Skip to main content
Log in

Endothelin-1 mediated glycosaminoglycan synthesizing gene expression involves NOX-dependent transactivation of the transforming growth factor-β receptor

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

G protein-coupled receptor (GPCR) agonist endothelin-1 (ET-1) through transactivation of the transforming growth factor (TGF) β receptor (TGFBR1) stimulates glycosaminoglycan (GAG) elongation on proteoglycans. GPCR agonists thrombin and lysophosphatidic acid (LPA) via respective receptors transactivate the TGFBR1 via Rho/ROCK dependent pathways however mechanistic insight for ET-1 transactivation of the TGFBR1 remains unknown. NADPH oxidase (NOX) generates reactive oxygen species (ROS) and is a signalling entity implicated in the pathogenesis of many diseases including atherosclerosis. If implicated in this pathway, NOX/ROS would be a potential therapeutic target. In this study, we investigated the involvement of NOX in ET-1/ET receptor-mediated transactivation of TGFBR1 to stimulate mRNA expression of GAG chain synthesizing enzymes chondroitin 4–O–sulfotransferase 1 (C4ST-1) and chondroitin sulfate synthase 1 (ChSy-1). The invitro model used vascular smooth muscle cells that were treated with pharmacological antagonists in the presence and absence of ET-1 or TGF-β. Proteins and phosphoproteins isolated from treated cells were quantified by western blotting and quantitative real-time PCR was used to assess mRNA expression of GAG synthesizing enzymes. In the presence of diphenyliodonium (DPI) (NOX inhibitor), ET-1 stimulated phospho-Smad2C levels were inhibited. ET-1 mediated mRNA expression of GAG synthesizing enzymes C4ST-1 and ChSy-1 was also blocked by TGBFR1 antagonists, SB431542, broad spectrum ET receptor antagonist bosentan, DPI and ROS scavenger N-acetyl-l-cysteine. This work shows that NOX and ROS play an important role in ET-1 mediated transactivation of the TGFBR1 and downstream gene targets associated with GAG chain elongation. As ROS is involved in GPCR to protein tyrosine kinase receptor transactivation, the NOX/ROS axis presents as the first common biochemical target in all GPCR to kinase receptor transactivation signalling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Little P, Hollenberg M, Kamato D et al (2016) Integrating the GPCR transactivation-dependent and biased signalling paradigms in the context of PAR1 signalling. Br J Pharmacol 173(20):2992–3000

    Article  CAS  Google Scholar 

  2. Burch ML, Osman N, Getachew R et al (2012) G protein coupled receptor transactivation: extending the paradigm to include serine/threonine kinase receptors. Int J Biochem Cell Biol 44(5):722–727

    Article  CAS  Google Scholar 

  3. Daub H, Weiss FU, Wallasch C et al (1996) Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 379(6565):557–560

    Article  CAS  Google Scholar 

  4. Burch ML, Ballinger ML, Yang SN et al (2010) Thrombin stimulation of proteoglycan synthesis in vascular smooth muscle is mediated by protease-activated receptor-1 transactivation of the transforming growth factor β type I receptor. J Biol Chem 285(35):26798–26805

    Article  CAS  Google Scholar 

  5. Burch ML, Getachew R, Osman N et al (2013) Thrombin-mediated proteoglycan synthesis utilizes both protein-tyrosine kinase and serine/threonine kinase receptor transactivation in vascular smooth muscle cells. J Biol Chem 288(10):7410–7419

    Article  CAS  Google Scholar 

  6. Chaplin R, Thach L, Hollenberg MD et al (2017) Insights into cellular signalling by G protein coupled receptor transactivation of cell surface protein kinase receptors. J Cell Commun Signal 11(2):117–125

    Article  Google Scholar 

  7. Sharifat N, Mohammad Zadeh G, Ghaffari MA et al (2017) Endothelin-1 (ET-1) stimulates carboxy terminal Smad2 phosphorylation in vascular endothelial cells by a mechanism dependent on ET receptors and de novo protein synthesis. J Pharm Pharmacol 69(1):66–72

    Article  CAS  Google Scholar 

  8. Little PJ, Burch ML, Getachew R et al (2010) Endothelin-1 stimulation of proteoglycan synthesis in vascular smooth muscle is mediated by endothelin receptor transactivation of the transforming growth factor-[beta] type I receptor. J Cardiovasc Pharmacol 56(4):360–368

    Article  CAS  Google Scholar 

  9. Xu MY, Porte J, Knox AJ et al (2009) Lysophosphatidic acid induces αvβ6 integrin-mediated TGF-β activation via the LPA2 receptor and the small G protein Gα q. Am J Pathol 174(4):1264–1279

