Skip to main content

Advertisement

Log in

The microRNA-1278/SHP-1/STAT3 pathway is involved in airway smooth muscle cell proliferation in a model of severe asthma both intracellularly and extracellularly

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

This study investigated the regulatory effects of microRNA-1278 (miR-1278) on airway inflammation, airway reconstruction, and the proliferation and apoptosis of airway smooth muscle cells (ASMCs) induced by transforming growth factor β1 (TGF-β1). The results showed that miR-1278 was upregulated in the blood and lung tissues (LTs) of patients with asthma compared with that in healthy volunteers; miR-1278 expression was also upregulated in asthmatic mice, and miR-1278 inhibition improved the LTs of asthmatic mice. Moreover, miR-1278 inhibited inflammation in asthmatic mice and counteracted the effect of TGF-β1 of induced proliferation and reduced apoptosis in ASMCs. DLRA indicated that miR-1278 targeted the 3′-UTR of Src-homology 2-containing phosphatase 1 (SHP-1). Furthermore, miR-1278 promoted ASMC proliferation, in which TGF-β1 played an important role by regulating the SHP-1/STAT3 signaling pathway. In conclusion, this study showed that miR-1278 played a critical role in the processes of airway remodeling and reduction of apoptosis by targeting SHP-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Masoli M, Fabian D, Holt S et al (2004) The global burden of asthma: executive summary of the GINA Dissemination Committee report. Allergy 59:469–478

    PubMed  Google Scholar 

  2. Thomsen AML, Ehrenstein V, Riis AH et al (2018) The potential impact of paternal age on risk of asthma in childhood: a study within the Danish National Birth Cohort. Respir Med 137:30–34

    PubMed  Google Scholar 

  3. Holloway JW, Yang IA, Holgate ST (2010) Genetics of allergic disease. J Allergy Clin Immunol 125:S81–S94

    PubMed  Google Scholar 

  4. Staab EB, Sanderson SD, Wells SM et al (2014) Treatment with the C5a receptor/CD88 antagonist PMX205 reduces inflammation in a murine model of allergic asthma. Int Immunopharmacol 21:293–300

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Donohue JF, Herje N, Crater G et al (2014) Characterization of airway inflammation in patients with COPD using fractional exhaled nitric oxide levels: a pilot study. Int J Chron Obstruct Pulmon Dis 9:745

    PubMed  PubMed Central  Google Scholar 

  6. Gibeon D, Menzies-Gow A (2013) Recent changes in the drug treatment of allergic asthma. Clin Med 13:477

    Google Scholar 

  7. Halwani R, Al-Muhsen S, Al-Jahdali H et al (2011) Role of transforming growth factor–β in airway remodeling in asthma. Am J Respir Cell Mol Biol 44:127–133

    CAS  PubMed  Google Scholar 

  8. Postma DS, Timens W (2006) Remodeling in asthma and chronic obstructive pulmonary disease. Proc Am Thorac Soc 3:434–439

    CAS  PubMed  Google Scholar 

  9. Elias JA, Zhu Z, Chupp G et al (1999) Airway remodeling in asthma. J Clin Investig 104:1001–1006

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Homer RJ, Elias JA (2005) Airway remodeling in asthma: therapeutic implications of mechanisms. Physiology 20:28–35

    CAS  PubMed  Google Scholar 

  11. Wei Y, Xu Y-D, Yin L-M, et al (2013) Recombinant rat CC10 protein inhibits PDGF-induced airway smooth muscle cells proliferation and migration. BioMed Res Int

  12. Ozier A, Allard B, Bara I, et al (2011) The pivotal role of airway smooth muscle in asthma pathophysiology. J Allergy

  13. Makinde T, Murphy RF, Agrawal DK (2007) The regulatory role of TGF-β in airway remodeling in asthma. Immunol Cell Biol 85:348–356

    CAS  PubMed  Google Scholar 

  14. Redington AE, Madden J, Frew AJ et al (1997) Transforming growth factor-β 1 in asthma: measurement in bronchoalveolar lavage fluid. Am J Respir Crit Care Med 156:642–647

