Skip to main content
Log in

Effect of autophagy on ferroptosis in foam cells via Nrf2

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The progression of atherosclerotic plaque is accelerated by death of foam cells during the development of the plaque. There are several forms of foam cell death, such as autophagy and ferroptosis forms of cell death together are commonly predominant. Therefore, it is particularly important to study the crosstalk between various forms of cell death in atheroscler and ferroptosis. Although there is a dominant form of cell death that plays a role in the disease, motic plaques. Nuclear factor NF-E2-related factor (Nrf2) has been considered as a major regulator of antioxidant in previous studies, but recent studies have revealed that insufficient cellular autophagy can turn off Nrf2-mediated antioxidant defense while initiating Nrf2-manipulated iron deposition and lipid peroxidation, leading to the development of iron ferroptosis. The present experiment aimed to explain the regulatory mechanism between autophagy and ferroptosis through Nrf2. In this experiment, differentiated human THP-1 macrophages were used, which were treated with ox-LDL into foam cells with the addition of the autophagy inhibitor chloroquine (CQ), the inhibitor of Nrf2 (ML385), the promoter of Nrf2 (t-BHQ), and the inhibitor of ferroptosis (Liproxstatin-1), and the expression levels of autophagy-related proteins p62 and LC3, as well as Nrf2 and ferroptosis-related proteins xCT and GPX4 by WB, foam cell survival by CCK8, and intracellular reactive oxygen levels by Flow cytometry analysis and fluorescence microscopy. The effect of autophagy through Nrf2 on ferroptosis in foam cells was determined. The results revealed that insufficient autophagy in CQ-induced foam cells could lead to foam cell death in atherosclerotic plaques, and the cause of cell death was that insufficient autophagy in foam cells turned off the positive effect of Nfr2 antioxidant, initiated the negative effect of Nrf2 to promote intracellular reactive oxygen species production, and this negative effect promoted ferroptosis in foam cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AS:

Atherosclerosis

AP:

Atherosclerotic plaque

ATG5:

Autophagy-related gene5

ATG7:

Autophagy-related gene7

CQ:

Chloroquine

CCK8:

Cell Counting Kit-8

DFC:

Iron chelator desferricoprogen

FCM:

Flow cytometry analysis

FBS:

Fetal bovine serum

Hmox1:

Heme oxygenase-1

GPX4:

Glutathione Peroxidase 4

LC3:

Microtubule-associated protein 1 light chain 3

Lipro-1:

Liproxstatin-1

Nrf2:

Nuclear factor erytheroid-derived-2-like 2

ox-LDL:

Oxidized-low-density lipoprotein

p62/SQSTM1:

Sequestosome 1

PMA:

Phorbol-12-myristate-13-ace-tate

ROS:

Reactive oxygen species

tBHQ:

Tert-butylhydroquinone

Xct:

Cystine-glutamic acid reverse transporter light chain protein

WB:

Western blot

References

  1. Moore KJ, Tabas I (2011) Macrophages in the pathogenesis of atherosclerosis. Cell 145(3):341–355. https://doi.org/10.1016/j.cell.2011.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Martinet W, Coornaert I, Puylaert P, De Meyer GRY (2019) Macrophage death as a pharmacological target in atherosclerosis. Front Pharmacol 10(5):306–312. https://doi.org/10.3389/fphar.2019.00306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhou Y, Zhou H, Hua L, Hou C, Jia Q, Chen J, Zhang S, Wang Y, He S, Jia E (2021) Verification of ferroptosis and pyroptosis and identification of PTGS2 as the hub gene in human coronary artery atherosclerosis. Free Radic Biol Med 171(2):55–68. https://doi.org/10.1016/j.freeradbiomed.2021.05.009

    Article  CAS  PubMed  Google Scholar 

  4. Evans TD, Jeong SJ, Zhang X, Sergin I, Razani B (2018) TFEB and trehalose drive the macrophage autophagy-lysosome system to protect against atherosclerosis. Autophagy 14(4):724–726. https://doi.org/10.1080/15548627.2018.1434373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kumar S, Nanduri R, Bhagyaraj E, Kalra R, Ahuja N, Chacko AP, Tiwari D, Sethi K, Saini A, Chandra V, Jain M, Gupta S, Bhatt D, Gupta P (2020) Vitamin D3-VDR-PTPN6 axis mediated autophagy contributes to the inhibition of macrophage foam cell formation. Autophagy 2020:1–17. https://doi.org/10.1080/15548627.2020.1822088

