Skip to main content

Advertisement

Log in

CircPDE7B/miR-661 axis accelerates the progression of human keloid fibroblasts by upregulating fibroblast growth factor 2 (FGF2)

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Circular RNAs (circRNAs) are implicated in keloidogenesis and development. We aimed to investigate the role of a new identified phosphodiesterase 7B-derived circRNA (hsa_circ_0002198; henceforth named as PDE7B) in human keloid fibroblasts (HKFs) and to further confirm its mechanism via competing endogenous RNA (ceRNA) network. Transcriptional and translational levels of circPDE7B, microRNA (miR)-661, fibroblast growth factor 2 (FGF2), cleaved caspase3, B-cell lymphoma (bcl)-2, and bcl-2-associated X protein (bax) were detected by real-time quantitative PCR and western blotting. Relationship among circPDE7B, miR-661, and FGF2 was confirmed by bioinformatics algorithm, dual-luciferase reporter assay, RNA immunoprecipitation, RNA pull-down assay, and Spearman’s rank correlation analysis. Cell progression was measured by cell counting kit-8 assay, 5-ethynyl-2-deoxyuridine assay, transwell assays, and flow cytometry. Expression of circPDE7B was upregulated in human keloid tissues and HKFs, accompanied with miR-661 downregulation and FGF2 upregulation. High circPDE7B accelerated proliferation, migration, and invasion, and inhibited apoptosis. These effects were paralleled with increased bcl-2 and decreased cleaved caspase3 and bax. Moreover, low circPDE7B played opposite effects to high circPDE7B. Restoring miR-661 could suppress HKFs progression, while blocking miR-661 could facilitate that. Notably, miR-661 was directly sponged by circPDE7B and then directly governed FGF2 gene expression. Deleting miR-661 and re-expressing FGF2 both abrogated the suppression of circPDE7B knockdown in HKFs progression. In conclusion, circPDE7B might contribute to HKFs progression via functioning as ceRNA for miR-661, suggesting a novel circPDE7B/miR-661/FGF2 pathway underlying keloid formation and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The analyzed data sets generated during the present study are available from the corresponding author on reasonable request.

References

  1. Trace AP, Enos CW, Mantel A, Harvey VM (2016) Keloids and hypertrophic scars: a spectrum of clinical challenges. Am J Clin Dermatol 17:201–223. https://doi.org/10.1007/s40257-016-0175-7

    Article  PubMed  Google Scholar 

  2. Limandjaja GC, Niessen FB, Scheper RJ, Gibbs S (2020) The keloid disorder: heterogeneity, histopathology, mechanisms and models. Front Cell Dev Biol 8:360. https://doi.org/10.3389/fcell.2020.00360

    Article  PubMed  PubMed Central  Google Scholar 

  3. He Y, Deng Z, Alghamdi M, Lu L, Fear MW, He L (2017) From genetics to epigenetics: new insights into keloid scarring. Cell Prolif. https://doi.org/10.1111/cpr.12326

    Article  PubMed  PubMed Central  Google Scholar 

  4. Marneros AG, Krieg T (2004) Keloids–clinical diagnosis, pathogenesis, and treatment options. J Dtsch Dermatol Ges 2:905–913. https://doi.org/10.1046/j.1439-0353.2004.04077.x

    Article  PubMed  Google Scholar 

  5. Luo S, Benathan M, Raffoul W, Panizzon RG, Egloff DV (2001) Abnormal balance between proliferation and apoptotic cell death in fibroblasts derived from keloid lesions. Plast Reconstr Surg 107:87–96. https://doi.org/10.1097/00006534-200101000-00014

    Article  CAS  PubMed  Google Scholar 

  6. Andrews JP, Marttala J, Macarak E, Rosenbloom J, Uitto J (2016) Keloids: the paradigm of skin fibrosis—pathomechanisms and treatment. Matrix Biol 51:37–46. https://doi.org/10.1016/j.matbio.2016.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ogawa R (2017) Keloid and hypertrophic scars are the result of chronic inflammation in the reticular dermis. Int J Mol Sci. https://doi.org/10.3390/ijms18030606

    Article  PubMed  PubMed Central  Google Scholar 

  8. McGinty S, Siddiqui WJ (2020) Keloid. StatPearls, Treasure Island

    Google Scholar 

  9. Lv W, Ren Y, Hou K, Hu W, Yi Y, Xiong M, Wu M, Wu Y, Zhang Q (2020) Epigenetic modification mechanisms involved in keloid: current status and prospect. Clin Epigenetics 12:183. https://doi.org/10.1186/s13148-020-00981-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shi J, Yao S, Chen P, Yang Y, Qian M, Han Y, Wang N, Zhao Y, He Y, Lyu L, Lu D (2020) The integrative regulatory network of circRNA and microRNA in keloid scarring. Mol Biol Rep 47:201–209. https://doi.org/10.1007/s11033-019-05120-y