    Article  CAS  Google Scholar 

  10. Belmadani S, Zerfaoui M, Boulares HA et al (2008) Microvessel vascular smooth muscle cells contribute to collagen type I deposition through ERK1/2 MAP kinase, αvβ3-integrin, and TGF-β1 in response to ANG II and high glucose. Am J Physiol Heart Circ Physiol 295(1):H69–H76

    Article  CAS  Google Scholar 

  11. Ballinger ML, Ivey ME, Osman N et al (2009) Endothelin-1 activates ETA receptors on human vascular smooth muscle cells to yield proteoglycans with increased binding to LDL. Atherosclerosis 205(2):451–457

    Article  CAS  Google Scholar 

  12. Figueroa JE, Vijayagopal P (2002) Angiotensin II stimulates synthesis of vascular smooth muscle cell proteoglycans with enhanced low density lipoprotein binding properties. Atherosclerosis 162(2):261–268

    Article  CAS  Google Scholar 

  13. Afroz R, Zhou Y, Little PJ et al (2020) Toll-like receptor 4 stimulates gene expression via Smad2 linker region phosphorylation in vascular smooth muscle cells. ACS Pharmacol Transl Sci 3(3):524–534

    Article  CAS  Google Scholar 

  14. Izumikawa T, Okuura Y, Koike T et al (2011) Chondroitin 4-O-sulfotransferase-1 regulates the chain length of chondroitin sulfate in co-operation with chondroitin N-acetylgalactosaminyltransferase-2. Biochem J 434(2):321–331

    Article  CAS  Google Scholar 

  15. Anggraeni VY, Emoto N, Yagi K et al (2011) Correlation of C4ST-1 and ChGn-2 expression with chondroitin sulfate chain elongation in atherosclerosis. Biochem Biophys Res Commun 406(1):36–41

    Article  CAS  Google Scholar 

  16. Izumikawa T, Uyama T, Okuura Y et al (2007) Involvement of chondroitin sulfate synthase-3 (chondroitin synthase-2) in chondroitin polymerization through its interaction with chondroitin synthase-1 or chondroitin-polymerizing factor. Biochem J 403(3):545–552

    Article  CAS  Google Scholar 

  17. Getachew R, Ballinger ML, Burch ML et al (2010) PDGF β-receptor kinase activity and ERK1/2 mediate glycosaminoglycan elongation on biglycan and increases binding to LDL. Endocrinology 151(9):4356–4367

    Article  CAS  Google Scholar 

  18. Ballinger ML, Osman N, Hashimura K et al (2010) Imatinib inhibits vascular smooth muscle proteoglycan synthesis and reduces LDL binding in vitro and aortic lipid deposition in vivo. J Cell Mol Med 14(6b):1408–1418

    Article  CAS  Google Scholar 

  19. Little PJ, Ballinger ML, Osman N (2007) Vascular wall proteoglycan synthesis and structure as a target for the prevention of atherosclerosis. Vasc Health Risk Manage 3(1):117–124

    CAS  Google Scholar 

  20. Böhm F, Pernow J (2007) The importance of endothelin-1 for vascular dysfunction in cardiovascular disease. Cardiovasc Res 76(1):8–18

    Article  Google Scholar 

  21. Dong F, Zhang X, Wold LE et al (2005) Endothelin-1 enhances oxidative stress, cell proliferation and reduces apoptosis in human umbilical vein endothelial cells: role of ETB receptor, NADPH oxidase and caveolin-1. Br J Pharmacol 145(3):323–333

    Article  CAS  Google Scholar 

  22. Li L, Fink GD, Watts SW et al (2003) Endothelin-1 increases vascular superoxide via endothelin A-NADPH oxidase pathway in low-renin hypertension. Circulation 107(7):1053–1058

    Article  CAS  Google Scholar 

  23. Mohamed R, Cao Y, Afroz R et al (2020) ROS directly activates transforming growth factor beta type 1 receptor signalling in human vascular smooth muscle cells. Biochim Biophys Acta 1864(1):129463

    Article  CAS  Google Scholar 

  24. Rodriguez-Vita J, Ruiz-Ortega M, Ruperez M et al (2005) Endothelin-1, via ETA receptor and independently of transforming growth factor-beta, increases the connective tissue growth factor in vascular smooth muscle cells. Circ Res 97(2):125–134

    Article  CAS  Google Scholar 

  25. Touyz RM, Yao GY, Viel E et al (2004) Angiotensin II and endothelin-1 regulate MAP kinases through different redox-dependent mechanisms in human vascular smooth muscle cells. J Hypertens 22(6):1141–1149

    Article  CAS  Google Scholar 

  26. Afroz R, Cao Y, Rostam MA et al (2018) Signalling pathways regulating galactosaminoglycan synthesis and structure in vascular smooth muscle: implications for lipoprotein binding and atherosclerosis. Pharmacol Ther 187:88–97

