Skip to main content
Log in

Blueberry extract attenuates norepinephrine-induced oxidative stress and apoptosis in H9c2 cardiac cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Enhanced sympathetic system activation mediated by norepinephrine (NE) contributes to adverse cardiac remodeling leading to oxidative stress and cell death, progressing to heart failure. Natural antioxidants may help maintain redox balance, attenuating NE-mediated cardiac cell damage. In the present study, we evaluated the effect of a blueberry extract (BBE) on H9c2 cardiac cells exposed to NE on cell death, oxidative stress status and its major signaling pathways. H9c2 cells were pre-incubated with 50 μg/ml of BBE for 4 h and maintained in the presence of 100 μM NE for 24 h. NE exposure resulted in increased caspase 3/7 activity. This was associated with reduced protein expression of antioxidants catalase, superoxide dismutase and glutathione peroxidase and increase in 4-hydroxynonenal adduct formation. NE led to increased activity of Protein kinase B (Akt), Forkhead box O3a and AMP-activated protein kinase alpha and decreased activity of Signal transducer and activator of transcription 3. BBE prevented caspases activation and abrogated NE-induced increase in oxidative stress, as well as attenuated the increase in Akt. Based on these findings, it is concluded that BBE promoted cardioprotection of H9c2 cells in an in vitro model of NE-induced oxidative damage, suggesting a cardioprotective role for BBE in response to NE exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Available upon request.

References

  1. Antoine S, Vaidya G, Imam H, Villarreal D (2017) Pathophysiologic mechanisms in heart failure: role of the sympathetic nervous system. Am J Med Sci 353:27–30

    PubMed  Google Scholar 

  2. Corbi G, Conti V, Russomanno G, Longobardi G, Furgi G, Filippelli A et al (2013) Adrenergic signaling and oxidative stress: a role for sirtuins? Front Physiol 4:324

    PubMed  PubMed Central  Google Scholar 

  3. Bovo E, Lipsius SL, Zima AV (2012) Reactive oxygen species contribute to the development of arrhythmogenic Ca2+ waves during β-adrenergic receptor stimulation in rabbit cardiomyocytes. J Physiol 590:3291–3304

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Remondino A, Kwon SH, Communal C, Pimentel DR, Sawyer DB, Singh K et al (2003) Beta-adrenergic receptor-stimulated apoptosis in cardiac myocytes is mediated by reactive oxygen species/c-Jun NH2-terminal kinase-dependent activation of the mitochondrial pathway. Circ Res 92:136–138

    CAS  PubMed  Google Scholar 

  5. Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24(10):R453–R462

    CAS  PubMed  PubMed Central  Google Scholar 

  6. von Harsdorf R, Li PF, Dietz R (1999) Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis. Circulation 99:2934–2941

    Google Scholar 

  7. Prior RL, Cao G, Prior RL, Cao G (2000) Analysis of botanicals and dietary supplements for antioxidant capacity: a review. J AOAC Int 83:950–956

    CAS  PubMed  Google Scholar 

  8. Elks CM, Reed SD, Mariappan N, Shukitt-Hale B, Joseph JA, Ingram DK et al (2011) A blueberry-enriched diet attenuates nephropathy in a rat model of hypertension via reduction in oxidative stress. PLOS One 6:e24028

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Riso P, Klimis-Zacas D, Del Bo’ C, Martini D, Campolo J, Vendrame S et al (2013) Effect of a wild blueberry (Vaccinium angustifolium) drink intervention on markers of oxidative stress, inflammation and endothelial function in humans with cardiovascular risk factors. Eur J Nutr 52:949–961

    CAS  PubMed  Google Scholar 

  10. Basu A, Rhone M, Lyons TJ (2010) Berries: emerging impact on cardiovascular health. Nutr Rev 68:168–177

    PubMed  Google Scholar 

  11. Liu Y, Tan D, Shi L, Liu X, Zhang Y, Tong C et al (2015) Blueberry anthocyanins-enriched extracts attenuate cyclophosphamide-induced cardiac injury. PLoS One 10:e0127813

