Skip to main content

Advertisement

Log in

Serum exosome-derived biomarkers for the early detection of oral squamous cell carcinoma

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Blood exosomes help regulate communication between tumour cells, moderating their behaviour. We sought to determine the protein content in serum exosomes (SEs), to characterise SEs, and to discover novel clinical biomarkers of oral squamous cell carcinoma (OSCC). Differentially expressed proteins (DEPs) of OSCC were identified using proteomics and then analysed using bioinformatics, before validation using ELISA, IHC, and RT-PCR. The influence of SEs on oral cancer cells was detected using CCK-8 and migration assays. Twelve DEPs were found in SEs from OSCC. Four proteins were targeted for further verification. New biomarkers exhibiting high sensitivity and specificity in diagnosing OSCC comprised C-reactive protein (CRP), von willebrand factor (VWF), and leucine-rich alpha-2-glycoprotein (LRG). Combined biomarkers outperformed any single protein. We also demonstrated that tumour-derived exosomes promoted tumour cell migration, but not proliferation and apoptosis. Our study indicates that CRP, VWF, and LRG are potential clinically relevant OSCC biomarkers. OSCC-related SEs may help promote migration of oral cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

OSCC:

Oral squamous cell carcinomas

DEPs:

Differential expressed proteins

CRP:

C-reactive protein

VWF:

Von Willebrand factor

LRG1:

Leucine-rich alpha-2-glycoprotein

OC:

Oral cancer

HCs:

Healthy controls

MS:

Mass spectrometry

GO:

Gene ontology

PPI network:

Protein interaction network

STRING:

Search tool for the retrieval of interacting genes

KEGG:

Kyoto encyclopedia of genes and genomes pathways

LNM:

Lymph node metastasis

NLNM:

No lymph node metastasis

C1QA:

Complement C1q subcomponent subunit A

GEPIA:

Gene expression profiling interactive analysis

ROCs:

Receiver operation characteristic curves

AUC:

The area under the curve

CCK-8:

Cell Counting Kit-8

PI:

Propidium iodide

BP:

Biological processes

CC:

Cellular component

MF:

Molecular functions

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386

    Article  CAS  PubMed  Google Scholar 

  2. Chi AC, Day TA, Neville BW (2015) Oral cavity and oropharyngeal squamous cell carcinoma–an update. CA Cancer J Clin 65:401–421

    Article  PubMed  Google Scholar 

  3. Argiris A, Karamouzis MV, Raben D, Ferris RL (2008) Head and neck cancer. Lancet 371:1695–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dionne KR, Warnakulasuriya S, Zain RB, Cheong SC (2015) Potentially malignant disorders of the oral cavity: current practice and future directions in the clinic and laboratory. Int J Cancer 136:503–515

    CAS  PubMed  Google Scholar 

  5. Speight PM, Khurram SA, Kujan O (2018) Oral potentially malignant disorders: risk of progression to malignancy. Oral Surg Oral Med Oral Pathol Oral Radiol 125:612–627

    Article  PubMed  Google Scholar 

  6. Siegel RL, Miller KD, Fedewa SA, Ahnen DJ, Meester RGS, Barzi A, Jemal A (2017) Colorectal cancer statistics, 2017. CA Cancer J Clin 67:177–193

    Article  PubMed  Google Scholar 

  7. Macey R, Walsh T, Brocklehurst P, Kerr AR, Liu JL, Lingen MW, Ogden GR, Warnakulasuriya S, Scully C (2015) Diagnostic tests for oral cancer and potentially malignant disorders in patients presenting with clinically evident lesions. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD010276.pub2

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jiao YJ, Jin DD, Jiang F, Liu JX, Qu LS, Ni WK, Liu ZX, Lu CH, Ni RZ, Zhu J (2019) Characterization and proteomic profiling of pancreatic cancer-derived serum exosomes. J Cell Biochem 120:988–999

    Article  CAS  PubMed  Google Scholar 

  9. Wang L, Li Y, Guan X, Zhao J, Shen L, Liu J (2018) Exosomal double-stranded DNA as a biomarker for the diagnosis and preoperative assessment of pheochromocytoma and paraganglioma. Mol Cancer 17:128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Li S, Zhao Y, Chen W, Yin L, Zhu J, Zhang H, Cai C, Li P, Huang L, Ma P (2018) Exosomal ephrinA2 derived from serum as a potential biomarker for prostate cancer. J Cancer 9:2659–2665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Sun B, Li Y, Zhou Y, Ng TK, Zhao C, Gan Q, Gu X, Xiang J (2019) Circulating exosomal CPNE3 as a diagnostic and prognostic biomarker for colorectal cancer. J Cell Physiol 234:1416–1425

