YM, Yan J, Wang ZL, Li XL, Wu HR, Li N, Zhang MH, Liu XH, Zhang H, Wang YH, Niu JM, Gan YJ, Zhong LR, Wang YF, Kapur A (2010) Evaluation of the value of fasting plasma glucose in the first prenatal visit to diagnose gestational diabetes mellitus in China. Diabetes Care 36(3):586–590. https://doi.org/10.2337/dc12-1157

    Article  CAS  Google Scholar 

  2. Rudan I, Chan KY, Zhang JS, Theodoratou E, Feng XL, Salomon JA, Lawn JE, Cousens S, Black RE, Guo Y, Campbell H, WHO/UNICEF’s Child Health Epidemiology Reference Group (CHERG) (2010) Causes of deaths in children younger than 5 years in China in 2008. Lancet 375(9720):1083–1089. https://doi.org/10.1016/S0140-6736(10)60060-8

    Article  PubMed  Google Scholar 

  3. American Diabetes Association (2021) 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2021. Diabetes Care 44(Suppl 1):S15–S33. https://doi.org/10.2337/dc21-S002

    Article  Google Scholar 

  4. Ellard S, Beards F, Allen LI, Shepherd M, Ballantyne E, Harvey R, Hattersley AT (2000) A high prevalence of glucokinase mutations in gestational diabetic subjects selected by clinical criteria. Diabetologia 43(2):250–253. https://doi.org/10.1007/s001250050038

    Article  CAS  PubMed  Google Scholar 

  5. Iynedjian PB (1993) Mammalian glucokinase and its gene. Biochem J 293:1–13. https://doi.org/10.1042/bj2930001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Matschinsky F, Liang Y, Kesavan P, Wang L, Froguel P, Velho G, Cohen D, Permutt MA, Tanizawa Y, Jetton TL, Niswender K, Magnuson MA (1993) Glucokinase as pancreatic beta cell glucose sensor and diabetes gene. J Clin Invest 92(5):2092–2098. https://doi.org/10.1172/JCI116809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Girard J, Ferré P, Foufelle F (1997) Mechanisms by which carbohydrates regulate expression of genes for glycolytic and lipogenic enzymes. Annu Rev Nutr 17:325–352. https://doi.org/10.1146/annurev.nutr.17.1.325

    Article  CAS  PubMed  Google Scholar 

  8. Mohan V, Radha V, Nguyen TT, Stawiski EW, Pahuja KB, Goldstein LD, Tom J, Anjana RM, Kong-Beltran M, Bhangale T, Jahnavi S, Chandni R, Gayathri V, George P, Zhang N, Murugan S, Phalke S, Chaudhuri S, Gupta R, Zhang J, Santhosh S, Stinson J, Modrusan Z, Ramprasad VL, Seshagiri S, Peterson AS (2018) Comprehensive genomic analysis identifies pathogenic variants in maturity-onset diabetes of the young (MODY) patients in South India. BMC Med Genet 19(1):22–31. https://doi.org/10.1186/s12881-018-0528-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sagen JV, Bjørkhaug L, Molnes J, Raeder H, Grevle L, Søvik O, Molven A, Njølstad PR (2008) Diagnostic screening of MODY2/GCK mutations in the Norwegian MODY Registry. Pediatr Diabetes 9(5):442–449. https://doi.org/10.1111/j.1399-5448.2008.00399.x

    Article  CAS  PubMed  Google Scholar 

  10. Liu L, Liu Y, Ge X, Liu X, Chen C, Wang Y, Li M, Yin J, Zhang J, Chen Y, Zhang R, Jiang Y, Zhao W, Yang D, Zheng T, Lu M, Zhuang L, Jiang M (2018) Insights into pathogenesis of five novel GCK mutations identified in Chinese MODY patients. Metabolism 89:8–17. https://doi.org/10.1016/j.metabol.2018.09.004

    Article  CAS  PubMed  Google Scholar 

  11. Lorini R, Klersy C, d’Annunzio G, Massa O, Minuto N, Iafusco D, Bellannè-Chantelot C, Frongia AP, Toni S, Meschi F, Cerutti F, Barbetti F, Italian Society of Pediatric Endocrinology and Diabetology (ISPED) Study Group (2009) Maturity-onset diabetes of the young in children with incidental hyperglycemia: a multicenter Italian study of 172 families. Diabetes Care 32(10):1864–1866. https://doi.org/10.2337/dc08-2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chiu KC, Go RC, Aoki M, Riggs AC, Tanizawa Y, Acton RT, Bell DS, Goldenberg RL, Roseman JM, Permutt MA (1994) Glucokinase gene in gestational diabetes mellitus: population association study and molecular scanning. Diabetologia 37:104–110. https://doi.org/10.1007/BF00428785

