Skip to main content

Advertisement

Log in

An innovative prognostic model based on autophagy-related long noncoding RNA signature for low-grade glioma

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Autophagy is a highly conserved lysosomal degradation process essential in tumorigenesis. However, the involvement of autophagy-related long noncoding RNAs (lncRNAs) in low-grade glioma (LGG) remains unclear. In this study, we established an autophagy-related lncRNA prognostic signature for patients with LGG and assess its underlying functions. We used univariate Cox, least absolute shrinkage and selection operator and multivariate Cox regression models to establish an autophagy-related lncRNA prognostic signature. Kaplan–Meier survival analysis, receiver operating characteristic curve, nomogram, C-index, calibration curve and clinical decision-making curve were used to assess the predictive capability of the identified signature. A signature comprising nine autophagy-related lncRNAs (AL136964.1, ARHGEF26-AS1, PCED1B-AS1, AS104072.1, PRKCQ-AS1, LINC00957, AS125616.1, PSMB8-AS1 and AC087741.1) was identified as a prognostic model. Patients with LGG were divided into the high- and low-risk cohorts based on the median model-based risk score. The survival analysis revealed a 10-year survival rate of 9.3% (95% CI 1.91–45.3%) and 13.48% (95% CI 4.52–40.2%) in high-risk patients in the training and validation sets, respectively, and 48.4% (95% CI 24.7–95.0%) and 48.4% (95% CI 28.04–83.4%) in low-risk patients in the training and validation sets, respectively. This finding suggested a relatively low survival in high-risk patients. In addition, the lncRNA signature was independently prognostic and potentially associated with the progression of LGG. Therefore, the 9-autophagy-related-lncRNA signature may play a crucial role in the diagnosis and treatment of LGG, which may offer new avenues for tumour-targeted therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All the data generated or analysed during this study have been included in this article.

References

  1. Li Y, Deng G, Qi Y, Zhang H, Jiang H, Geng R, Ye Z, Liu B, Chen Q (2020) Downregulation of LUZP2 is correlated with poor prognosis of low-grade glioma. Biomed Res Int 2020:9716720. https://doi.org/10.1155/2020/9716720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bao Z, Wang Y, Wang Q, Fang S, Shan X, Wang J, Jiang T (2021) Intratumor heterogeneity, microenvironment, and mechanisms of drug resistance in glioma recurrence and evolution. Front Med. https://doi.org/10.1007/s11684-020-0760-2

    Article  PubMed  Google Scholar 

  3. Bandopadhayay P, Bergthold G, London W, Goumnerova L, Morales La Madrid A, Marcus K, Guo D, Ullrich N, Robison N, Chi S, Beroukhim R, Kieran M, Manley P (2014) Long-term outcome of 4,040 children diagnosed with pediatric low-grade gliomas: an analysis of the Surveillance Epidemiology and End Results (SEER) database. Pediatr Blood Cancer 61:1173–1179. https://doi.org/10.1002/pbc.24958

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lin H, Patel S, Affleck V, Wilson I, Turnbull D, Joshi A, Maxwell R, Stoll E (2017) Fatty acid oxidation is required for the respiration and proliferation of malignant glioma cells. Neuro Oncol 19:43–54. https://doi.org/10.1093/neuonc/now128

    Article  CAS  PubMed  Google Scholar 

  5. Duffau H, Taillandier L (2015) New concepts in the management of diffuse low-grade glioma: proposal of a multistage and individualized therapeutic approach. Neuro Oncol 17:332–342. https://doi.org/10.1093/neuonc/nou153

    Article  CAS  PubMed  Google Scholar 

  6. Xue W, Zhang J, Tong H, Xie T, Chen X, Zhou B, Wu P, Zhong P, Du X, Guo Y, Yang Y, Liu H, Fang J, Wang S, Wu H, Xu K, Zhang W (2020) Effects of BMPER, CXCL10, and HOXA9 on neovascularization during early-growth stage of primary high-grade glioma and their corresponding MRI biomarkers. Front Oncol 10:711. https://doi.org/10.3389/fonc.2020.00711

