Skip to main content
Log in

Adipogenesis of ear mesenchymal stem cells (EMSCs): adipose biomarker-based assessment of genetic variation, adipocyte function, and brown/brite differentiation

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Ear mesenchymal stem cells (EMSCs) have been investigated to differentiate into adipocytes, chondrocytes, and muscle cells in vitro. However, the factors controlling adipogenesis of this stem cell population in vitro, function, and type of adipocytes raised from them are still unclear. Here we found that genetics have a modest effect on adipogenic capacity of EMSCs. Adipocytes differentiated from EMSCs have a potential function in lipid metabolism as indicated by expression of lipogenic genes and this function of EMSC adipocytes is regulated by genetics. EMSCs failed to be differentiated into brite/brown adipocytes due to their lack of a thermogenic program, but adipocytes raised from EMSCs showed a fate of white adipocytes. Overall, our data suggest that EMSCs differentiate into functional white adipocytes in vitro and this is genetic-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Gesta S, Tseng Y-H, Kahn CR (2007) Developmental origin of fat: tracking obesity to its source. Cell 131(2):242–256

    CAS  PubMed  Google Scholar 

  2. Hass R, Kasper C, Böhm S, Jacobs R (2011) Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 9:12–12

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Staszkiewicz J, Gimble JM, Manuel JA, Gawronska-Kozak B (2008) IFATS collection: stem cell antigen-1-positive ear mesenchymal stem cells display enhanced adipogenic potential. STEM CELLS 26(10):2666–2673

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Mori H, Prestwich TC, Reid MA, Longo KA, Gerin I, Cawthorn WP, Susulic VS, Krishnan V, Greenfield A, MacDougald OA (2012) Secreted frizzled-related protein 5 suppresses adipocyte mitochondrial metabolism through WNT inhibition. J Clin Invest. https://doi.org/10.1172/JCI63604

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chu D-T, Malinowska E, Gawronska-Kozak B, Kozak LP (2014) Expression of adipocyte biomarkers in a primary cell culture models reflects preweaning adipobiology. J Biol Chem 289(26):18478–18488

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Rim J-S, Mynatt RL, Gawronska-Kozak B (2005) Mesenchymal stem cells from the outer ear: a novel adult stem cell model system for the study of adipogenesis. FASEB J. https://doi.org/10.1096/fj.04-3204fje

    Article  PubMed  Google Scholar 

  7. Khalilifar MA, Baghaban Eslaminejad MR, Ghasemzadeh M, Hosseini S, Baharvand H (2019) In vitro and in vivo comparison of different types of rabbit mesenchymal stem cells for cartilage repair. Cell J 21(2):150–160

    PubMed  PubMed Central  Google Scholar 

  8. Gawronska-Kozak B, Manuel JA, Prpic V (2007) Ear mesenchymal stem cells (EMSC) can differentiate into spontaneously contracting muscle cells. J Cell Biochem 102(1):122–135

    CAS  PubMed  Google Scholar 

  9. Knaack DA, Xu H, Proudfoot S, Sorci Thomas MG, Sahoo D (2020) Differentiation of murine ear mesenchymal stem cells into adipocytes: a novel system to study cholesterol transport. Arterioscler Thromb Vasc Biol 40:206

    Google Scholar 

  10. Chu DT, Malinowska E, Jura M, Kozak LP (2017) C57BL/6J mice as a polygenic developmental model of diet-induced obesity. Physiol Rep. https://doi.org/10.14814/phy2.13093

    Article  PubMed  PubMed Central  Google Scholar 

  11. Halvorsen YD, Franklin D, Bond AL, Hitt DC, Auchter C, Boskey AL, Paschalis EP, Wilkison WO, Gimble JM (2001) Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Eng 7(6):729–741

    CAS  PubMed  Google Scholar 

  12. Jura M, Jarosławska J, Chu DT, Kozak LP (2016) Mest and Sfrp5 are biomarkers for healthy adipose tissue. Biochimie 124:124–133