    Article  CAS  PubMed  Google Scholar 

  11. Wang J, Wu H, Xiao Z, Dong X (2019) Expression profiles of lncRNAs and circRNAs in keloid. Plast Reconstr Surg Glob Open 7:e2265. https://doi.org/10.1097/GOX.0000000000002265

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhang Z, Yu K, Liu O, Xiong Y, Yang X, Wang S, Zhang S, Feng Y, Peng Y (2020) Expression profile and bioinformatics analyses of circular RNAs in keloid and normal dermal fibroblasts. Exp Cell Res 388:111799. https://doi.org/10.1016/j.yexcr.2019.111799

    Article  CAS  PubMed  Google Scholar 

  13. Yang D, Li M, Du N (2020) Effects of the circ_101238/miR-138-5p/CDK6 axis on proliferation and apoptosis keloid fibroblasts. Exp Ther Med 20:1995–2002. https://doi.org/10.3892/etm.2020.8917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Szczypka M (2020) Role of phosphodiesterase 7 (PDE7) in T cell activity. Effects of selective PDE7 inhibitors and dual PDE4/7 inhibitors on T cell functions. Int J Mol Sci. https://doi.org/10.3390/ijms21176118

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hayashi T, Nishihira J, Koyama Y, Sasaki S, Yamamoto Y (2006) Decreased prostaglandin E2 production by inflammatory cytokine and lower expression of EP2 receptor result in increased collagen synthesis in keloid fibroblasts. J Invest Dermatol 126:990–997. https://doi.org/10.1038/sj.jid.5700227

    Article  CAS  PubMed  Google Scholar 

  16. Hoffman Y, Bublik DR, Pilpel Y, Oren M (2014) miR-661 downregulates both Mdm2 and Mdm4 to activate p53. Cell Death Differ 21:302–309. https://doi.org/10.1038/cdd.2013.146

    Article  CAS  PubMed  Google Scholar 

  17. Liu F, Cai Y, Rong X, Chen J, Zheng D, Chen L, Zhang J, Luo R, Zhao P, Ruan J (2017) MiR-661 promotes tumor invasion and metastasis by directly inhibiting RB1 in non small cell lung cancer. Mol Cancer 16:122. https://doi.org/10.1186/s12943-017-0698-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fan L, Zhu C, Qiu R, Zan P, Zheng Z, Xu T, Li G (2017) MicroRNA-661 enhances TRAIL or STS induced osteosarcoma cell apoptosis by modulating the expression of cytochrome c1. Cell Physiol Biochem 41:1935–1946. https://doi.org/10.1159/000472380

    Article  CAS  PubMed  Google Scholar 

  19. Jin T, Liu M, Liu Y, Li Y, Xu Z, He H, Liu J, Zhang Y, Ke Y (2020) Lcn2-derived circular RNA (hsa_circ_0088732) inhibits cell apoptosis and promotes EMT in glioma via the miR-661/RAB3D axis. Front Oncol 10:170. https://doi.org/10.3389/fonc.2020.00170

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sun Y, Li X, Chen A, Shi W, Wang L, Yi R, Qiu J (2019) circPIP5K1A serves as a competitive endogenous RNA contributing to ovarian cancer progression via regulation of miR-661/IGFBP5 signaling. J Cell Biochem 120:19406–19414. https://doi.org/10.1002/jcb.29055

    Article  CAS  PubMed  Google Scholar 

  21. Gu H, Chen J, Song Y, Shao H (2018) Gastric adenocarcinoma predictive long intergenic non-coding RNA promotes tumor occurrence and progression in non-small cell lung cancer via regulation of the miR-661/eEF2K signaling pathway. Cell Physiol Biochem 51:2136–2147. https://doi.org/10.1159/000495831

    Article  CAS  PubMed  Google Scholar 

  22. Abuharbeid S, Czubayko F, Aigner A (2006) The fibroblast growth factor-binding protein FGF-BP. Int J Biochem Cell Biol 38:1463–1468. https://doi.org/10.1016/j.biocel.2005.10.017

    Article  CAS  PubMed  Google Scholar 

  23. Benington L, Rajan G, Locher C, Lim LY (2020) Fibroblast growth factor 2—a review of stabilisation approaches for clinical applications. Pharmaceutics. https://doi.org/10.3390/pharmaceutics12060508

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tiede S, Ernst N, Bayat A, Paus R, Tronnier V, Zechel C (2009) Basic fibroblast growth factor: a potential new therapeutic tool for the treatment of hypertrophic and keloid scars. Ann Anat 191:33–44. https://doi.org/10.1016/j.aanat.2008.10.001