    Article  CAS  Google Scholar 

  6. Osonoi Y, Mita T, Azuma K, Nakajima K, Masuyama A, Goto H, Nishida Y, Miyatsuka T, Fujitani Y, Koike M, Mitsumata M, Watada H (2018) Defective autophagy in vascular smooth muscle cells enhances cell death and atherosclerosis. Autophagy 14(11):1991–2006. https://doi.org/10.1080/15548627.2018.1501132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Violi F, Carnevale R, Loffredo L, Pignatelli P, Gallin JI (2017) NADPH oxidase-2 and atherothrombosis: insight from chronic granulomatous disease. Arterioscler Thromb Vasc Biol 37(2):218–225. https://doi.org/10.1161/ATVBAHA.116.308351

    Article  CAS  PubMed  Google Scholar 

  8. Zhang J, Ma CR, Hua YQ, Li L, Ni JY, Huang YT, Duncan SE, Li S, Gao S, Fan GW (2021) Contradictory regulation of macrophages on atherosclerosis based on polarization, death and autophagy. Life Sci 276(6):118957. https://doi.org/10.1016/j.lfs.2020.118957

    Article  CAS  PubMed  Google Scholar 

  9. Chen Y, Li N, Wang H, Wang N, Peng H, Wang J, Li Y, Liu M, Li H, Zhang Y, Wang Z (2020) Amentoflavone suppresses cell proliferation and induces cell death through triggering autophagy-dependent ferroptosis in human glioma. Life Sci 247(6):117–125. https://doi.org/10.1016/j.lfs.2020.117425

    Article  CAS  Google Scholar 

  10. Xu T, Ding W, Ji X, Ao X, Liu Y, Yu W, Wang J (2019) Molecular mechanisms of ferroptosis and its role in cancer therapy. J Cell Mol Med 23(8):4900–4912. https://doi.org/10.1111/jcmm.14511

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zang H, Wu W, Qi L, Tan W, Nagarkatti P, Nagarkatti M, Wang X, Cui T (2020) Autophagy Inhibition Enables Nrf2 to Exaggerate the Progression of Diabetic Cardiomyopathy in Mice. Diabetes 69(12):2720–2734. https://doi.org/10.2337/db19-1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhu Y, Zhang Y, Huang X, Xie Y, Qu Y, Long H, Gu N, Jiang W (2019) Z-Ligustilide protects vascular endothelial cells from oxidative stress and rescues high fat diet-induced atherosclerosis by activating multiple NRF2 downstream genes. Atherosclerosis 284(21):110–120. https://doi.org/10.1016/j.atherosclerosis.2019.02.010

    Article  CAS  PubMed  Google Scholar 

  13. Mimura J, Itoh K (2015) Role of Nrf2 in the pathogenesis of atherosclerosis. Free Radic Biol Med 88(Pt B):221–232. https://doi.org/10.1016/j.freeradbiomed.2015.06.019

    Article  CAS  PubMed  Google Scholar 

  14. Hashimoto K, Simmons AN, Kajino-Sakamoto R, Tsuji Y, Ninomiya-Tsuji J (2016) TAK1 regulates the Nrf2 antioxidan system through modulating p62/SQSTM1. Antioxid Redox Signal 25(17):953–964. https://doi.org/10.1089/ars.2016.6663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lazaro I, Lopez-Sanz L, Bernal S, Oguiza A, Recio C, Melgar A, Jimenez-Castilla L, Egido J, Madrigal-Matute J, Gomez-Guerrero C (2018) Nrf2 activation provides atheroprotection in diabetic mice through concerted upregulation of antioxidant, anti-inflammatory, and autophagy mechanisms. Front Pharmacol 9(9):819–823. https://doi.org/10.3389/fphar.2018.00819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wu J, Ni Y, Yang Q, Mao J, Zhu X, Tao S, Kato K, Zhang J, Wang D, Yamanaka K, An Y (2020) Long-term arsenite exposure decreases autophagy by increased release of Nrf2 in transformed human keratinocytes. Sci Total Environ 734(16):139425. https://doi.org/10.1016/j.scitotenv.2020.139425