    Article  CAS  PubMed  Google Scholar 

  13. Chakera AJ, Spyer G, Vincent N, Ellard S, Hattersley AT, Dunne FP (2014) The 0.1% of the population with glucokinase monogenic diabetes can be recognized by clinical characteristics in pregnancy: the Atlantic Diabetes in Pregnancy cohort. Diabetes Care 37(5):1230–1236. https://doi.org/10.2337/dc13-2248

    Article  CAS  PubMed  Google Scholar 

  14. Stoffel M, Bell KL, Blackburn CL, Powell KL, Seo TS, Takeda J, Vionnet N, Xiang KS, Gidh-Jain M, Pilkis SJ (1993) Identification of glucokinase mutations in subjects with gestational diabetes mellitus. Diabetes 42:937–940. https://doi.org/10.2337/diab.42.6.937

    Article  CAS  PubMed  Google Scholar 

  15. Zouali H, Vaxillaire M, Lesage S, Sun F, Velho G, Vionnet N, Chiu K, Passa P, Permutt A, Demenais F (1993) Linkage analysis and molecular scanning of glucokinase gene in NIDDM families. Diabetes 42:1238–1245. https://doi.org/10.2337/diab.42.9.1238

    Article  CAS  PubMed  Google Scholar 

  16. Saker PJ, Hattersley AT, Barrow B, Hammersley MS, McLellan JA, Lo YM, Olds RJ, Gillmer MD, Holman RR, Turner RC (1996) High prevalence of a missense mutation of the glucokinase gene in gestational diabetic patients due to a founder-effect in a local population. Diabetologia 39:1325–1328. https://doi.org/10.1007/s001250050577

    Article  CAS  PubMed  Google Scholar 

  17. Hattersley AT, Beards F, Ballantyne E, Appleton M, Harvey R, Ellard S (1998) Mutations in the glucokinase gene of the fetus result in reduced birth weight. Nat Genet 19:268–270. https://doi.org/10.2337/dc07-1750

    Article  CAS  PubMed  Google Scholar 

  18. Hosokawa Y, Higuchi S, Kawakita R, Hata I, Urakami T, Isojima T, Takasawa K, Matsubara Y, Mizuno H, Maruo Y, Matsui K, Aizu K, Jinno K, Araki S, Fujisawa Y, Osugi K, Tono C, Takeshima Y, Yorifuji T (2019) Pregnancy outcome of Japanese patients with glucokinase-maturity-onset diabetes of the young. J Diabetes Investig 10:1586–1589. https://doi.org/10.1111/jdi.13046

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chakera AJ, Steele AM, Gloyn AL, Shepherd MH, Shields B, Ellard S, Hattersley AT (2015) Recognition and management of individuals with hyperglycemia because of a heterozygous glucokinase mutation. Diabetes Care 38:1383–1392. https://doi.org/10.2337/dc14-2769

    Article  CAS  PubMed  Google Scholar 

  20. Barker DJ (1995) Intrauterine programming of adult disease. Mol Med Today 1(9):418–423. https://doi.org/10.1016/S1357-4310(95)90793-9

    Article  CAS  PubMed  Google Scholar 

  21. Pihoker C, Gilliam LK, Ellard S, Dabelea D, Davis C, Dolan LM, Greenbaum CJ, Imperatore G, Lawrence JM, Marcovina SM, Mayer-Davis E, Rodriguez BL, Steck AK, Williams DE, Hattersley AT, SEARCH for Diabetes in Youth Study Group (2013) Prevalence, characteristics and clinical diagnosis of maturity onset diabetes of the young due to mutations in HNF1A, HNF4A, and glucokinase: results from the SEARCH for Diabetes in Youth. J Clin Endocrinol Metab 98(10):4055–4062. https://doi.org/10.1210/jc.2013-1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bitterman O, Giuliani C, Festa C, Napoli A (2020) Glucokinase deficit prevalence in women with diabetes in pregnancy: a matter of screening selection. Front Endocrinol 11:268–272. https://doi.org/10.3389/fendo.2020.00268

