Skip to main content

Advertisement

Log in

Effect of intravenous cell therapy in rats with old myocardial infarction

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Mounting evidence shows that cell therapy provides therapeutic benefits in experimental and clinical settings of chronic heart failure. However, direct cardiac delivery of cells via transendocardial injection is logistically complex, expensive, entails risks, and is not amenable to multiple dosing. Intravenous administration would be a more convenient and clinically applicable route for cell therapy. Thus, we determined whether intravenous infusion of three widely used cell types improves left ventricular (LV) function and structure and compared their efficacy. Rats with a 30-day-old myocardial infarction (MI) received intravenous infusion of vehicle (PBS) or 1 of 3 types of cells: bone marrow mesenchymal stromal cells (MSCs), cardiac mesenchymal cells (CMCs), and c-kit-positive cardiac cells (CPCs), at a dose of 12 × 106 cells. Rats were followed for 35 days after treatment to determine LV functional status by serial echocardiography and hemodynamic studies. Blood samples were collected for Hemavet analysis to determine inflammatory cell profile. LV ejection fraction (EF) dropped ≥ 20 points in all hearts at 30 days after MI and deteriorated further at 35-day follow-up in the vehicle-treated group. In contrast, deterioration of EF was halted in rats that received MSCs and attenuated in those that received CMCs or CPCs. None of the 3 types of cells significantly altered scar size, myocardial content of collagen or CD45-positive cells, or Hemavet profile. This study demonstrates that a single intravenous administration of 3 types of cells in rats with chronic ischemic cardiomyopathy is effective in attenuating the progressive deterioration in LV function. The extent of LV functional improvement was greatest with CPCs, intermediate with CMCs, and least with MSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Supplementary data were included.

References

  1. Bolli R, Solankhi M, Tang XL, Kahlon A (2021) Cell therapy in patients with heart failure: a comprehensive review and emerging concepts. Cardiovasc Res. https://doi.org/10.1093/cvr/cvab135

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bolli R, Tang XL, Guo Y, Li Q (2021) After the storm: an objective appraisal of the efficacy of c-kit+ cardiac progenitor cells in preclinical models of heart disease. Can J Physiol Pharmacol 99:129–139. https://doi.org/10.1139/cjpp-2020-0406

    Article  CAS  PubMed  Google Scholar 

  3. Wysoczynski M, Khan A, Bolli R (2018) New paradigms in cell therapy: repeated dosing, intravenous delivery, immunomodulatory actions, and new cell types. Circ Res 123:138–158. https://doi.org/10.1161/circresaha.118.313251

    Article  PubMed  Google Scholar 

  4. Li Q, Guo Y, Ou Q, Chen N, Wu WJ, Yuan F, O’Brien E, Wang T, Luo L, Hunt GN, Zhu X, Bolli R (2011) Intracoronary administration of cardiac stem cells in mice: a new, improved technique for cell therapy in murine models. Basic Res Cardiol 106:849–864. https://doi.org/10.1007/s00395-011-0180-1

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hong KU, Guo Y, Li QH, Cao P, Al-Maqtari T, Vajravelu BN, Du J, Book MJ, Zhu X, Nong Y, Bhatnagar A, Bolli R (2014) c-kit+ Cardiac stem cells alleviate post-myocardial infarction left ventricular dysfunction despite poor engraftment and negligible retention in the recipient heart. PLoS ONE 9:e96725. https://doi.org/10.1371/journal.pone.0096725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tang XL, Rokosh G, Sanganalmath SK, Yuan F, Sato H, Mu J, Dai S, Li C, Chen N, Peng Y, Dawn B, Hunt G, Leri A, Kajstura J, Tiwari S, Shirk G, Anversa P, Bolli R (2010) Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation 121:293–305. https://doi.org/10.1161/circulationaha.109.871905

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tang XL, Rokosh G, Sanganalmath SK, Tokita Y, Keith MC, Shirk G, Stowers H, Hunt GN, Wu W, Dawn B, Bolli R (2015) Effects of intracoronary infusion of escalating doses of cardiac stem cells in rats with acute myocardial infarction. Circ Heart Fail 8:757–765. https://doi.org/10.1161/circheartfailure.115.002210

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tang XL, Li Q, Rokosh G, Sanganalmath SK, Chen N, Ou Q, Stowers H, Hunt G, Bolli R (2016) Long-term outcome of administration of c-kit(POS) cardiac progenitor cells after acute myocardial infarction: transplanted cells do not become cardiomyocytes, but structural and functional improvement and proliferation of endogenous cells persist for at least one year. Circ Res 118:1091–1105. https://doi.org/10.1161/CIRCRESAHA.115.307647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tokita Y, Tang XL, Li Q, Wysoczynski M, Hong KU, Nakamura S, Wu WJ, Xie W, Li D, Hunt G, Ou Q, Stowers H, Bolli R (2016) Repeated administrations of cardiac progenitor cells are markedly more effective than a single administration: a new paradigm in cell therapy. Circ Res 119:635–651. https://doi.org/10.1161/circresaha.116.308937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tang XL, Nakamura S, Li Q, Wysoczynski M, Gumpert AM, Wu WJ, Hunt G, Stowers H, Ou Q, Bolli R (2018) Repeated administrations of cardiac progenitor cells are superior to a single administration of an equivalent cumulative dose. J Am Heart Assoc. https://doi.org/10.1161/jaha.117.007400