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jiang L, Xiao C, Xu Q, Sun J, Chen H, Chen Y, Yin X (2017) Analysis of DTI-derived tensor metrics in differential diagnosis between low-grade and high-grade gliomas. Front Aging Neurosci 9:271. https://doi.org/10.3389/fnagi.2017.00271

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yang Y, Liu X, Cheng L, Li L, Wei Z, Wang Z, Han G, Wan X, Wang Z, Zhang J, Chen C (2020) Tumor suppressor microRNA-138 suppresses low-grade glioma development and metastasis via regulating IGF2BP2. Onco Targets Ther 13:2247–2260. https://doi.org/10.2147/ott.S232795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao J, Wang L, Wei B (2020) Identification and validation of an energy metabolism-related lncRNA-mRNA signature for lower-grade glioma. Biomed Res Int 2020:3708231. https://doi.org/10.1155/2020/3708231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Louis D, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee W, Ohgaki H, Wiestler O, Kleihues P, Ellison D (2016) The 2016 World Health Organization Classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  11. Zhang M, Wang X, Chen X, Zhang Q, Hong J (2020) Novel immune-related gene signature for risk stratification and prognosis of survival in lower-grade glioma. Front Genet 11:363. https://doi.org/10.3389/fgene.2020.00363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fisher M, Jones D, Li Y, Guo X, Sonawane P, Waanders A, Phillips J, Weiss W, Resnick A, Gosline S, Banerjee J, Guinney J, Gnekow A, Kandels D, Foreman N, Korshunov A, Ryzhova M, Massimi L, Gururangan S, Kieran M, Wang Z, Fouladi M, Sato M, Øra I, Holm S, Markham S, Beck P, Jäger N, Wittmann A, Sommerkamp A, Sahm F, Pfister S, Gutmann D (2021) Integrated molecular and clinical analysis of low-grade gliomas in children with neurofibromatosis type 1 (NF1). Acta Neuropathol 141:605–617. https://doi.org/10.1007/s00401-021-02276-5

    Article  CAS  PubMed  Google Scholar 

  13. Tu Z, Wu L, Wang P, Hu Q, Tao C, Li K, Huang K, Zhu X (2020) N6-methylandenosine-related lncRNAs are potential biomarkers for predicting the overall survival of lower-grade glioma patients. Front Cell Dev Biol 8:642. https://doi.org/10.3389/fcell.2020.00642

    Article  PubMed  PubMed Central  Google Scholar 

  14. Liu W, Li C, Xu W, Liu X, Tang H, Huang H (2020) Genome-wide analyses of the prognosis-related mRNA alternative splicing landscape and novel splicing factors based on large-scale low grade glioma cohort. Aging 12:13684–13700. https://doi.org/10.18632/aging.103491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xie C, Liu X, Sham K, Lai J, Cheng C (2014) Silencing of EEF2K (eukaryotic elongation factor-2 kinase) reveals AMPK-ULK1-dependent autophagy in colon cancer cells. Autophagy 10:1495–1508. https://doi.org/10.4161/auto.29164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jutten B, Keulers T, Peeters H, Schaaf M, Savelkouls K, Compter I, Clarijs R, Schijns O, Ackermans L, Teernstra O, Zonneveld M, Colaris R, Dubois L, Vooijs M, Bussink J, Sotelo J, Theys J, Lammering G, Rouschop K (2018) EGFRvIII expression triggers a metabolic dependency and therapeutic vulnerability sensitive to autophagy inhibition. Autophagy 14:283–295. https://doi.org/10.1080/15548627.2017.1409926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang H, Liu Y, Wang D, Xu Y, Dong R, Yang Y, Lv Q, Chen X, Zhang Z (2019) The upstream pathway of mTOR-mediated autophagy in liver diseases. Cells. https://doi.org/10.3390/cells8121597

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gu Y, Han J, Jiang C, Zhang Y (2020) Biomarkers, oxidative stress and autophagy in skin aging. Ageing Res Rev 59:101036. https://doi.org/10.1016/j.arr.2020.101036