    CAS  PubMed  Google Scholar 

  15. Holgate ST, Polosa R (2008) Treatment strategies for allergy and asthma. Nat Rev Immunol 8:218–230

    CAS  PubMed  Google Scholar 

  16. Halwani R, Al-Muhsen S, Al-Jahdali H et al (2011) Role of transforming growth factor-β in airway remodeling in asthma. Am J Respir Cell Mol Biol 44:127–133. https://doi.org/10.1165/rcmb.2010-0027TR

    Article  CAS  PubMed  Google Scholar 

  17. Freyer AM, Johnson SR, Hall IP (2001) Effects of growth factors and extracellular matrix on survival of human airway smooth muscle cells. Am J Respir Cell Mol Biol 25:569–576. https://doi.org/10.1165/ajrcmb.25.5.4605

    Article  CAS  PubMed  Google Scholar 

  18. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    CAS  PubMed  Google Scholar 

  19. Pua HH, Ansel KM (2015) MicroRNA regulation of allergic inflammation and asthma. Curr Opin Immunol 36:101–108

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Tay HL, Plank M, Collison A et al (2014) MicroRNA: potential biomarkers and therapeutic targets for allergic asthma? Ann Med 46:633–639

    CAS  PubMed  Google Scholar 

  21. Perry MM, Baker JE, Gibeon DS et al (2014) Airway smooth muscle hyperproliferation is regulated by microRNA-221 in severe asthma. Am J Respir Cell Mol Biol 50:7–17

    PubMed  PubMed Central  Google Scholar 

  22. Hu R, Pan W, Fedulov AV et al (2014) MicroRNA-10a controls airway smooth muscle cell proliferation via direct targeting of the PI3 kinase pathway. FASEB J 28:2347–2357

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang H, Sun Z, Yu L et al (2017) MiR-139-5p inhibits proliferation and promoted apoptosis of human airway smooth muscle cells by downregulating the Brg1 gene. Respir Physiol Neurobiol 246:9–16

    PubMed  Google Scholar 

  24. Zhang X, Zhao X, Sun H et al (2018) The role of miR-29c/B7-H3 axis in children with allergic asthma. J Transl Med 16:218

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Jude JA, Dileepan M, Subramanian S et al (2012) miR-140-3p regulation of TNF-α-induced CD38 expression in human airway smooth muscle cells. Am J Physiol-Lung Cell Mol Physiol 303:L460–L468

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang Y, Xue Y, Liu Y et al (2016) MicroRNA-146a expression inhibits the proliferation and promotes the apoptosis of bronchial smooth muscle cells in asthma by directly targeting the epidermal growth factor receptor. Exp Ther Med 12:854–858

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wen X, Yan J, Han X-R et al (2018) PTEN gene silencing contributes to airway remodeling and induces airway smooth muscle cell proliferation in mice with allergic asthma. J Thorac Dis 10:202

    PubMed  PubMed Central  Google Scholar 

  28. Ye L, Mou Y, Wang J et al (2017) Effects of microRNA-19b on airway remodeling, airway inflammation and degree of oxidative stress by targeting TSLP through the Stat3 signaling pathway in a mouse model of asthma. Oncotarget 8:47533

    PubMed  PubMed Central  Google Scholar 

  29. Cheng Z, Dai L-L, Wang X et al (2017) MicroRNA-145 down-regulates mucin 5AC to alleviate airway remodeling and targets EGFR to inhibit cytokine expression. Oncotarget 8:46312

    PubMed  PubMed Central  Google Scholar 

  30. Association GAotWM (2014) World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. J Am Coll Dentists 81:14

    Google Scholar 

  31. Agarwal V, Bell GW, Nam JW et al (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife 4:e05005. https://doi.org/10.7554/eLife.05005

    Article  PubMed Central  Google Scholar 

  32. Dharmage SC, Perret JL, Custovic A (2019) Epidemiology of asthma in children and adults. Front Pediatrics 7:246

    Google Scholar 

  33. Grainge CL, Lau LC, Ward JA et al (2011) Effect of bronchoconstriction on airway remodeling in asthma. N Engl J Med 364:2006–2015

    CAS  PubMed  Google Scholar 

  34. Hong W, Peng G, Hao B et al (2017) Nicotine-induced airway smooth muscle cell proliferation involves TRPC6-dependent calcium influx via α7 nAChR. Cell Physiol Biochem 43:986–1002