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bolli R, Tang XL, Sanganalmath SK, Rimoldi O, Mosna F, Abdel-Latif A, Jneid H, Rota M, Leri A, Kajstura J (2013) Intracoronary delivery of autologous cardiac stem cells improves cardiac function in a porcine model of chronic ischemic cardiomyopathy. Circulation 128:122–131. https://doi.org/10.1161/circulationaha.112.001075

    Article  CAS  PubMed  Google Scholar 

  12. Wysoczynski M, Guo Y, Moore JBT, Muthusamy S, Li Q, Nasr M, Li H, Nong Y, Wu W, Tomlin AA, Zhu X, Hunt G, Gumpert AM, Book MJ, Khan A, Tang XL, Bolli R (2017) Myocardial reparative properties of cardiac mesenchymal cells isolated on the basis of adherence. J Am Coll Cardiol 69:1824–1838. https://doi.org/10.1016/j.jacc.2017.01.048

    Article  PubMed  PubMed Central  Google Scholar 

  13. Heidel JS, Fischer AG, Tang XL, Sadri G, Wu WJ, Moisa CR, Stowers H, Sandella N, Wysoczynski M, Uchida S, Moore Iv JB (2020) The effect of cardiogenic factors on cardiac mesenchymal cell anti-fibrogenic paracrine signaling and therapeutic performance. Theranostics 10:1514–1530. https://doi.org/10.7150/thno.41000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moore JBT, Tang XL, Zhao J, Fischer AG, Wu WJ, Uchida S, Gumpert AM, Stowers H, Wysoczynski M, Bolli R (2018) Epigenetically modified cardiac mesenchymal stromal cells limit myocardial fibrosis and promote functional recovery in a model of chronic ischemic cardiomyopathy. Basic Res Cardiol 114:3. https://doi.org/10.1007/s00395-018-0710-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dawn B, Stein AB, Urbanek K, Rota M, Whang B, Rastaldo R, Torella D, Tang XL, Rezazadeh A, Kajstura J, Leri A, Hunt G, Varma J, Prabhu SD, Anversa P, Bolli R (2005) Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proc Natl Acad Sci USA 102:3766–3771. https://doi.org/10.1073/pnas.0405957102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li Q, Bolli R, Qiu Y, Tang XL, Guo Y, French BA (2001) Gene therapy with extracellular superoxide dismutase protects conscious rabbits against myocardial infarction. Circulation 103:1893–1898. https://doi.org/10.1161/01.cir.103.14.1893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tang XL, Qiu Y, Park SW, Sun JZ, Kalya A, Bolli R (1996) Time course of late preconditioning against myocardial stunning in conscious pigs. Circ Res 79:424–434. https://doi.org/10.1161/01.res.79.3.424

    Article  CAS  PubMed  Google Scholar 

  18. Li RC, Ping P, Zhang J, Wead WB, Cao X, Gao J, Zheng Y, Huang S, Han J, Bolli R (2000) PKCepsilon modulates NF-kappaB and AP-1 via mitogen-activated protein kinases in adult rabbit cardiomyocytes. Am J Physiol Heart Circ Physiol 279:H1679–H1689. https://doi.org/10.1152/ajpheart.2000.279.4.H1679

    Article  CAS  PubMed  Google Scholar 

  19. Takano H, Bolli R, Black RG Jr, Kodani E, Tang XL, Yang Z, Bhattacharya S, Auchampach JA (2001) A(1) or A(3) adenosine receptors induce late preconditioning against infarction in conscious rabbits by different mechanisms. Circ Res 88:520–528. https://doi.org/10.1161/01.res.88.5.520

    Article  CAS  PubMed  Google Scholar 

  20. Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, Semprun-Prieto L, Delafontaine P, Prockop DJ (2009) Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5:54–63. https://doi.org/10.1016/j.stem.2009.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Luger D, Lipinski MJ, Westman PC, Glover DK, Dimastromatteo J, Frias JC, Albelda MT, Sikora S, Kharazi A, Vertelov G, Waksman R, Epstein SE (2017) Intravenously delivered mesenchymal stem cells: systemic anti-inflammatory effects improve left ventricular dysfunction in acute myocardial infarction and ischemic cardiomyopathy. Circ Res 120:1598–1613. https://doi.org/10.1161/CIRCRESAHA.117.310599

    Article  CAS  PubMed  Google Scholar 

  22. Ma J, Ge J, Zhang S, Sun A, Shen J, Chen L, Wang K, Zou Y (2005) Time course of myocardial stromal cell-derived factor 1 expression and beneficial effects of intravenously administered bone marrow stem cells in rats with experimental myocardial infarction. Basic Res Cardiol 100:217–223. https://doi.org/10.1007/s00395-005-0521-z

    Article  CAS  PubMed  Google Scholar 

  23. Nagaya N, Fujii T, Iwase T, Ohgushi H, Itoh T, Uematsu M, Yamagishi M, Mori H, Kangawa K, Kitamura S (2004) Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis. Am J Physiol Heart Circ Physiol 287:H2670–H2676. https://doi.org/10.1152/ajpheart.01071.2003