    Article  CAS  PubMed  Google Scholar 

  19. Su S, Wang X, Xi X, Zhu L, Chen Q, Zhang H, Qin Y, Yang B, Che N, Cao H, Zhong W, Wang B (2021) Phellodendrine promotes autophagy by regulating the AMPK/mTOR pathway and treats ulcerative colitis. J Cell Mol Med. https://doi.org/10.1111/jcmm.16587

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang Y, Gao R, Zhang L, Geng Y, Chen Q, Chen X, Liu X, Mu X, Ding Y, Wang Y, He J (2021) AMPK/mTOR downregulated autophagy enhances aberrant endometrial decidualization in folate-deficient pregnant mice. J Cell Physiol. https://doi.org/10.1002/jcp.30408

    Article  PubMed  Google Scholar 

  21. Mukhopadhyay S, Panda P, Sinha N, Das D, Bhutia S (2014) Autophagy and apoptosis: where do they meet? Apoptosis 19:555–566. https://doi.org/10.1007/s10495-014-0967-2

    Article  CAS  PubMed  Google Scholar 

  22. Mariño G, Niso-Santano M, Baehrecke E, Kroemer G (2014) Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15:81–94. https://doi.org/10.1038/nrm3735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Greabu M, Giampieri F, Imre M, Mohora M, Totan A, Pituru S, Ionescu E (2020) Autophagy, one of the main steps in periodontitis pathogenesis and evolution. Molecules. https://doi.org/10.3390/molecules25184338

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zois C, Koukourakis M (2009) Radiation-induced autophagy in normal and cancer cells: towards novel cytoprotection and radio-sensitization policies? Autophagy 5:442–450. https://doi.org/10.4161/auto.5.4.7667

    Article  CAS  PubMed  Google Scholar 

  25. Salminen A, Kaarniranta K, Kauppinen A (2013) Beclin 1 interactome controls the crosstalk between apoptosis, autophagy and inflammasome activation: impact on the aging process. Ageing Res Rev 12:520–534. https://doi.org/10.1016/j.arr.2012.11.004

    Article  CAS  PubMed  Google Scholar 

  26. Vlahakis A, Debnath J (2017) The interconnections between autophagy and integrin-mediated cell adhesion. J Mol Biol 429:515–530. https://doi.org/10.1016/j.jmb.2016.11.027

    Article  CAS  PubMed  Google Scholar 

  27. Shen H, Wang L, Xiong J, Ren C, Gao C, Ding W, Zhu D, Ma D, Wang H (2019) Long non-coding RNA CCAT1 promotes cervical cancer cell proliferation and invasion by regulating the miR-181a-5p/MMP14 axis. Cell Cycle 18:1110–1121. https://doi.org/10.1080/15384101.2019.1609829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu L, Zhu S, Jiang X, Ren J, Lin Y, Zhang N, Tong M, Zhang H, Zheng W, Fu H, Luo H, Lin L, Yan J, Yang T (2017) LncRNA expression in CD4+ T cells in neurosyphilis patients. Front Cell Infect Microbiol 7:461. https://doi.org/10.3389/fcimb.2017.00461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhao W, Lin X, Han H, Zhang H, Li X, Jiang C, Feng M (2021) Long noncoding RNA H19 contributes to the proliferation and autophagy of glioma cells through mTOR/ULK1 pathway. NeuroReport 32:352–358. https://doi.org/10.1097/wnr.0000000000001602

    Article  CAS  PubMed  Google Scholar 

  30. Lv Q, Wang L, Li D, Lin Q, Shen X, Liu H, Li M, Ji Y, Qin C, Chen S (2020) Knockdown lncRNA DLEU1 inhibits gliomas progression and promotes temozolomide chemosensitivity by regulating autophagy. Front Pharmacol 11:560543. https://doi.org/10.3389/fphar.2020.560543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zheng J, Wang B, Zheng R, Zhang J, Huang C, Zheng R, Huang Z, Qiu W, Liu M, Yang K, Mao Z, Ji A, Yuan Y (2020) Linc-RA1 inhibits autophagy and promotes radioresistance by preventing H2Bub1/USP44 combination in glioma cells. Cell Death Dis 11:758. https://doi.org/10.1038/s41419-020-02977-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ma R, Zhang B, Zhang Z, Deng Q (2020) LncRNA MALAT1 knockdown inhibits cell migration and invasion by suppressing autophagy through miR-384/GOLM1 axis in glioma. Eur Rev Med Pharmacol Sci 24:2601–2615