    CAS  PubMed  Google Scholar 

  35. Wenzel SE (2012) Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med 18:716–725. https://doi.org/10.1038/nm.2678

    Article  CAS  PubMed  Google Scholar 

  36. Tan H, Lei J, Xue L et al (2017) Relaxing effect of TSU-68, an antiangiogenic agent, on mouse airway smooth muscle. Cell Physiol Biochem 41:2350–2362

    CAS  PubMed  Google Scholar 

  37. Samitas K, Delimpoura V, Zervas E et al (2015) Anti-IgE treatment, airway inflammation and remodelling in severe allergic asthma: current knowledge and future perspectives. Eur Respir Rev 24:594–601

    PubMed  Google Scholar 

  38. Murakami A, Ohigashi H (2007) Targeting NOX, INOS and COX-2 in inflammatory cells: chemoprevention using food phytochemicals. Int J Cancer 121:2357–2363

    CAS  PubMed  Google Scholar 

  39. Islam T, Breton C, Salam MT et al (2010) Role of inducible nitric oxide synthase in asthma risk and lung function growth during adolescence. Thorax 65:139–145

    PubMed  Google Scholar 

  40. Singh VP, Patil CS, Jain NK et al (2003) Effect of nimesulide on acetic acid-and leukotriene-induced inflammatory bowel disease in rats. Prostaglandins Lipid Mediat 71:163–175

    CAS  Google Scholar 

  41. Yamauchi K (2006) Airway remodeling in asthma and its influence on clinical pathophysiology. Tohoku J Exp Med 209:75–87

    PubMed  Google Scholar 

  42. Hirota S, Helli PB, Catalli A et al (2005) Airway smooth muscle excitation-contraction coupling and airway hyperresponsiveness. Can J Physiol Pharmacol 83:725–732

    CAS  PubMed  Google Scholar 

  43. Hirst SJ (2003) Regulation of airway smooth muscle cell immunomodulatory function: role in asthma. Respir Physiol Neurobiol 137:309–326

    CAS  PubMed  Google Scholar 

  44. Bara I, Ozier A, De Lara JT et al (2010) Pathophysiology of bronchial smooth muscle remodelling in asthma. Eur Respir J 36:1174–1184

    CAS  PubMed  Google Scholar 

  45. Al-Muhsen S, Johnson JR, Hamid Q et al (2011) Remodeling in asthma. J Allergy Clin Immunol 128:451–462

    PubMed  Google Scholar 

  46. Zhao Y, Wang P, Wu Q (2020) miR-1278 sensitizes nasopharyngeal carcinoma cells to cisplatin and suppresses autophagy via targeting ATG2B. Mol Cell Probes 53:101597

    CAS  PubMed  Google Scholar 

  47. Zhou X, Lv L, Zhang Z et al (2020) LINC00294 negatively modulates cell proliferation in glioma through a neurofilament medium (NEFM)-mediated pathway via interacting with miR-1278. J Gene Med 22(10):e3235

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by the NSFC (No. 81770028); the Key Laboratory of Shenzhen Respiratory Disease (No. ZDSYS201504301616234) and the Clinical Research of Shenzhen Municipal Health and Family Planning Commission (No. SZLY2017024). This work also was supported by special funding for high-level disciplines from the Shenzhen Institute of Respiratory Diseases.

Author information

Authors and Affiliations

Authors

Contributions

JL, RC, YL and YZ conceived and designed the research and interpreted the results of experiments. JL and RC performed experiments, analyzed data. All authors approved final version of manuscript. JL and RC edited and revised the manuscript.

Corresponding author

Correspondence to Jie Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures were reviewed and approved by the Ethics Committee (EC) of Shenzhen People’s Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University).

Informed consent

Written informed consent was obtained and signed by all patients or their legal guardian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Chen, R., Lu, Y. et al. The microRNA-1278/SHP-1/STAT3 pathway is involved in airway smooth muscle cell proliferation in a model of severe asthma both intracellularly and extracellularly. Mol Cell Biochem 477, 1439–1451 (2022). https://doi.org/10.1007/s11010-022-04358-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04358-8

Keywords

Navigation