    Article  CAS  PubMed  Google Scholar 

  24. Wang W, Jiang Q, Zhang H, Jin P, Yuan X, Wei Y, Hu S (2011) Intravenous administration of bone marrow mesenchymal stromal cells is safe for the lung in a chronic myocardial infarction model. Regen Med 6:179–190. https://doi.org/10.2217/rme.10.104

    Article  CAS  PubMed  Google Scholar 

  25. Tang YL, Zhu W, Cheng M, Chen L, Zhang J, Sun T, Kishore R, Phillips MI, Losordo DW, Qin G (2009) Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. Circ Res 104:1209–1216. https://doi.org/10.1161/circresaha.109.197723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mazhari R, Hare JM (2012) Translational findings from cardiovascular stem cell research. Trends Cardiovasc Med 22:1–6. https://doi.org/10.1016/j.tcm.2012.05.017

    Article  PubMed  PubMed Central  Google Scholar 

  27. Berry MF, Engler AJ, Woo YJ, Pirolli TJ, Bish LT, Jayasankar V, Morine KJ, Gardner TJ, Discher DE, Sweeney HL (2006) Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. Am J Physiol Heart Circ Physiol 290:H2196–H2203. https://doi.org/10.1152/ajpheart.01017.2005

    Article  CAS  PubMed  Google Scholar 

  28. Schuleri KH, Feigenbaum GS, Centola M, Weiss ES, Zimmet JM, Turney J, Kellner J, Zviman MM, Hatzistergos KE, Detrick B, Conte JV, McNiece I, Steenbergen C, Lardo AC, Hare JM (2009) Autologous mesenchymal stem cells produce reverse remodelling in chronic ischaemic cardiomyopathy. Eur Heart J 30:2722–2732. https://doi.org/10.1093/eurheartj/ehp265

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hare JM, Fishman JE, Gerstenblith G, DiFede Velazquez DL, Zambrano JP, Suncion VY, Tracy M, Ghersin E, Johnston PV, Brinker JA, Breton E, Davis-Sproul J, Schulman IH, Byrnes J, Mendizabal AM, Lowery MH, Rouy D, Altman P, Wong Po Foo C, Ruiz P, Amador A, Da Silva J, McNiece IK, Heldman AW, George R, Lardo A (2012) Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA 308:2369–2379. https://doi.org/10.1001/jama.2012.25321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Williams AR, Suncion VY, McCall F, Guerra D, Mather J, Zambrano JP, Heldman AW, Hare JM (2013) Durable scar size reduction due to allogeneic mesenchymal stem cell therapy regulates whole-chamber remodeling. J Am Heart Assoc 2:e000140. https://doi.org/10.1161/jaha.113.000140

    Article  PubMed  PubMed Central  Google Scholar 

  31. Williams AR, Hatzistergos KE, Addicott B, McCall F, Carvalho D, Suncion V, Morales AR, Da Silva J, Sussman MA, Heldman AW, Hare JM (2013) Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction. Circulation 127:213–223. https://doi.org/10.1161/circulationaha.112.131110

    Article  PubMed  Google Scholar 

  32. Mathiasen AB, Qayyum AA, Jorgensen E, Helqvist S, Fischer-Nielsen A, Kofoed KF, Haack-Sorensen M, Ekblond A, Kastrup J (2015) Bone marrow-derived mesenchymal stromal cell treatment in patients with severe ischaemic heart failure: a randomized placebo-controlled trial (MSC-HF trial). Eur Heart J 36:1744–1753. https://doi.org/10.1093/eurheartj/ehv136

    Article  CAS  PubMed  Google Scholar 

  33. Karantalis V, Suncion-Loescher VY, Bagno L, Golpanian S, Wolf A, Sanina C, Premer C, Kanelidis AJ, McCall F, Wang B, Balkan W, Rodriguez J, Rosado M, Morales A, Hatzistergos K, Natsumeda M, Margitich I, Schulman IH, Gomes SA, Mushtaq M, DiFede DL, Fishman JE, Pattany P, Zambrano JP, Heldman AW, Hare JM (2015) Synergistic effects of combined cell therapy for chronic ischemic cardiomyopathy. J Am Coll Cardiol 66:1990–1999. https://doi.org/10.1016/j.jacc.2015.08.879

    Article  PubMed  PubMed Central  Google Scholar 

  34. de Morais SB, da Silva LE, Lataro RM, Silva CA, de Oliveira LF, de Carvalho EE, Simoes MV, da Silva ML, Fazan R Jr, Salgado HC (2015) Mesenchymal stem cells improve heart rate variability and baroreflex sensitivity in rats with chronic heart failure. Stem Cells Dev 24:2181–2192. https://doi.org/10.1089/scd.2014.0573