    CAS  PubMed  Google Scholar 

  13. Nikonova L, Koza RA, Mendoza T, Chao P-M, Curley JP, Kozak LP (2008) Mesoderm-specific transcript is associated with fat mass expansion in response to a positive energy balance. FASEB J 22(11):3925–3937

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Rim JS, Xue B, Gawronska-Kozak B, Kozak LP (2004) Sequestration of thermogenic transcription factors in the cytoplasm during development of brown adipose tissue. J Biol Chem 279(24):25916–25926

    CAS  PubMed  Google Scholar 

  15. Si Y, Palani S, Jayaraman A, Lee K (2007) Effects of forced uncoupling protein 1 expression in 3T3-L1 cells on mitochondrial function and lipid metabolism. J Lipid Res 48(4):826–836

    CAS  PubMed  Google Scholar 

  16. Soccio RE, Adams RM, Romanowski MJ, Sehayek E, Burley SK, Breslow JL (2002) The cholesterol-regulated StarD4 gene encodes a StAR-related lipid transfer protein with two closely related homologues, StarD5 and StarD6. Proc Natl Acad Sci USA 99(10):6943–6948

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang X, Zhang Y-KJ, Esterly N, Klaassen CD, Wan Y-JY (2009) Gender disparity of hepatic lipid homoeostasis regulated by the circadian clock. J Biochem 145(5):609–623

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Anunciado-Koza R, Ukropec J, Koza RA, Kozak LP (2008) Inactivation of UCP1 and the glycerol phosphate cycle synergistically increases energy expenditure to resist diet-induced obesity. J Biol Chem 283(41):27688–27697

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J (2010) Chronic peroxisome proliferator-activated receptor γ (PPARγ) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem 285(10):7153–7164

    CAS  PubMed  Google Scholar 

  20. Zhang H, Schulz TJ, Espinoza DO, Huang TL, Emanuelli B, Kristiansen K, Tseng Y-H (2010) Cross talk between insulin and bone morphogenetic protein signaling systems in brown adipogenesis. Mol Cell Biol 30(17):4224–4233

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Stacey DH, Hanson SE, Lahvis G, Gutowski KA, Masters KS (2009) In vitro adipogenic differentiation of preadipocytes varies with differentiation stimulus, culture dimensionality, and scaffold composition. Tissue Eng Part A 15(11):3389–3399

    CAS  PubMed  Google Scholar 

  22. Reed D, McDaniel A, Li X, Tordoff M, Bachmanov A (2006) Quantitative trait loci for individual adipose depot weights in C57BL/6ByJ x 129P3/J F2 mice. Mamm Genome 17(11):1065–1077

    PubMed  PubMed Central  Google Scholar 

  23. Reed D, Li X, McDaniel A, Lu K, Li S, Tordoff M, Price A, Bachmanov A (2003) Loci on chromosomes 2, 4, 9, and 16 for body weight, body length, and adiposity identified in a genome scan of an F2 intercross between the 129P3/J and C57BL/6ByJ mouse strains. Mamm Genome 14(5):302–313

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lin C, Theodorides ML, McDaniel AH, Tordoff MG, Zhang Q, Li X, Bosak N, Bachmanov AA, Reed DR (2013) QTL analysis of dietary obesity in C57BL/6byj X 129P3/J F2 mice diet- and sex-dependent effects. PLoS ONE 8(7):e68776

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Herrera BM, Keildson S, Lindgren CM (2011) Genetics and epigenetics of obesity. Maturitas. https://doi.org/10.1016/j.maturitas.2011.02.018

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schwenk RW, Vogel H, Schürmann A (2013) Genetic and epigenetic control of metabolic health. Mol Metab 2(4):337–347

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Slomko H, Heo HJ, Einstein FH (2012) Minireview: epigenetics of obesity and diabetes in humans. Endocrinology 153(3):1025–1030

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lasar D, Julius A, Fromme T, Klingenspor M (2013) Browning attenuates murine white adipose tissue expansion during postnatal development. Biochim et Biophys Acta 1831(5):960–968