    CAS  PubMed  Google Scholar 

  33. Liu C, Fu H, Liu X, Lei Q, Zhang Y, She X, Liu Q, Liu Q, Sun Y, Li G, Wu M (2018) LINC00470 coordinates the epigenetic regulation of ELFN2 to distract GBM cell autophagy. Mol Ther 26:2267–2281. https://doi.org/10.1016/j.ymthe.2018.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zheng J, Zhou Z, Qiu Y, Wang M, Yu H, Wu Z, Wang X, Jiang X (2021) A prognostic ferroptosis-related lncRNAs signature associated with immune landscape and radiotherapy response in glioma. Front Cell Dev Biol 9:675555. https://doi.org/10.3389/fcell.2021.675555

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chen Z, Tian H, Yao D, Zhang Y, Feng Z, Yang C (2021) Identification of a ferroptosis-related signature model including mRNAs and lncRNAs for predicting prognosis and immune activity in hepatocellular carcinoma. Front Oncol 11:738477. https://doi.org/10.3389/fonc.2021.738477

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chen W, Feng Z, Huang J, Fu P, Xiong J, Cao Y, Liu Y, Tu Y, Li Z, Jie Z, Xiao T (2021) Identification of ferroptosis-related long noncoding RNA and construction of a novel prognostic signature for gastric cancer. Dis Markers 2021:7724997. https://doi.org/10.1155/2021/7724997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, Hackl H, Trajanoski Z (2017) Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep 18:248–262. https://doi.org/10.1016/j.celrep.2016.12.019

    Article  CAS  PubMed  Google Scholar 

  38. Wei J, Ge X, Tang Y, Qian Y, Lu W, Jiang K, Fang Y, Hwang M, Fu D, Xiao Q, Ding K (2020) An autophagy-related long noncoding RNA signature contributes to poor prognosis in colorectal cancer. J Oncol 2020:4728947. https://doi.org/10.1155/2020/4728947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Guo J, Li Y, Duan H, Yuan L (2019) LncRNA TUBA4B functions as a competitive endogenous RNA to inhibit gastric cancer progression by elevating PTEN via sponging miR-214 and miR-216a/b. Cancer Cell Int 19:156. https://doi.org/10.1186/s12935-019-0879-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pellecchia S, Sepe R, Decaussin-Petrucci M, Ivan C, Shimizu M, Coppola C, Testa D, Calin G, Fusco A, Pallante P (2020) The long non-coding RNA Prader Willi/Angelman region RNA5 (PAR5) is downregulated in anaplastic thyroid carcinomas where it acts as a tumor suppressor by reducing EZH2 activity. Cancers. https://doi.org/10.3390/cancers12010235

    Article  PubMed  PubMed Central  Google Scholar 

  41. Liang H, Su X, Wu Q, Shan H, Lv L, Yu T, Zhao X, Sun J, Yang R, Zhang L, Yan H, Zhou Y, Li X, Du Z, Shan H (2020) 2810403D21Rik/MirfLncRNA promotes ischemic myocardial injury by regulating autophagy through targeting. Autophagy 16:1077–1091. https://doi.org/10.1080/15548627.2019.1659610

    Article  CAS  PubMed  Google Scholar 

  42. Zheng J, Pang C, Du W, Wang L, Sun L, Xing Z (2020) An allele of rs619586 polymorphism in MALAT1 alters the invasiveness of meningioma via modulating the expression of collagen type V alpha (COL5A1). J Cell Mol Med 24:10223–10232. https://doi.org/10.1111/jcmm.15637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen Z, Wang W, Huang W, Fang K, Sun Y, Liu S, Luo X, Chen Y (2017) The lncRNA HOTAIRM1 regulates the degradation of PML-RARA oncoprotein and myeloid cell differentiation by enhancing the autophagy pathway. Cell Death Differ 24:212–224. https://doi.org/10.1038/cdd.2016.111