    Article  CAS  PubMed Central  Google Scholar 

  35. Natsumeda M, Florea V, Rieger AC, Tompkins BA, Banerjee MN, Golpanian S, Fritsch J, Landin AM, Kashikar ND, Karantalis V, Loescher VY, Hatzistergos KE, Bagno L, Sanina C, Mushtaq M, Rodriguez J, Rosado M, Wolf A, Collon K, Vincent L, Kanelidis AJ, Schulman IH, Mitrani R, Heldman AW, Balkan W, Hare JM (2017) A combination of allogeneic stem cells promotes cardiac regeneration. J Am Coll Cardiol 70:2504–2515. https://doi.org/10.1016/j.jacc.2017.09.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim SH, Cho JH, Lee YH, Lee JH, Kim SS, Kim MY, Lee MG, Kang WY, Lee KS, Ahn YK, Jeong MH, Kim HS (2018) Improvement in left ventricular function with intracoronary mesenchymal stem cell therapy in a patient with anterior wall ST-segment elevation myocardial infarction. Cardiovasc Drugs Ther. https://doi.org/10.1007/s10557-018-6804-z

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wysoczynski M, Dassanayaka S, Zafir A, Ghafghazi S, Long BW, Noble C, DeMartino AM, Brittian KR, Bolli R, Jones SP (2016) A new method to stabilize C-Kit expression in reparative cardiac mesenchymal cells. Front Cell Dev Biol 4:78. https://doi.org/10.3389/fcell.2016.00078

    Article  PubMed  PubMed Central  Google Scholar 

  38. Guo Y, Wysoczynski M, Nong Y, Tomlin A, Zhu X, Gumpert AM, Nasr M, Muthusamy S, Li H, Book M, Khan A, Hong KU, Li Q, Bolli R (2017) Repeated doses of cardiac mesenchymal cells are therapeutically superior to a single dose in mice with old myocardial infarction. Basic Res Cardiol 112:18. https://doi.org/10.1007/s00395-017-0606-5

    Article  PubMed  PubMed Central  Google Scholar 

  39. Guo Y, Nong Y, Li Q, Tomlin A, Kahlon A, Gumpert A, Slezak J, Zhu X, Bolli R (2021) Comparison of one and three intraventricular injections of cardiac progenitor cells in a murine model of chronic ischemic cardiomyopathy. Stem Cell Rev Rep 17:604–615. https://doi.org/10.1007/s12015-020-10063-0

    Article  CAS  PubMed  Google Scholar 

  40. Avolio E, Meloni M, Spencer HL, Riu F, Katare R, Mangialardi G, Oikawa A, Rodriguez-Arabaolaza I, Dang Z, Mitchell K, Reni C, Alvino VV, Rowlinson J, Livi U, Cesselli D, Angelini G, Emanueli C, Beltrami AP, Madeddu P (2015) Combined intramyocardial delivery of human pericytes and cardiac stem cells additively improves the healing of mouse infarcted hearts through stimulation of vascular and muscular repair. Circ Res 116:e81-94. https://doi.org/10.1161/circresaha.115.306146

    Article  CAS  PubMed  Google Scholar 

  41. Cai C, Guo Y, Teng L, Nong Y, Tan M, Book MJ, Zhu X, Wang XL, Du J, Wu WJ, Xie W, Hong KU, Li Q, Bolli R (2015) Preconditioning human cardiac stem cells with an HO-1 inducer exerts beneficial effects after cell transplantation in the infarcted murine heart. Stem Cells 33:3596–3607. https://doi.org/10.1002/stem.2198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Duran JM, Makarewich CA, Sharp TE, Starosta T, Zhu F, Hoffman NE, Chiba Y, Madesh M, Berretta RM, Kubo H, Houser SR (2013) Bone-derived stem cells repair the heart after myocardial infarction through transdifferentiation and paracrine signaling mechanisms. Circ Res 113:539–552. https://doi.org/10.1161/circresaha.113.301202

    Article  CAS  PubMed  Google Scholar 

  43. Fischer KM, Cottage CT, Wu W, Din S, Gude NA, Avitabile D, Quijada P, Collins BL, Fransioli J, Sussman MA (2009) Enhancement of myocardial regeneration through genetic engineering of cardiac progenitor cells expressing Pim-1 kinase. Circulation 120:2077–2087. https://doi.org/10.1161/circulationaha.109.884403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kazakov A, Meier T, Werner C, Hall R, Klemmer B, Körbel C, Lammert F, Maack C, Böhm M, Laufs U (2015) C-kit(+) resident cardiac stem cells improve left ventricular fibrosis in pressure overload. Stem Cell Res 15:700–711. https://doi.org/10.1016/j.scr.2015.10.017

    Article  CAS  PubMed  Google Scholar 

  45. Li TS, Cheng K, Malliaras K, Smith RR, Zhang Y, Sun B, Matsushita N, Blusztajn A, Terrovitis J, Kusuoka H, Marbán L, Marbán E (2012) Direct comparison of different stem cell types and subpopulations reveals superior paracrine potency and myocardial repair efficacy with cardiosphere-derived cells. J Am Coll Cardiol 59:942–953. https://doi.org/10.1016/j.jacc.2011.11.029

    Article  PubMed  PubMed Central  Google Scholar 

  46. Li W, Lu Y, Han R, Yue Q, Song X, Wang F, Wu R, Hou F, Yang L, Xu L, Zhao R, Hu J (2018) Gremlin2 regulates the differentiation and function of cardiac progenitor cells via the notch signaling pathway. Cell Physiol Biochem 47:579–589. https://doi.org/10.1159/000490012