    Article  Google Scholar 

  23. Kousta E, Ellard S, Allen LI, Saker PJ, Huxtable SJ, Hattersley AT, McCarthy MI (2001) Glucokinase mutations in a phenotypically selected multiethnic group of women with a history of gestational diabetes. Diabet Med 18(8):683–684. https://doi.org/10.1046/j.1464-5491.2001.00530.x

    Article  CAS  PubMed  Google Scholar 

  24. Bacon S, Schmid J, McCarthy A, Edwards J, Fleming A, Kinsley B, Firth R, Byrne B, Gavin C, Byrne MM (2015) The clinical management of hyperglycemia in pregnancy complicated by maturity-onset diabetes of the young. Am J Obstet Gynecol 213(2):e1-7. https://doi.org/10.1016/j.ajog.2015.04.037

    Article  Google Scholar 

  25. Spyer G, Macleod KM, Shepherd M, Ellard S, Hattersley AT (2009) Pregnancy outcome in patients with raised blood glucose due to a heterozygous glucokinase gene mutation. Diabet Med 26(1):14–18. https://doi.org/10.1111/j.1464-5491.2008.02622.x

    Article  CAS  PubMed  Google Scholar 

  26. Li J, Shu M, Wang X, Deng A, Wen C, Wang J, Jin S, Zhang H (2021) Precision therapy for a chinese family with maturity-onset diabetes of the young. Front Endocrinol 12:700342–700349. https://doi.org/10.3389/fendo.2021.700342

    Article  Google Scholar 

  27. Pearson ER, Starkey BJ, Powell RJ, Gribble FM, Clark PM, Hattersley AT (2003) Genetic cause of hyperglycaemia and response to treatment in diabetes. Lancet 362(9392):1275–1281. https://doi.org/10.1016/S0140-6736(03)14571-0

    Article  CAS  PubMed  Google Scholar 

  28. Beysel S, Eyerci N, Pinarli FA, Kizilgul M, Ozcelik O, Caliskan M, Cakal E (2019) HNF1A gene p.I27L is associated with early-onset, maturity-onset diabetes of the young-like diabetes in Turkey. BMC Endocr Disord 19(1):51–57. https://doi.org/10.1186/s12902-019-0375-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhuang L, Zhao Y, Zhao W, Li M, Yu M, Lu M, Zhang R, Ge X, Zheng T, Li C, Yin J, Yin J, Bao Y, Liu L, Jia W, Liu Y (2015) The E23K and A190A variations of the KCNJ11 gene are associated with early-onset type 2 diabetes and blood pressure in the Chinese population. Mol Cell Biochem 404(1–2):133–141. https://doi.org/10.1007/s11010-015-2373-7

    Article  CAS  PubMed  Google Scholar 

  30. American Diabetes Association (2021) 9. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2021. Diabetes Care 44(Suppl 1):S111–S124. https://doi.org/10.2337/dc21-S009

    Article  Google Scholar 

  31. American Diabetes Association (2011) Standards of medical care in diabetes-2011. Diabetes Care 34(Suppl 1):S11–S61. https://doi.org/10.2337/dc11-S011

    Article  CAS  PubMed Central  Google Scholar 

  32. WHO Multicentre Growth Reference Study Group (2006) WHO child growth standards based on length/height, weight and age. Acta Paediatr Suppl 450:76–85. https://doi.org/10.1111/j.1651-2227.2006.tb02378.x

    Article  Google Scholar 

  33. Lin H, Hargreaves KA, Li R, Reiter JL, Wang Y, Mort M, Cooper DN, Zhou Y, Zhang C, Eadon MT, Dolan ME, Ipe J, Skaar TC, Liu Y (2019) RegSNPs-intron: a computational framework for predicting pathogenic impact of intronic single nucleotide variants. Genome Biol 20:254–269. https://doi.org/10.1186/s13059-019-1847-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li Q, Wang K (2017) InterVar: clinical interpretation of genetic variants by the 2015 ACMG-AMP guidelines. Am J Hum Genet 100:267–280. https://doi.org/10.1016/j.ajhg.2017.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Osbak KK, Colclough K, Saint-Martin C, Beer NL, Bellanné-Chantelot C, Ellard S, Gloyn AL (2009) Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Hum Mutat 30:1512–1526. https://doi.org/10.1002/humu.21110