    Article  CAS  PubMed  Google Scholar 

  44. Gao Z, Fu P, Yu Z, Zhen F, Gu Y (2019) Comprehensive analysis of lncRNA–miRNA–mRNA network ascertains prognostic factors in patients with colon cancer. Technol Cancer Res Treat 18:1533033819853237. https://doi.org/10.1177/1533033819853237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhou D, Gao B, Yang Q, Kong Y, Wang W (2019) Integrative analysis of ceRNA network reveals functional lncRNAs in intrahepatic cholangiocarcinoma. BioMed Res Int 2019:2601271. https://doi.org/10.1155/2019/2601271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Qin J, Zhu T, Wu W, Chen H, He Y (2021) Long non-coding RNA PCED1B-AS1 promotes the progression of clear cell renal cell carcinoma through miR-484/ZEB1 axis. OncoTargets Ther 14:393–402. https://doi.org/10.2147/ott.S270149

    Article  Google Scholar 

  47. Fan F, Chen K, Lu X, Li A, Liu C, Wu B (2020) Dual targeting of PD-L1 and PD-L2 by PCED1B-AS1 via sponging hsa-miR-194-5p induces immunosuppression in hepatocellular carcinoma. Hepatol Int. https://doi.org/10.1007/s12072-020-10101-6

    Article  PubMed  Google Scholar 

  48. Yao Z, Zhang Q, Guo F, Guo S, Yang B, Liu B, Li P, Li J, Guan S, Liu X (2020) Long noncoding RNA PCED1B-AS1 promotes the Warburg effect and tumorigenesis by upregulating HIF-1α in glioblastoma. Cell Transplant 29:963689720906777. https://doi.org/10.1177/0963689720906777

    Article  PubMed  Google Scholar 

  49. Yang J, Yu D, Liu X, Changyong E, Yu S (2020) LncRNA PCED1B-AS1 activates the proliferation and restricts the apoptosis of glioma through cooperating with miR-194-5p/PCED1B axis. J Cell Biochem 121:1823–1833. https://doi.org/10.1002/jcb.29417

    Article  CAS  PubMed  Google Scholar 

  50. Li M, Cui J, Niu W, Huang J, Feng T, Sun B, Yao H (2019) Long non-coding PCED1B-AS1 regulates macrophage apoptosis and autophagy by sponging miR-155 in active tuberculosis. Biochem Biophys Res Commun 509:803–809. https://doi.org/10.1016/j.bbrc.2019.01.005

    Article  CAS  PubMed  Google Scholar 

  51. Shademan M, Naseri Salanghuch A, Zare K, Zahedi M, Foroughi M, Akhavan Rezayat K, Mosannen Mozaffari H, Ghaffarzadegan K, Goshayeshi L, Dehghani H (2019) Expression profile analysis of two antisense lncRNAs to improve prognosis prediction of colorectal adenocarcinoma. Cancer Cell Int 19:278. https://doi.org/10.1186/s12935-019-1000-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cui G, Zhao H, Li L (2020) Long noncoding RNA PRKCQ-AS1 promotes CRC cell proliferation and migration via modulating miR-1287-5p/YBX1 axis. J Cell Biochem 121:4166–4175. https://doi.org/10.1002/jcb.29712

    Article  CAS  PubMed  Google Scholar 

  53. Li X, Sun L, Wang X, Wang N, Xu K, Jiang X, Xu S (2021) A five immune-related lncRNA signature as a prognostic target for glioblastoma. Front Mol Biosci 8:632837. https://doi.org/10.3389/fmolb.2021.632837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang L, Li L, Zhang P, Cai Y, Hua D (2019) LINC00957 acted as prognostic marker was associated with fluorouracil resistance in human colorectal cancer. Front Oncol 9:776. https://doi.org/10.3389/fonc.2019.00776

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zhang H, Zhu C, He Z, Chen S, Li L, Sun C (2020) LncRNA PSMB8-AS1 contributes to pancreatic cancer progression via modulating miR-382-3p/STAT1/PD-L1 axis. J Exp Clin Cancer Res 39:179. https://doi.org/10.1186/s13046-020-01687-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hu T, Wang F, Han G (2020) LncRNA PSMB8-AS1 acts as ceRNA of miR-22-3p to regulate DDIT4 expression in glioblastoma. Neurosci Lett 728:134896. https://doi.org/10.1016/j.neulet.2020.134896

    Article  CAS  PubMed  Google Scholar 

  57. Shen G, Mao Y, Su Z, Du J, Yu Y, Xu F (2020) PSMB8-AS1 activated by ELK1 promotes cell proliferation in glioma via regulating miR-574-5p/RAB10. Biomed Pharmacother 122:109658. https://doi.org/10.1016/j.biopha.2019.109658

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was not funded by anybody.