    Article  CAS  PubMed  Google Scholar 

  47. Ma W, Ding F, Wang X, Huang Q, Zhang L, Bi C, Hua B, Yuan Y, Han Z, Jin M, Liu T, Yu Y, Cai B, Du Z (2018) By targeting Atg7 MicroRNA-143 mediates oxidative stress-induced autophagy of c-Kit(+) mouse cardiac progenitor cells. EBioMedicine 32:182–191. https://doi.org/10.1016/j.ebiom.2018.05.021

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ma W, He F, Ding F, Zhang L, Huang Q, Bi C, Wang X, Hua B, Yang F, Yuan Y, Han Z, Jin M, Liu T, Yu Y, Cai B, Lu Y, Du Z (2018) Pre-treatment with melatonin enhances therapeutic efficacy of cardiac progenitor cells for myocardial infarction. Cell Physiol Biochem 47:1287–1298. https://doi.org/10.1159/000490224

    Article  CAS  PubMed  Google Scholar 

  49. Mohsin S, Khan M, Toko H, Bailey B, Cottage CT, Wallach K, Nag D, Lee A, Siddiqi S, Lan F, Fischer KM, Gude N, Quijada P, Avitabile D, Truffa S, Collins B, Dembitsky W, Wu JC, Sussman MA (2012) Human cardiac progenitor cells engineered with Pim-I kinase enhance myocardial repair. J Am Coll Cardiol 60:1278–1287. https://doi.org/10.1016/j.jacc.2012.04.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Oskouei BN, Lamirault G, Joseph C, Treuer AV, Landa S, Da Silva J, Hatzistergos K, Dauer M, Balkan W, McNiece I, Hare JM (2012) Increased potency of cardiac stem cells compared with bone marrow mesenchymal stem cells in cardiac repair. Stem Cells Transl Med 1:116–124. https://doi.org/10.5966/sctm.2011-0015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Puddighinu G, D’Amario D, Foglio E, Manchi M, Siracusano A, Pontemezzo E, Cordella M, Facchiano F, Pellegrini L, Mangoni A, Tafani M, Crea F, Germani A, Russo MA, Limana F (2018) Molecular mechanisms of cardioprotective effects mediated by transplanted cardiac ckit(+) cells through the activation of an inflammatory hypoxia-dependent reparative response. Oncotarget 9:937–957. https://doi.org/10.18632/oncotarget.22946

    Article  PubMed  Google Scholar 

  52. Wang K, Zhao X, Kuang C, Qian D, Wang H, Jiang H, Deng M, Huang L (2012) Overexpression of SDF-1α enhanced migration and engraftment of cardiac stem cells and reduced infarcted size via CXCR4/PI3K pathway. PLoS ONE 7:e43922. https://doi.org/10.1371/journal.pone.0043922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang LX, DeNicola M, Qin X, Du J, Ma J, Tina Zhao Y, Zhuang S, Liu PY, Wei L, Qin G, Tang Y, Zhao TC (2014) Specific inhibition of HDAC4 in cardiac progenitor cells enhances myocardial repairs. Am J Physiol Cell Physiol 307:C358–C372. https://doi.org/10.1152/ajpcell.00187.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhao YT, Du J, Chen Y, Tang Y, Qin G, Lv G, Zhuang S, Zhao TC (2015) Inhibition of Oct 3/4 mitigates the cardiac progenitor-derived myocardial repair in infarcted myocardium. Stem Cell Res Ther 6:259. https://doi.org/10.1186/s13287-015-0252-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Alshammary S, Fukushima S, Miyagawa S, Matsuda T, Nishi H, Saito A, Kamata S, Asahara T, Sawa Y (2013) Impact of cardiac stem cell sheet transplantation on myocardial infarction. Surg Today 43:970–976. https://doi.org/10.1007/s00595-013-0528-2

    Article  CAS  PubMed  Google Scholar 

  56. Bao L, Meng Q, Li Y, Deng S, Yu Z, Liu Z, Zhang L, Fan H (2017) C-Kit positive cardiac stem cells and bone marrow-derived mesenchymal stem cells synergistically enhance angiogenesis and improve cardiac function after myocardial infarction in a paracrine manner. J Card Fail 23:403–415. https://doi.org/10.1016/j.cardfail.2017.03.002

    Article  CAS  PubMed  Google Scholar 

  57. Bhutani S, Nachlas ALY, Brown ME, Pete T, Johnson CT, García AJ, Davis ME (2018) Evaluation of hydrogels presenting extracellular matrix-derived adhesion peptides and encapsulating cardiac progenitor cells for cardiac repair. ACS Biomater Sci Eng 4:200–210. https://doi.org/10.1021/acsbiomaterials.7b00502