    PubMed  PubMed Central  Google Scholar 

  12. Ahmet I, Spangler E, Shukitt-Hale B, Joseph JA, Ingram DK, Talan M (2009) Survival and cardioprotective benefits of long-term blueberry enriched diet in dilated cardiomyopathy following myocardial infarction in rats. PLOS One 4:e7975

    PubMed  PubMed Central  Google Scholar 

  13. Türck P, Fraga S, Salvador I, Campos-Carraro C, Lacerda D, Bahr A et al (2020) Blueberry extract decreases oxidative stress and improves functional parameters in lungs from rats with pulmonary arterial hypertension. Nutrition 70:110579. https://doi.org/10.1016/j.nut.2019.110579

    Article  CAS  PubMed  Google Scholar 

  14. Darzynkiewicz Z, Pozarowski P, Lee BW, Johnson GL (2011) Fluorochrome-labeled inhibitors of caspases: convenient in vitro and in vivo markers of apoptotic cells for cytometric analysis. Methods Mol Biol 682:103–114

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sengupta A, Molkentin JD, Paik JH, DePinho RA, Yutzey KE (2011) FoxO transcription factors promote cardiomyocyte survival upon induction of oxidative stress. J Biol Chem 286:7468–7478

    CAS  PubMed  Google Scholar 

  16. Oellerich MF, Potente M (2012) FOXOs and sirtuins in vascular growth, maintenance, and aging. Circ Res 110:1238–1251

    CAS  PubMed  Google Scholar 

  17. Barry SP, Townsend PA, McCormick J, Knight RA, Scarabelli TM, Latchman DS et al (2009) STAT3 deletion sensitizes cells to oxidative stress. Biochem Biophys Res Commun 385:324–329

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ishii I, Harada Y, Kasahara T (2012) Reprofiling a classical anthelmintic, Pyrvinium pamoate, as an anti-cancer drug targeting mitochondrial respiration. Front Oncol 2:137

    PubMed  PubMed Central  Google Scholar 

  19. Zhu YP, Brown JR, Sag D, Zhang L, Suttles J (2015) Adenosine 5’-monophosphate-activated protein kinase regulates IL-10-mediated anti-inflammatory signaling pathways in macrophages. J Immunol 194:584–594

    CAS  PubMed  Google Scholar 

  20. Sid B, Verrax J, Calderon PB (2013) Role of AMPK activation in oxidative cell damage: Implications for alcohol-induced liver disease. Biochem Pharmacol 86:200–209

    CAS  PubMed  Google Scholar 

  21. Zhao D, Yang J, Yang L (2017) Insights for oxidative stress and mTOR signaling in myocardial ischemia/reperfusion injury under diabetes. Oxid Med Cell Longev 2017:6437467

    PubMed  PubMed Central  Google Scholar 

  22. Gutiérrez-Uzquiza Á, Arechederra M, Bragado P, Aguirre-Ghiso JA, Porras A (2012) p38α mediates cell survival in response to oxidative stress via induction of antioxidant genes: effect on the p70S6K pathway. J Biol Chem 287:2632–2642

    PubMed  Google Scholar 

  23. Brum PC, Rolim NP, Bacurau AV, Medeiros A (2006) Neurohumoral activation in heart failure: the role of adrenergic receptors. An Acad Bras Cienc 78:485–503

    CAS  PubMed  Google Scholar 

  24. Louis XL, Thandapilly SJ, Kalt W, Vinqvist-Tymchuk M, Aloud BM, Raj P et al (2014) Blueberry polyphenols prevent cardiomyocyte death by preventing calpain activation and oxidative stress. Food Funct 5:1785–1794