    Article  CAS  Google Scholar 

  27. Kamato D, Burch M, Zhou Y et al (2019) Individual Smad2 linker region phosphorylation sites determine the expression of proteoglycan and glycosaminoglycan synthesizing genes. Cell Signal 53:365–373

    Article  CAS  Google Scholar 

  28. Kamato D, Ta H, Afroz R et al (2019) Mechanisms of PAR-1 mediated kinase receptor transactivation: Smad linker region phosphorylation. J Cell Commun Signal 13:539–548

    Article  Google Scholar 

  29. Mohamed R, Dayati P, Mehr RN et al (2018) Transforming growth factor-beta1 mediated CHST11 and CHSY1 mRNA expression is ROS dependent in vascular smooth muscle cells. J Cell Commun Signal 13:225

    Article  Google Scholar 

  30. Rostam MA, Kamato D, Piva TJ et al (2016) The role of specific Smad linker region phosphorylation in TGF-β mediated expression of glycosaminoglycan synthesizing enzymes in vascular smooth muscle. Cell Signal 28(8):956–966

    Article  CAS  Google Scholar 

  31. Rostam MA, Shajimoon A, Kamato D et al (2018) Flavopiridol inhibits TGF-beta-stimulated biglycan synthesis by blocking linker region phosphorylation and nuclear translocation of Smad2. J Pharmacol Exp Ther 365:156

    Article  CAS  Google Scholar 

  32. Kamato D, Rostam MA, Bernard R et al (2015) The expansion of GPCR transactivation-dependent signalling to include serine/threonine kinase receptors represents a new cell signalling frontier. Cell Mol Life Sci 72(4):799–808

    Article  CAS  Google Scholar 

  33. Mohamed R, Janke R, Guo W et al (2019) GPCR transactivation signalling in vascular smooth muscle cells: role of NADPH oxidases and reactive oxygen species. Vasc Biol 1(1):R1–R11

    Article  CAS  Google Scholar 

  34. Zhou Y, Little PJ, Cao Y et al (2020) Lysophosphatidic acid receptor 5 transactivation of TGFBR1 stimulates the mRNA expression of proteoglycan synthesizing genes XYLT1 and CHST3. Biochim Biophys Acta 1867(12):118848

    Article  CAS  Google Scholar 

  35. Kamato D, Thach L, Getachew R et al (2016) Protease activated receptor-1 mediated dual kinase receptor transactivation stimulates the expression of glycosaminoglycan synthesizing genes. Cell Signal 28(1):110–119

    Article  CAS  Google Scholar 

  36. Zhou Y, Little PJ, Xu S et al (2021) Curcumin inhibits lysophosphatidic acid mediated MCP-1 expression via blocking ROCK signalling. Molecules 26(8):2320

    Article  CAS  Google Scholar 

  37. Kamato D, Bhaskarala VV, Mantri N et al (2017) RNA sequencing to determine the contribution of kinase receptor transactivation to G protein coupled receptor signalling in vascular smooth muscle cells. PLoS ONE 12(7):e0180842

    Article  Google Scholar 

  38. Cattaneo F, Guerra G, Parisi M et al (2014) Cell-surface receptors transactivation mediated by g protein-coupled receptors. Int J Mol Sci 15(11):19700–19728

    Article  Google Scholar 

  39. Chen C-H, Cheng T-H, Lin H et al (2006) Reactive oxygen species generation is involved in epidermal growth factor receptor transactivation through the transient oxidization of Src homology 2-containing tyrosine phosphatase in endothelin-1 signaling pathway in rat cardiac fibroblasts. Mol Pharmacol 69(4):1347–1355

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ahvaz Jundishapur University of Medical Sciences (Grant No. HLRC-9401). The support was received from The University of Queensland through a personal support package to PJL and by The University of Queensland Early Career Grant (DK) (Grant No. 1832825). DK is supported by NHMRC-Peter Doherty (1160925) and National Heart Foundation (102129) fellowships. RM is supported by The University of Queensland Research Training Programme (RTP) scholarship.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, HB-R, DK, PJL; data curation, RM, GMZ, AK; data analysis and interpretation, PD, HB-R; drafting, RNM, PD; reviewing, DK, PJL. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Danielle Kamato or Parisa Dayati.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babaahmadi-Rezaei, H., Little, P.J., Mohamed, R. et al. Endothelin-1 mediated glycosaminoglycan synthesizing gene expression involves NOX-dependent transactivation of the transforming growth factor-β receptor. Mol Cell Biochem 477, 981–988 (2022). https://doi.org/10.1007/s11010-021-04342-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04342-8

Keywords

Navigation