    Article  CAS  PubMed  Google Scholar 

  58. Carr CA, Stuckey DJ, Tan JJ, Tan SC, Gomes RS, Camelliti P, Messina E, Giacomello A, Ellison GM, Clarke K (2011) Cardiosphere-derived cells improve function in the infarcted rat heart for at least 16 weeks–an MRI study. PLoS ONE 6:e25669. https://doi.org/10.1371/journal.pone.0025669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dergilev K, Tsokolaeva Z, Makarevich P, Beloglazova I, Zubkova E, Boldyreva M, Ratner E, Dyikanov D, Menshikov M, Ovchinnikov A, Ageev F, Parfyonova Y (2018) C-Kit cardiac progenitor cell based cell sheet improves vascularization and attenuates cardiac remodeling following myocardial infarction in rats. Biomed Res Int 2018:3536854. https://doi.org/10.1155/2018/3536854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ellison GM, Vicinanza C, Smith AJ, Aquila I, Leone A, Waring CD, Henning BJ, Stirparo GG, Papait R, Scarfò M, Agosti V, Viglietto G, Condorelli G, Indolfi C, Ottolenghi S, Torella D, Nadal-Ginard B (2013) Adult c-kit(pos) cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair. Cell 154:827–842. https://doi.org/10.1016/j.cell.2013.07.039

    Article  CAS  PubMed  Google Scholar 

  61. Li C, Matsushita S, Li Z, Guan J, Amano A (2017) c-kit positive cardiac outgrowth cells demonstrate better ability for cardiac recovery against ischemic myopathy. J Stem Cell Res Ther. https://doi.org/10.4172/2157-7633.1000402

    Article  PubMed  PubMed Central  Google Scholar 

  62. Matsuda T, Miyagawa S, Fukushima S, Kitagawa-Sakakida S, Akimaru H, Horii-Komatsu M, Kawamoto A, Saito A, Asahara T, Sawa Y (2014) Human cardiac stem cells with reduced notch signaling show enhanced therapeutic potential in a rat acute infarction model. Circ J 78:222–231. https://doi.org/10.1253/circj.cj-13-0534

    Article  CAS  PubMed  Google Scholar 

  63. Maxwell JT, Trac D, Shen M, Brown ME, Davis ME, Chao MS, Supapannachart KJ, Zaladonis CA, Baker E, Li ML, Zhao J, Jacobs DI (2019) Electrical stimulation of pediatric cardiac-derived c-kit(+) progenitor cells improves retention and cardiac function in right ventricular heart failure. Stem Cells 37:1528–1541. https://doi.org/10.1002/stem.3088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sharma S, Mishra R, Simpson D, Wehman B, Colletti EJ, Deshmukh S, Datla SR, Balachandran K, Guo Y, Chen L, Siddiqui OT, Kaushal S, Kaushal S (2015) Cardiosphere-derived cells from pediatric end-stage heart failure patients have enhanced functional activity due to the heat shock response regulating the secretome. Stem Cells 33:1213–1229. https://doi.org/10.1002/stem.1937

    Article  PubMed  PubMed Central  Google Scholar 

  65. Simpson DL, Mishra R, Sharma S, Goh SK, Deshmukh S, Kaushal S (2012) A strong regenerative ability of cardiac stem cells derived from neonatal hearts. Circulation 126:S46-53. https://doi.org/10.1161/circulationaha.111.084699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tang JM, Luo B, Xiao JH, Lv YX, Li XL, Zhao JH, Zheng F, Zhang L, Chen L, Yang JY, Guo LY, Wang L, Yan YW, Pan YM, Wang JN, Li DS, Wan Y, Chen SY (2015) VEGF-A promotes cardiac stem cell engraftment and myocardial repair in the infarcted heart. Int J Cardiol 183:221–231. https://doi.org/10.1016/j.ijcard.2015.01.050

    Article  PubMed  Google Scholar 

  67. Vahdat S, Mousavi SA, Omrani G, Gholampour M, Sotoodehnejadnematalahi F, Ghazizadeh Z, Gharechahi J, Baharvand H, Salekdeh GH, Aghdami N (2015) Cellular and molecular characterization of human cardiac stem cells reveals key features essential for their function and safety. Stem Cells Dev 24:1390–1404. https://doi.org/10.1089/scd.2014.0222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vicinanza C, Aquila I, Scalise M, Cristiano F, Marino F, Cianflone E, Mancuso T, Marotta P, Sacco W, Lewis FC, Couch L, Shone V, Gritti G, Torella A, Smith AJ, Terracciano CM, Britti D, Veltri P, Indolfi C, Nadal-Ginard B, Ellison-Hughes GM, Torella D (2017) Adult cardiac stem cells are multipotent and robustly myogenic: c-kit expression is necessary but not sufficient for their identification. Cell Death Differ 24:2101–2116. https://doi.org/10.1038/cdd.2017.130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zakharova L, Nural-Guvener H, Feehery L, Popovic S, Nimlos J, Gaballa MA (2014) Retrograde coronary vein infusion of cardiac explant-derived c-Kit+ cells improves function in ischemic heart failure. J Heart Lung Transplant 33:644–653. https://doi.org/10.1016/j.healun.2014.03.006

    Article  PubMed  Google Scholar 

  70. Zakharova L, Nural-Guvener H, Feehery L, Popovic-Sljukic S, Gaballa MA (2015) Transplantation of epigenetically modified adult cardiac c-Kit+ cells retards remodeling and improves cardiac function in ischemic heart failure model. Stem Cells Transl Med 4:1086–1096. https://doi.org/10.5966/sctm.2014-0290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang Z, Yang J, Yan W, Li Y, Shen Z, Asahara T (2016) Pretreatment of cardiac stem cells with exosomes derived from mesenchymal stem cells enhances myocardial repair. J Am Heart Assoc. https://doi.org/10.1161/jaha.115.002856