    CAS  Google Scholar 

  29. Almind K, Kahn CR (2004) Genetic determinants of energy expenditure and insulin resistance in diet-induced obesity in mice. Diabetes 53(12):3274–3285

    CAS  PubMed  Google Scholar 

  30. Almind K, Manieri M, Sivitz WI, Cinti S, Kahn CR (2007) Ectopic brown adipose tissue in muscle provides a mechanism for differences in risk of metabolic syndrome in mice. Proc Natl Acad Sci USA 104(7):2366–2371

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bezy O, Tran TT, Pihlajamäki J, Suzuki R, Emanuelli B, Winnay J, Mori MA, Haas J, Biddinger SB, Leitges M, Goldfine AB, Patti ME, King GL, RonaldKahn C (2011) PKCδ regulates hepatic insulin sensitivity and hepatosteatosis in mice and humans. J Clin Invest 121(6):2504–2517

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Fink BD, Herlein JA, Almind K, Cinti S, Kahn CR, Sivitz WI (2007) Mitochondrial proton leak in obesity-resistant and obesity-prone mice. Am J Physiol Regul Integr Comp Physiol 293(5):R1773–R1780

    CAS  PubMed  Google Scholar 

  33. Guerra C, Koza RA, Yamashita H, Walsh K, Kozak LP (1998) Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. J Clin Invest 102(2):412–420

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kersten S (2001) Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO Rep 2(4):282–286

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Jeong Y-S, Kim D, Lee YS, Kim H-J, Han J-Y, Im S-S, Chong HK, Kwon J-K, Cho Y-H, Kim WK, Osborne TF, Horton JD, Jun H-S, Ahn Y-H, Ahn S-M, Cha J-Y (2011) Integrated expression profiling and genome-wide analysis of ChREBP targets reveals the dual role for ChREBP in glucose-regulated gene expression. PLoS ONE 6(7):e22544

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Tseng Y-H, Kokkotou E, Schulz TJ, Huang TL, Winnay JN, Taniguchi CM, Tran TT, Suzuki R, Espinoza DO, Yamamoto Y, Ahrens MJ, Dudley AT, Norris AW, Kulkarni RN, Kahn CR (2008) New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454(7207):1000–1004

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Boström EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Højlund K, Gygi SP, Spiegelman BM (2012) A PGC1α-dependent myokine that drives browning of white fat and thermogenesis. Nature 481(7382):463–468

    PubMed  PubMed Central  Google Scholar 

  38. Bouchard C (1997) Genetics of human obesity: recent results from linkage studies. J Nutr 127(9):1887S-1890S

    CAS  PubMed  Google Scholar 

  39. Day FR, Loos RJF (2011) Developments in obesity genetics in the era of genome-wide association studies. J Nutrigenet Nutrigenomics 4(4):222–238

    PubMed  Google Scholar 

  40. Pomp D, Nehrenberg D, Estrada-Smith D (2008) Complex genetics of obesity in mouse models. Annu Rev Nutr 28:331–345

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Stöger R (2008) Epigenetics and obesity. Pharmacogenomics 9(12):1851–1860

    PubMed  Google Scholar 

  42. Li Y, Bolze F, Fromme T, Klingenspor M (2014) Intrinsic differences in BRITE adipogenesis of primary adipocytes from two different mouse strains. Biochim et Biophys Acta 1841(9):1345–1352

    CAS  Google Scholar 

  43. Chabowska-Kita A, Trabczynska A, Korytko A, Kaczmarek MM, Kozak LP (2015) Low ambient temperature during early postnatal development fails to cause a permanent induction of brown adipocytes. FASEB J 29(8):3238–3252

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sanchez-Gurmaches J, Guertin DA (2014) Adipocyte lineages: tracing back the origins of fat. Biochim et Biophys Acta 1842(3):340–351

    CAS  Google Scholar 

  45. Sharp LZ, Shinoda K, Ohno H, Scheel DW, Tomoda E, Ruiz L, Hu H, Wang L, Pavlova Z, Gilsanz V, Kajimura S (2012) Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS ONE 7(11):e49452