    CAS  PubMed  Google Scholar 

  25. Del Bo’ C, Roursgaard M, Porrini M, Loft S, Møller P, Riso P (2016) Different effects of anthocyanins and phenolic acids from wild blueberry (Vaccinium angustifolium) on monocytes adhesion to endothelial cells in a TNF-α stimulated proinflammatory environment. Mol Nutr Food Res 60:2355–2366

    PubMed  Google Scholar 

  26. Fu YC, Chi CS, Yin SC, Hwang B, Chiu YT, Hsu SL (2004) Norepinephrine induces apoptosis in neonatal rat cardiomyocytes through a reactive oxygen species-TNF alpha-caspase signaling pathway. Cardiovasc Res 62:558–567

    CAS  PubMed  Google Scholar 

  27. Mao W, Fukuoka S, Iwai C, Liu J, Sharma VK, Sheu SS et al (2007) Cardiomyocyte apoptosis in autoimmune cardiomyopathy: mediated via endoplasmic reticulum stress and exaggerated by norepinephrine. Am J Physiol Heart Circ Physiol 293:H1636–H1645

    CAS  PubMed  Google Scholar 

  28. Meeran MF, Jagadeesh GS, Selvaraj P (2016) Synthetic catecholamine triggers β1-adrenergic receptor activation and stimulates cardiotoxicity via oxidative stress mediated apoptotic cell death in rats: abrogating action of thymol. Chem Biol Interact 251:17–25

    CAS  PubMed  Google Scholar 

  29. Neri M, Cerretani D, Fiaschi AI, Laghi PF, Lazzerini PE, Maffione AB et al (2007) Correlation between cardiac oxidative stress and myocardial pathology due to acute and chronic norepinephrine administration in rats. J Cell Mol Med 11:156–170

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Thakur A, Alam MJ, Ajayakumar MR, Ghaskadbi S, Sharma M, Goswami SK (2015) Norepinephrine-induced apoptotic and hypertrophic responses in H9c2 cardiac myoblasts are characterized by different repertoire of reactive oxygen species generation. Redox Biol 5:243–252

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Folden DV, Gupta A, Sharma AC, Li SY, Saari JT, Ren J (2003) Malondialdehyde inhibits cardiac contractile function in ventricular myocytes via a p38 mitogen-activated protein kinase-dependent mechanism. Br J Pharmacol 139:1310–1316

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mali VR, Palaniyandi SS (2014) Regulation and therapeutic strategies of 4-hydroxy-2-nenal metabolism in heart disease. Free Radic Res 48:251–263

    CAS  PubMed  Google Scholar 

  33. Hare JM (2001) Oxidative stress and apoptosis in heart failure progression. Circ Res 89:198–200

    CAS  PubMed  Google Scholar 

  34. Kumar D, Lou H, Singal PK (2002) Oxidative stress and apoptosis in heart dysfunction. Herz 27:662–668

    PubMed  Google Scholar 

  35. Çoban J, Doğan-Ekici I, Aydın AF, Betül-Kalaz E, Doğru-Abbasoğlu S, Uysal M (2015) Blueberry treatment decreased D-galactose-induced oxidative stress and brain damage in rats. Metab Brain Dis 30:793–802

    PubMed  Google Scholar 

  36. Huang WY, Wu H, Li DJ, Song JF, Xiao YD, Liu CQ et al (2018) Protective effects of blueberry anthocyanins against H2O2-induced oxidative injuries in human retinal pigment epithelial cells. J Agric Food Chem 66:1638–1648

    CAS  PubMed  Google Scholar 

  37. Chiribau CB, Cheng L, Cucoranu IC, Yu YS, Clempus RE, Sorescu D (2008) FOXO3A regulates peroxiredoxin III expression in human cardiac fibroblasts. J Biol Chem 283:8211–8217

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Morris BJ, Willcox DC, Donlon TA, Willcox BJ (2015) FOXO3: a major gene for human longevity–a mini-review. Gerontology 61:515–525

    CAS  PubMed  Google Scholar 

  39. Klotz LO, Sánchez-Ramos C, Prieto-Arroyo I, Urbánek P, Steinbrenner H, Monsalve M (2015) Redox regulation of FoxO transcription factors. Redox Biol 6:51–72