    Article  PubMed  PubMed Central  Google Scholar 

  72. Welt FG, Gallegos R, Connell J, Kajstura J, D’Amario D, Kwong RY, Coelho-Filho O, Shah R, Mitchell R, Leri A, Foley L, Anversa P, Pfeffer MA (2013) Effect of cardiac stem cells on left-ventricular remodeling in a canine model of chronic myocardial infarction. Circ Heart Fail 6:99–106. https://doi.org/10.1161/circheartfailure.112.972273

    Article  PubMed  Google Scholar 

  73. Kamata S, Miyagawa S, Fukushima S, Nakatani S, Kawamoto A, Saito A, Harada A, Shimizu T, Daimon T, Okano T, Asahara T, Sawa Y (2014) Improvement of cardiac stem cell sheet therapy for chronic ischemic injury by adding endothelial progenitor cell transplantation: analysis of layer-specific regional cardiac function. Cell Transplant 23:1305–1319. https://doi.org/10.3727/096368913x665602

    Article  PubMed  Google Scholar 

  74. Kulandavelu S, Karantalis V, Fritsch J, Hatzistergos KE, Loescher VY, McCall F, Wang B, Bagno L, Golpanian S, Wolf A, Grenet J, Williams A, Kupin A, Rosenfeld A, Mohsin S, Sussman MA, Morales A, Balkan W, Hare JM (2016) Pim1 kinase overexpression enhances ckit(+) cardiac stem cell cardiac repair following myocardial infarction in swine. J Am Coll Cardiol 68:2454–2464. https://doi.org/10.1016/j.jacc.2016.09.925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wehman B, Pietris N, Bigham G, Siddiqui O, Mishra R, Li T, Aiello E, Jack G, Wang W, Murthi S, Sharma S, Kaushal S (2017) Cardiac progenitor cells enhance neonatal right ventricular function after pulmonary artery banding. Ann Thorac Surg 104:2045–2053. https://doi.org/10.1016/j.athoracsur.2017.04.058

    Article  PubMed  Google Scholar 

  76. Bolli R, Mitrani RD, Hare JM, Pepine CJ, Perin EC, Willerson JT, Traverse JH, Henry TD, Yang PC, Murphy MP, March KL, Schulman IH, Ikram S, Lee DP, O’Brien C, Lima JA, Ostovaneh MR, Ambale-Venkatesh B, Lewis G, Khan A, Bacallao K, Valasaki K, Longsomboon B, Gee AP, Richman S, Taylor DA, Lai D, Sayre SL, Bettencourt J, Vojvodic RW, Cohen ML, Simpson L, Aguilar D, Loghin C, Moyé L, Ebert RF, Davis BR, Simari RD (2021) A Phase II study of autologous mesenchymal stromal cells and c-kit positive cardiac cells, alone or in combination, in patients with ischaemic heart failure: the CCTRN CONCERT-HF trial. Eur J Heart Fail. https://doi.org/10.1002/ejhf.2178

    Article  PubMed  Google Scholar 

  77. Chugh AR, Beache GM, Loughran JH, Mewton N, Elmore JB, Kajstura J, Pappas P, Tatooles A, Stoddard MF, Lima JA, Slaughter MS, Anversa P, Bolli R (2012) Administration of cardiac stem cells in patients with ischemic cardiomyopathy: the SCIPIO trial: surgical aspects and interim analysis of myocardial function and viability by magnetic resonance. Circulation 126:S54-64. https://doi.org/10.1161/circulationaha.112.092627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gnecchi M, He H, Liang OD, Melo LG, Morello F, Mu H, Noiseux N, Zhang L, Pratt RE, Ingwall JS, Dzau VJ (2005) Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med 11:367–368. https://doi.org/10.1038/nm0405-367

    Article  CAS  PubMed  Google Scholar 

  79. Gnecchi M, Zhang Z, Ni A, Dzau VJ (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103:1204–1219. https://doi.org/10.1161/circresaha.108.176826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views. Stem Cells 25:2896–2902. https://doi.org/10.1634/stemcells.2007-0637

    Article  PubMed  Google Scholar 

  81. Bolli R (2017) Repeated cell therapy: a paradigm shift whose time has come. Circ Res 120:1072–1074. https://doi.org/10.1161/circresaha.117.310710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nguyen PK, Rhee JW, Wu JC (2016) Adult stem cell therapy and heart failure, 2000 to 2016: a systematic review. JAMA Cardiol 1:831–841. https://doi.org/10.1001/jamacardio.2016.2225

    Article  PubMed  PubMed Central  Google Scholar 

  83. Nauta AJ, Fibbe WE (2007) Immunomodulatory properties of mesenchymal stromal cells. Blood 110:3499–3506. https://doi.org/10.1182/blood-2007-02-069716