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zingaretti MC, Crosta F, Vitali A, Guerrieri M, Frontini A, Cannon B, Nedergaard J, Cinti S (2009) The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J 23(9):3113–3120

    CAS  PubMed  Google Scholar 

  47. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng Y-H, Doria A, Kolodny GM, Kahn CR (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360(15):1509–1517

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Cypess AM, White AP, Vernochet C, Schulz TJ, Xue R, Sass CA, Huang TL, Roberts-Toler C, Weiner LS, Sze C, Chacko AT, Deschamps LN, Herder LM, Truchan N, Glasgow AL, Holman AR, Gavrila A, Hasselgren P-O, Mori MA, Molla M, Tseng Y-H (2013) Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat Med 19(5):635–639

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Jespersen NZ, Larsen TJ, Peijs L, Daugaard S, Homøe P, Loft A, de Jong J, Mathur N, Cannon B, Nedergaard J, Pedersen BK, Møller K, Scheele C (2013) A classical brown adipose tissue mrna signature partly overlaps with brite in the supraclavicular region of adult humans. Cell Metab 17(5):798–805

    CAS  PubMed  Google Scholar 

  50. van der Lans AAJJ, Hoeks J, Brans B, Vijgen GHEJ, Visser MGW, Vosselman MJ, Hansen J, Jörgensen JA, Wu J, Mottaghy FM, Schrauwen P, van Marken Lichtenbelt WD (2013) Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J Clin Invest 123(8):3395–3403

    PubMed  PubMed Central  Google Scholar 

  51. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto N-J, Enerbäck S, Nuutila P (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360(15):1518–1525

    CAS  PubMed  Google Scholar 

  52. Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J, Iwanaga T, Miyagawa M, Kameya T, Nakada K, Kawai Y, Tsujisaki M (2009) High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58(7):1526–1531

    CAS  PubMed  PubMed Central  Google Scholar 

  53. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JMAFL, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJJ (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360(15):1500–1508

    PubMed  Google Scholar 

  54. Min SY, Kady J, Nam M, Rojas-Rodriguez R, Berkenwald A, Kim JH, Noh H-L, Kim JK, Cooper MP, Fitzgibbons T, Brehm MA, Corvera S (2016) Human “brite/beige” adipocytes develop from capillary networks, and their implantation improves metabolic homeostasis in mice. Nat Med 22(3):312–318

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 106.02-2019.314. Dinh Toi Chu was a PhD student at the Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland (2012–2015), and a Postdoc and Researcher at the Center for Molecular Medicine Norway, University of Oslo, Oslo, Norway (2015–2018). DTC’s works in Norway were supported by the SCIENTIA FELLOWS program co-funded by Faculty of Medicine, University of Oslo and the EU Seventh Framework Program (FP7) Marie S. Curie scheme—People: Co-funding of Regional, National and International Programs (COFUND), grant number 609020. And D.T.C’s works in Poland were supported by the Foundation for Polish Science, program WELCOME, no. WELCOME/2010-4/3 entitled “Nutrition and ambient temperature during early development can reduce susceptibility to obesity” financed by EU Structural Funds in Poland within the Innovative Economy Program and REFRESH project (FP7-REGPOT-2010-1-264103). We would like to thank Prof. Barbara Gawronska-Kozak (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland) for critical reading and helpful comments to improve this manuscript before submitting.

Author information

Authors and Affiliations

Authors

Contributions

DTC designed this study. DTC, DTT, VTN, and NTLH performed the experiments and analyzed the data. DTC, DTT, and VTH drafted the paper. DTC, NTLH, and VTH participated in animal manipulation, data collection, and analysis. DTC and DTT supervised this study and reviewed this manuscript.

Corresponding author

Correspondence to Dinh-Toi Chu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, DT., Truong, D.T., Thi, H.V. et al. Adipogenesis of ear mesenchymal stem cells (EMSCs): adipose biomarker-based assessment of genetic variation, adipocyte function, and brown/brite differentiation. Mol Cell Biochem 477, 1053–1063 (2022). https://doi.org/10.1007/s11010-021-04350-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04350-8

Keywords

Navigation