Author information

Authors and Affiliations

Authors

Contributions

AM and MT: Conceptualization, methodology, validation, investigation, supervision, software, visualization, writing—original draft, writing—reviewing and editing. YW: Validation, supervision, investigation. MA: Visualization, methodology. LJ: Data curation, software, validation. XW: Methodology, formal analysis, visualization. YM: Software, validation. YA: Data curation, visualization, validation. ZF: Investigation, validation. MK: Investigation, writing—reviewing and editing.

Corresponding author

Correspondence to Maimaitijiang Kasimu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

Not required to this study.

Consent to participate

Not required to this study.

Consent for publication

Not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Figure 1 Sankey charts for autophagy-related lncRNAs, mRNAs and risk types (TIF 1871 kb)

Supplementary Figure 2 The PH assumption of the Cox regression model (TIF 1479 kb)

11010_2022_4368_MOESM3_ESM.tif

Supplementary Figure 3 Kaplan–Meier curves of OS differences stratified by age (A), tumour grade(B), sex(C), new tumour events(D), radiation therapy(E), tumour type(F), IDH1 R132 mutation status(G) and TP53 mutation status(H) between the high- and low-risk groups in the TCGA entire set (TIF 3914 kb)

11010_2022_4368_MOESM4_ESM.tif

Supplementary Figure 4 A. Estimation of immune and stromal cells in low-grade glioma tissues using expression data in training set. Violin plots of tumour purity for the low- and high-risk groups based on the immune score, stromal score and ESTIMATE score. B. Differences in infiltration levels of immune cell types in the high- and low-risk groups in training set. C. Comparison of immune-related functions between the high- and low-risk groups in training set. D. Comparison of the expression of immune checkpoints between the high- and low-risk groups in training set (TIF 3874 kb)

11010_2022_4368_MOESM5_ESM.tif

Supplementary Figure 5 A–D Differences in estimation of stromal and immune cells, immune cell infiltration, immune-related functions, immune checkpoints and risk scores in validation set (TIF 6324 kb)

11010_2022_4368_MOESM6_ESM.tif

Supplementary Figure 6 A–E. In the CGGA mRNA-seq-693 dataset, the overall survival probability of patients with low expression levels of ARHGEF26-AS1 and PRKCQ-AS1 was significantly lower than that of patients with high expression levels (P < 0.05). C. In the CGGA mRNA-seq-693 dataset, the overall survival probability of patients with high expression levels of PCED1B-AS1 was significantly lower than that of patients with low expression levels (P < 0.05). D. In the CGGA mRNA-seq-693 dataset, no statistical difference was observed in the overall survival probability between patients with high and low expression levels of LINC00957. E. In the GSE16011 dataset, the overall survival probability was significantly higher in patients with high PRKCQ-AS1 expression levels than in patients with low expression levels (P < 0.001) (TIF 2887 kb)

Supplementary file7 (XLS 43 kb)

Supplementary file8 (TXT 71 kb)

Supplementary file9 (TXT 35 kb)

Supplementary file10 (TXT 35 kb)

Supplementary file11 (TXT 209 kb)

Supplementary file12 (TXT 209 kb)

Supplementary file13 (TXT 0 kb)

Supplementary file14 (TXT 49 kb)

Supplementary file15 (XLS 2 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maimaiti, A., Tuerhong, M., Wang, Y. et al. An innovative prognostic model based on autophagy-related long noncoding RNA signature for low-grade glioma. Mol Cell Biochem 477, 1417–1438 (2022). https://doi.org/10.1007/s11010-022-04368-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04368-6

Keywords

Navigation