    Article  CAS  PubMed  Google Scholar 

  84. Hare JM, Traverse JH, Henry TD, Dib N, Strumpf RK, Schulman SP, Gerstenblith G, DeMaria AN, Denktas AE, Gammon RS, Hermiller JB Jr., Reisman MA, Schaer GL, Sherman W (2009) A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol 54:2277–2286. https://doi.org/10.1016/j.jacc.2009.06.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Boomsma RA, Swaminathan PD, Geenen DL (2007) Intravenously injected mesenchymal stem cells home to viable myocardium after coronary occlusion and preserve systolic function without altering infarct size. Int J Cardiol 122:17–28. https://doi.org/10.1016/j.ijcard.2006.11.022

    Article  PubMed  Google Scholar 

  86. Halkos ME, Zhao ZQ, Kerendi F, Wang NP, Jiang R, Schmarkey LS, Martin BJ, Quyyumi AA, Few WL, Kin H, Guyton RA, Vinten-Johansen J (2008) Intravenous infusion of mesenchymal stem cells enhances regional perfusion and improves ventricular function in a porcine model of myocardial infarction. Basic Res Cardiol 103:525–536. https://doi.org/10.1007/s00395-008-0741-0

    Article  PubMed  Google Scholar 

  87. Jiang W, Ma A, Wang T, Han K, Liu Y, Zhang Y, Dong A, Du Y, Huang X, Wang J, Lei X, Zheng X (2006) Homing and differentiation of mesenchymal stem cells delivered intravenously to ischemic myocardium in vivo: a time-series study. Pflugers Arch 453:43–52. https://doi.org/10.1007/s00424-006-0117-y

    Article  CAS  PubMed  Google Scholar 

  88. Krause U, Harter C, Seckinger A, Wolf D, Reinhard A, Bea F, Dengler T, Hardt S, Ho A, Katus HA, Kuecherer H, Hansen A (2007) Intravenous delivery of autologous mesenchymal stem cells limits infarct size and improves left ventricular function in the infarcted porcine heart. Stem Cells Dev 16:31–37. https://doi.org/10.1089/scd.2006.0089

    Article  CAS  PubMed  Google Scholar 

  89. Lim M, Wang W, Liang L, Han ZB, Li Z, Geng J, Zhao M, Jia H, Feng J, Wei Z, Song B, Zhang J, Li J, Liu T, Wang F, Li T, Li J, Fang Y, Gao J, Han Z (2018) Intravenous injection of allogeneic umbilical cord-derived multipotent mesenchymal stromal cells reduces the infarct area and ameliorates cardiac function in a porcine model of acute myocardial infarction. Stem Cell Res Ther 9:129. https://doi.org/10.1186/s13287-018-0888-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Price MJ, Chou CC, Frantzen M, Miyamoto T, Kar S, Lee S, Shah PK, Martin BJ, Lill M, Forrester JS, Chen PS, Makkar RR (2006) Intravenous mesenchymal stem cell therapy early after reperfused acute myocardial infarction improves left ventricular function and alters electrophysiologic properties. Int J Cardiol 111:231–239. https://doi.org/10.1016/j.ijcard.2005.07.036

    Article  PubMed  Google Scholar 

  91. Wolf D, Reinhard A, Seckinger A, Gross L, Katus HA, Hansen A (2009) Regenerative capacity of intravenous autologous, allogeneic and human mesenchymal stem cells in the infarcted pig myocardium-complicated by myocardial tumor formation. Scand Cardiovasc J 43:39–45. https://doi.org/10.1080/14017430802100280

    Article  CAS  PubMed  Google Scholar 

  92. Bartolucci J, Verdugo FJ, Gonzalez PL, Larrea RE, Abarzua E, Goset C, Rojo P, Palma I, Lamich R, Pedreros PA, Valdivia G, Lopez VM, Nazzal C, Alcayaga-Miranda F, Cuenca J, Brobeck MJ, Patel AN, Figueroa FE, Khoury M (2017) Safety and efficacy of the intravenous infusion of umbilical cord mesenchymal stem cells in patients with heart failure: a phase 1/2 randomized controlled trial (RIMECARD trial [randomized clinical trial of intravenous infusion umbilical cord mesenchymal stem cells on cardiopathy]). Circ Res 121:1192–1204. https://doi.org/10.1161/CIRCRESAHA.117.310712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Butler J, Epstein SE, Greene SJ, Quyyumi AA, Sikora S, Kim RJ, Anderson AS, Wilcox JE, Tankovich NI, Lipinski MJ, Ko YA, Margulies KB, Cole RT, Skopicki HA, Gheorghiade M (2017) intravenous allogeneic mesenchymal stem cells for nonischemic cardiomyopathy: safety and efficacy results of a phase II—a randomized trial. Circ Res 120:332–340. https://doi.org/10.1161/circresaha.116.309717

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by NIH Grants HL113530 and HL-078825.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: RB; Study design: X-LT and MW; Material preparation, data collection, and analysis: X-LT, MW, AMG, YL, W-JW, HL, and HS. The first draft of the manuscript was written by X-LT and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Roberto Bolli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest to disclose.

Ethical approval

The paper is original and has not been published and is not being considered for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 3952 KB)

Supplementary file2 (DOCX 22 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, XL., Wysoczynski, M., Gumpert, A.M. et al. Effect of intravenous cell therapy in rats with old myocardial infarction. Mol Cell Biochem 477, 431–444 (2022). https://doi.org/10.1007/s11010-021-04283-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04283-2

Keywords

Navigation