    Article  CAS  PubMed  Google Scholar 

  25. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  26. Reddy SD, Pakala SB, Ohshiro K, Rayala SK, Kumar R (2009) MicroRNA-661, a c/EBPalpha target, inhibits metastatic tumor antigen 1 and regulates its functions. Cancer Res 69:5639–5642. https://doi.org/10.1158/0008-5472.CAN-09-0898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Deng CC, Zhu DH, Chen YJ, Huang TY, Peng Y, Liu SY, Lu P, Xue YH, Xu YP, Yang B, Rong Z (2019) TRAF4 promotes fibroblast proliferation in keloids by destabilizing p53 via interacting with the deubiquitinase USP10. J Invest Dermatol 139:1925-1935 e5. https://doi.org/10.1016/j.jid.2019.03.1136

    Article  CAS  PubMed  Google Scholar 

  28. Wu Y, Wang B, Li YH, Xu XG, Luo YJ, Chen JZ, Wei HC, Gao XH, Chen HD (2012) Meta-analysis demonstrates association between Arg72Pro polymorphism in the P53 gene and susceptibility to keloids in the Chinese population. Genet Mol Res 11:1701–1711. https://doi.org/10.4238/2012.June.29.2

    Article  CAS  PubMed  Google Scholar 

  29. Heitzer E, Seidl H, Bambach I, Schmidbauer U, Cerroni L, Wolf P (2012) Infrequent p53 gene mutation but UV gradient-like p53 protein positivity in keloids. Exp Dermatol 21:277–280. https://doi.org/10.1111/j.1600-0625.2012.01450.x

    Article  CAS  PubMed  Google Scholar 

  30. Li Z, Liu YH, Diao HY, Ma J, Yao YL (2015) MiR-661 inhibits glioma cell proliferation, migration and invasion by targeting hTERT. Biochem Biophys Res Commun 468:870–876. https://doi.org/10.1016/j.bbrc.2015.11.046

    Article  CAS  PubMed  Google Scholar 

  31. Akimoto S, Ishikawa O, Iijima C, Miyachi Y (1999) Expression of basic fibroblast growth factor and its receptor by fibroblast, macrophages and mast cells in hypertrophic scar. Eur J Dermatol 9:357–362

    CAS  PubMed  Google Scholar 

  32. Xie JL, Bian HN, Qi SH, Chen HD, Li HD, Xu YB, Li TZ, Liu XS, Liang HZ, Xin BR, Huan Y (2008) Basic fibroblast growth factor (bFGF) alleviates the scar of the rabbit ear model in wound healing. Wound Repair Regen 16:576–581. https://doi.org/10.1111/j.1524-475X.2008.00405.x

    Article  PubMed  Google Scholar 

  33. Menz C, Parsi MK, Adams JR, Sideek MA, Kopecki Z, Cowin AJ, Gibson MA (2015) LTBP-2 has a single high-affinity binding site for FGF-2 and blocks FGF-2-induced cell proliferation. PLoS ONE 10:e0135577. https://doi.org/10.1371/journal.pone.0135577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sideek MA, Teia A, Kopecki Z, Cowin AJ, Gibson MA (2016) Co-localization of LTBP-2 with FGF-2 in fibrotic human keloid and hypertrophic scar. J Mol Histol 47:35–45. https://doi.org/10.1007/s10735-015-9645-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and Methodology: LW and YC; Formal analysis and Data curation: DZ, TJ, and JW; Validation and Investigation: FW, LW, and YC; Writing—original draft preparation and Writing—review and editing: FW, LW, and YC; Approval of final manuscript: all authors.

Corresponding author

Correspondence to Jiaxin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

The present study was approved by the ethical review committee of The First Hospital of Qinhuangdao.

Consent to participate

Written informed consent was obtained from all enrolled patients.

Consent for publication

Patients agree to participate in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11010_2021_4345_MOESM1_ESM.tif

Supplementary Figure 1. There was no direct interaction between circPDE7B and FGF2. RIP assay was performed and RT-qPCR detected relative circPDE7B level in the precipitated complex mediated by anti-FGF2 or anti-IgG in KEL-FIB cells. Supplementary file1 (TIF 200 KB)

11010_2021_4345_MOESM2_ESM.tif

Supplementary Figure 2. Silencing FGF2 retarded HKFs progression. KEL-FIB cells were transfected with si-NC or si-FGF2. (A) Western blotting examined relative FGF2 protein expression. (B) CCK-8 assay examined OD450 values of transfected KEL-FIB cells during 72 h. (C) EdU assay determined positive stained cell percent. (D, E) Transwell assays determined migrated cell numbers and invaded cell numbers after transfection. (F) FCM evaluated apoptosis rate after transfection. (G) Western blotting examined relative protein expression of cleaved-caspase3, bcl-2 and bax in transfected KEL-FIB cells. **P<0.01 and ***P<0.001. Supplementary file2 (TIF 6255 KB)

Supplementary file. The images of EdU assay. Supplementary file3 (PDF 538 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., He, H., Chen, Y. et al. CircPDE7B/miR-661 axis accelerates the progression of human keloid fibroblasts by upregulating fibroblast growth factor 2 (FGF2). Mol Cell Biochem 477, 1113–1126 (2022). https://doi.org/10.1007/s11010-021-04345-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04345-5

Keywords

Navigation