    Article  CAS  PubMed  Google Scholar 

  36. Aloi C, Salina A, Minuto N, Tallone R, Lugani F, Mascagni A, Mazza O, Cassanello M, Maghnie M, d’Annunzio G (2017) Glucokinase mutations in pediatric patients with impaired fasting glucose. Acta Diabetol 54:913–923. https://doi.org/10.1007/s00592-017-1021-y

    Article  CAS  PubMed  Google Scholar 

  37. Alkorta-Aranburu G, Carmody D, Cheng YW, Nelakuditi V, Ma L, Dickens JT, Das S, Greeley SAW, Del Gaudio D (2014) Phenotypic heterogeneity in monogenic diabetes: the clinical and diagnostic utility of a gene panel-based next-generation sequencing approach. Mol Genet Metab 113:315–320. https://doi.org/10.1007/s00592-017-1021-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Workgroup on Hypoglycemia, American Diabetes Association (2005) Defining and reporting hypoglycemia in diabetes: a report from the American Diabetes Association Workgroup on Hypoglycemia. Diabetes Care 28(5):1245–1249. https://doi.org/10.2337/diacare.28.5.1245

    Article  Google Scholar 

  39. Shen Y, Cai M, Liang H, Wang H, Weng J (2011) Insight into the biochemical characteristics of a novel glucokinase gene mutation. Hum Genet 129:231–238. https://doi.org/10.1007/s00439-010-0914-4

    Article  CAS  PubMed  Google Scholar 

  40. Ellard S, Bellanné-Chantelot C, Hattersley AT, European Molecular Genetics Quality Network (EMQN) MODY group (2008) Best practice guidelines for the molecular genetic diagnosis of maturity-onset diabetes of the young. Diabetologia 51:546–553. https://doi.org/10.1007/s00125-008-0942-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Magnuson MA (1990) Glucokinase gene structure. Functional implications of molecular genetic studies. Diabetes 39:523–527. https://doi.org/10.2337/diab.39.5.523

    Article  CAS  PubMed  Google Scholar 

  42. Ma Y, Han X, Zhou X, Li Y, Gong S, Zhang S, Cai X, Zhou L, Luo Y, Li M, Liu W, Zhang X, Ren Q, Ji L (2019) A new clinical screening strategy and prevalence estimation for glucokinase variant-induced diabetes in an adult Chinese population. Genet Med 21:939–947. https://doi.org/10.1038/s41436-018-0282-3

    Article  CAS  PubMed  Google Scholar 

  43. Kamata K, Mitsuya M, Nishimura T, Eiki J, Nagata Y (2004) Structural basis for allosteric regulation of the monomeric allosteric enzyme human glucokinase. Structure 12:429–438. https://doi.org/10.1016/j.str.2004.02.005

    Article  CAS  PubMed  Google Scholar 

  44. Gidh-Jain M, Takeda J, Xu LZ, Lange AJ, Vionnet N, Stoffel M, Froguel P, Velho G, Sun F, Cohen D (1993) Glucokinase mutations associated with non-insulin-dependent (type 2) diabetes mellitus have decreased enzymatic activity: implications for structure/function relationships. Proc Natl Acad Sci USA 90:1932–1936. https://doi.org/10.1073/pnas.90.5.1932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Johansen A, Ek J, Mortensen HB, Pedersen O, Hansen T (2005) Half of clinically defined maturity-onset diabetes of the young patients in Denmark do not have mutations in HNF4A, GCK, and TCF1. J Clin Endocrinol Metab 90:4607–4614. https://doi.org/10.1210/jc.2005-0196

    Article  CAS  PubMed  Google Scholar 

  46. Spégel P, Ekholm E, Tuomi T, Groop L, Mulder H, Filipsson K (2013) Metabolite profiling reveals normal metabolic control in carriers of mutations in the glucokinase gene (MODY2). Diabetes 62(2):653–661. https://doi.org/10.2337/db12-0827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Poitout V, Robertson RP (2008) Glucolipotoxicity: fuel excess and beta-cell dysfunction. Endocr Rev 29:351–366. https://doi.org/10.1210/er.2007-0023