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Oh HM, Yu CR, Dambuza I, Marrero B, Egwuagu CE (2012) STAT3 protein interacts with class O Forkhead transcription factors in the cytoplasm and regulates nuclear/cytoplasmic localization of FoxO1 and FoxO3a proteins in CD4(+) T cells. J Biol Chem 287:30436–30443

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Brault L, Gasser C, Bracher F, Huber K, Knapp S, Schwaller J (2010) PIM serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers. Haematologica 95:1004–1015

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Shi Y, Zhang Z, Qu X, Zhu X, Zhao L, Wei R et al (2018) Roles of STAT3 in leukemia (review). Int J Oncol 53:7–20

    CAS  PubMed  Google Scholar 

  43. Haga S, Terui K, Zhang HQ, Enosawa S, Ogawa W, Inoue H et al (2003) Stat3 protects against Fas-induced liver injury by redox-dependent and -independent mechanisms. J Clin Invest 112:989–998

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Poli V, Camporeale A (2015) STAT3-mediated metabolic reprograming in cellular transformation and implications for drug resistance. Front Oncol 5:121

    PubMed  PubMed Central  Google Scholar 

  45. Dorn GW 2nd, Force T (2005) Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest 115:527–537

    CAS  PubMed  PubMed Central  Google Scholar 

  46. McMullen JR, Sherwood MC, Tarnavski O, Zhang L, Dorfman AL, Shioi T et al (2004) Inhibition of mTOR signaling with rapamycin regresses established cardiac hypertrophy induced by pressure overload. Circulation 109:3050–3055

    CAS  PubMed  Google Scholar 

  47. Shen WH, Chen Z, Shi S, Chen H, Zhu W, Penner A et al (2008) Cardiac restricted overexpression of kinase-dead mammalian target of rapamycin (mTOR) mutant impairs the mTOR-mediated signaling and cardiac function. J Biol Chem 283:13842–13849

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang D, Contu R, Latronico MV, Zhang J, Rizzi R, Catalucci D et al (2010) MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice. J Clin Invest 120:2805–2816

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen L, Xu B, Liu L, Luo Y, Yin J, Zhou H et al (2010) Hydrogen peroxide inhibits mTOR signaling by activation of AMPK alpha leading to apoptosis of neuronal cells. Lab Invest 90:762–773

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Williams CM, El Mohsen MA, Vauzour D, Rendeiro C, Butler LT, Ellis JA et al (2008) Blueberry-induced changes in spatial working memory correlate with changes in hippocampal CREB phosphorylation and brain-derived neurotrophic factor (BDNF) levels. Free Radic Biol Med 45:295–305

    CAS  PubMed  Google Scholar 

  51. Cao C, Lu S, Kivlin R, Wallin B, Card E, Bagdasarian A et al (2008) AMP-activated protein kinase contributes to UV- and H2O2-induced apoptosis in human skin keratinocytes. J Biol Chem 283:28897–28908

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by the Brazilian National Council for Scientific Development (CNPq) and the Northern Ontario School of Medicine (NOSM) Faculty Association Research Development Funds.

Author information

Authors and Affiliations

Authors

Contributions

Data collection, analysis and writing the first draft: PT. Design of the study and supervised the research: NK, AB-K, SRA. Flow cytometry data acquisition and analysis: PT, AN-B, TT. Critical revision of the manuscript: PT, NK, AB-K, SRA, ZS. Primary investigator: NK.

Corresponding author

Correspondence to Neelam Khaper.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Türck, P., Nemec-Bakk, A., Talwar, T. et al. Blueberry extract attenuates norepinephrine-induced oxidative stress and apoptosis in H9c2 cardiac cells. Mol Cell Biochem 477, 663–672 (2022). https://doi.org/10.1007/s11010-021-04313-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04313-z

Keywords

Navigation