    Article  CAS  PubMed  Google Scholar 

  17. Patel KM, Strong A, Tohyama J, Jin X, Morales CR, Billheimer J, Millar J, Kruth H, Rader DJ (2015) Macrophage sortilin promotes LDL uptake, foam cell formation, and atherosclerosis. Circ Res 116(5):789–796. https://doi.org/10.1161/CIRCRESAHA.116.305811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu Z, Zhu H, Dai X, Wang C, Ding Y, Song P, Zou MH (2017) Macrophage liver kinase B1 inhibits foam cell formation and atherosclerosis. Circ Res 121(9):1047–1057. https://doi.org/10.1161/CIRCRESAHA.117.311546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu J, Wang C, Li J, Yu Y, Liu Y, Liu H, Peng Q, Guan X (2021) Autophagy blockage promotes the pyroptosis of ox-LDL-treated macrophages by modulating the p62/Nrf2/ARE axis. J Physiol Biochem. https://doi.org/10.1007/s13105-021-00811-2

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yang K, Song H, Yin D (2021) PDSS2 inhibits the ferroptosis of vascular endothelial cells in atherosclerosis by activating Nrf2. J Cardiovasc Pharmacol 77(6):767–776. https://doi.org/10.1097/FJC.0000000000001030

    Article  CAS  Google Scholar 

  21. Basit F, van Oppen LM, Schockel L, Bossenbroek HM, van Emst-de Vries SE, Hermeling JC, Grefte S, Kopitz C, Heroult M, Hgm Willems P, Koopman WJ (2017) Mitochondrial complex I inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells. Cell Death Dis 8(3):e2716. https://doi.org/10.1038/cddis.2017.133

    Article  PubMed  PubMed Central  Google Scholar 

  22. Xiao FJ, Zhang D, Wu Y, Jia QH, Zhang L, Li YX, Yang YF, Wang H, Wu CT, Wang LS (2019) miRNA-17-92 protects endothelial cells from erastin-induced ferroptosis through targeting the A20-ACSL4 axis. Biochem Biophys Res Commun 515(3):448–454. https://doi.org/10.1016/j.bbrc.2019.05.147

    Article  CAS  PubMed  Google Scholar 

  23. Vinchi F, Porto G, Simmelbauer A, Altamura S, Passos ST, Garbowski M, Silva AMN, Spaich S, Seide SE, Sparla R, Hentze MW, Muckenthaler MU (2020) Atherosclerosis is aggravated by iron overload and ameliorated by dietary and pharmacological iron restriction. Eur Heart J 41(28):2681–2695. https://doi.org/10.1093/eurheartj/ehz112

    Article  CAS  PubMed  Google Scholar 

  24. Bai T, Li M, Liu Y, Qiao Z, Wang Z (2020) Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell. Free Radic Biol Med 160(1):92–102. https://doi.org/10.1016/j.freeradbiomed.2020.07.026

    Article  CAS  PubMed  Google Scholar 

  25. Potor L, Eva SK, Hegedus H, Petho D, Szabo Z, Szigeti ZM, Pocsi I, Trencsenyi G, Szikra D, Garai I, Gall T, Combi Z, Kappelmayer J, Balla G, Balla J (2020) The fungal iron chelator desferricoprogen inhibits atherosclerotic plaque formation. Int J Mol Sci 21(13):4746–4749. https://doi.org/10.3390/ijms21134746

    Article  CAS  PubMed Central  Google Scholar 

  26. Fang X, Wang H, Han D, Xie E, Yang X, Wei J, Gu X, Gao F, Zhu N, Yin X, Chen Q, Zhang P, Dai W, Chen J, Yang F, Yang HT, Linkermann A, Gu W, Min J, Wang F (2019) Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci USA 116(7):2672–2680. https://doi.org/10.1073/pnas.1821022116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the grants from the National Natural Science Foundation of China (No. 81672084).

Author information

Authors and Affiliations

Authors

Contributions

First author: do experiments, write articles, participate in part of the experimental design. Second, third, fourth and fifth Author: assist in completing the experiment. Corresponding author: participate in article revision, experimental design and supervision, financial support. The authors declare that all data were generated in-house and that no paper mill was used.

Corresponding author

Correspondence to Xiuru Guan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Informed consent

All authors were informed and agreed to sign.

Research involving human participants and/or animals

This study does not involve human participants and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Q., Liu, H., Luo, Z. et al. Effect of autophagy on ferroptosis in foam cells via Nrf2. Mol Cell Biochem 477, 1597–1606 (2022). https://doi.org/10.1007/s11010-021-04347-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04347-3

Keywords

Navigation