    Article  CAS  PubMed  Google Scholar 

  48. Kahn SE, Hull RL, Utzschneider KM (2013) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444:840–846. https://doi.org/10.1038/nature05482

    Article  CAS  Google Scholar 

  49. Auvinen AM, Luiro K, Jokelainen J, Järvelä I, Knip M, Auvinen J, Tapanainen JS (2020) Type 1 and type 2 diabetes after gestational diabetes: a 23 year cohort study. Diabetologia 63:2123–2128. https://doi.org/10.1007/s00125-020-05215-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. de Las HJ, Mart´ınez R, Rica I, de Nanclares GP, Vela A, Castano L (2010) Spanish MODY group. Heterozygous glucokinase mutations and birth weight in Spanish children. Diabet Med 27:608–610. https://doi.org/10.1111/j.1464-5491.2010.02953.x

    Article  Google Scholar 

  51. Davis EA, Cuesta-Muñoz A, Raoul M, Buettger C, Sweet I, Moates M, Magnuson MA, Matschinsky FM (1999) Mutants of glucokinase cause hypoglycaemia- and hyperglycaemia syndromes and their analysis illuminates fundamental quantitative concepts of glucose homeostasis. Diabetologia 42:1175–1186. https://doi.org/10.1007/s001250051289

    Article  CAS  PubMed  Google Scholar 

  52. Guenat E, Seematter G, Philippe J, Temler E, Jequier E, Tappy L (2000) Counterregulatory responses to hypoglycemia in patients with glucokinase gene mutations. Diabetes Metab 26:377–384

    CAS  PubMed  Google Scholar 

  53. Heimberg H, De Vos A, Moens K, Quartier E, Bouwens L, Pipeleers D, Van Schaftingen E, Madsen O, Schuit F (1996) The glucose sensor protein glucokinase is expressed in glucagon-producing alpha-cells. Proc Natl Acad Sci USA 93(14):7036–7041. https://doi.org/10.1073/pnas.93.14.7036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Spyer G, Hattersley AT, Sykes JE, Sturley RH, Macleod KM (2001) Influence of maternal and fetal glucokinase mutations in gestational diabetes. Am J Obstet Gynecol 185:240–241. https://doi.org/10.1067/mob.2001.113127

    Article  CAS  PubMed  Google Scholar 

  55. Fu J, Wang T, Liu J, Wang X, Li M, Xiao X (2019) Birthweight correlates with later metabolic abnormalities in Chinese patients with maturity-onset diabetes of the young type 2. Endocrine 65(1):53–60. https://doi.org/10.1007/s12020-019-01929-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank KX, LH, WJ, SZ, YH and WJ for their assistance. We apologize to many authors whose works could not be cited due to space limitations.

Funding

This work was supported by the National Natural Science Foundation of China (Grant Numbers 81970686, 81770791, 81471012, 82070823, 81270876; to L. Liu.), the Interdisciplinary Program of Shanghai Jiao Tong University (Grant Number YG2019ZDA08; to L. Liu.), the Shanghai Leading Talent (Grant Number SLJ15055; to L. Liu.) and the National Institutes of Health (Grant Number SC1DK104821; to Y. Liu), the TRDRP (Grant Number T31IR1603; to Y. Liu).

Author information

Authors and Affiliations

Authors

Contributions

LL designed the experiments; LL, YL, XL, CX and QW were responsible for the coordination of the project; LL, YL, YJ, YW, XL and MJ contributed to drafting and revising the manuscript; LL, YL, and XG contributed to the construction of molecular models and bioinformatics study. XL, YJ, ML, and LL contributed to kinetic analysis and thermostability study and data analysis. YW, XG, YW, YC, MJ and DY contributed to statistics and interpretation of data. YJ, FJ, MS, YC, JZ, QZ, LZ, ML, CX and QW contributed to the recruitment of MODY families, blood samples collection, data acquisition, genotyping, and genotype–phenotype analysis. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Limei Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Ethics Committee of the Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China (Approval Number: YS-2019-124), and conducted in accordance with the Declaration of Helsinki.

Informed consent

Informed written consent was obtained from all study participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Jiang, F., Li, M. et al. Identification and management of GCK-MODY complicating pregnancy in Chinese patients with gestational diabetes. Mol Cell Biochem 477, 1629–1643 (2022). https://doi.org/10.1007/s11010-022-04374-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04374-8

Keywords

Navigation