    Article  CAS  PubMed  Google Scholar 

  12. Sandhu C, Qureshi A, Emili A (2018) Panomics for precision medicine. Trends Mol Med 24(1):85–101

    Article  PubMed  Google Scholar 

  13. Fu H, Yang H, Zhang X, Wang B, Mao J, Li X, Wang M, Zhang B, Sun Z, Qian H (2018) Exosomal TRIM3 is a novel marker and therapy target for gastric cancer. J Exp Clin Cancer Res 37:162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Andaloussi SEL, Mager I, Breakefield XO, Wood MJ (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12:347–57

    Article  CAS  Google Scholar 

  15. Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, LeBleu VS, Mittendorf EA, Weitz J, Rahbari N (2015) Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523:177–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tkach M, Thery C (2016) Communication by extracellular vesicles: where we are and where we need to go. Cell 164:1226–1232

    Article  CAS  PubMed  Google Scholar 

  17. Colombo M, Raposo G, Thery C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289

    Article  CAS  PubMed  Google Scholar 

  18. Saleem SN, Abdel-Mageed AB (2015) Tumor-derived exosomes in oncogenic reprogramming and cancer progression. Cell Mol Life Sci 72:1–10

    Article  CAS  PubMed  Google Scholar 

  19. Ye SB, Li ZL, Luo DH, Huang BJ, Chen YS, Zhang XS, Cui J, Zeng YX, Li J (2014) Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget 5:5439–5452

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhao L, Liu W, Xiao J, Cao B (2015) The role of exosomes and “exosomal shuttle microRNA” in tumorigenesis and drug resistance. Cancer Lett 356:339–346

    Article  CAS  PubMed  Google Scholar 

  21. Kahlert C, Kalluri R (2013) Exosomes in tumor microenvironment influence cancer progression and metastasis. J Mol Med 91:431–7

    Article  CAS  PubMed  Google Scholar 

  22. Yang C, Robbins PD (2011) The roles of tumor-derived exosomes in cancer pathogenesis. Clin Dev Immunol 2011:1–11

    Article  Google Scholar 

  23. Mrizak D, Martin N, Barjon C, Jimenez-Pailhes AS, Mustapha R, Niki T, Guigay J, Pancre V, de Launoit Y, Busson P (2015) Effect of nasopharyngeal carcinoma-derived exosomes on human regulatory T cells. J Natl Cancer Inst 107:363

    Article  PubMed  CAS  Google Scholar 

  24. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452

    Article  CAS  PubMed  Google Scholar 

  25. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432

    Article  CAS  PubMed  Google Scholar 

  26. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45:D353–D361

    Article  CAS  PubMed  Google Scholar 

  27. Robinson MW, Menon R, Donnelly SM, Dalton JP, Ranganathan S (2009) An integrated transcriptomics and proteomics analysis of the secretome of the helminth pathogen Fasciola hepatica: proteins associated with invasion and infection of the mammalian host. Mol Cell Proteomics 8:1891–1907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pang CY, Wang H, Pang Y, Xu C, Jiao Y, Qin YM, Western TL, Yu SX, Zhu YX (2010) Comparative proteomics indicates that biosynthesis of pectic precursors is important for cotton fiber and arabidopsis root hair elongation. Mol Cell Proteomics 9:2019–2033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li CY, Wei L (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39:W316–W322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845

    Article  CAS  PubMed  Google Scholar 

  31. Li C, Zhou Y, Liu J (2019) Potential markers from serum-purified exosomes for detecting oral squamous cell carcinoma metastasis. Cancer Epidemiol Biomarkers Prev 28(10):1668–1681

    Article  CAS  PubMed  Google Scholar 

  32. Li L, Li C, Wang S, Wang Z, Jiang J, Wang W, Li X, Chen J, Liu K, Zhu G (2016) Exosomes derived from hypoxic oral squamous cell carcinoma cells deliver miR-21 to normoxic cells to elicit a prometastatic phenotype. Cancer Res 76:1770–1780

    Article  CAS  PubMed  Google Scholar 

  33. Sento S, Sasabe E, Yamamoto T (2016) Application of a persistent heparin treatment inhibits the malignant potential of oral squamous carcinoma cells induced by tumor cell-derived exosomes. PLoS One 11:e0148454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Sakha S, Muramatsu T, Ueda K, Inazawa J (2016) Exosomal microRNA miR-1246 induces cell motility and invasion through the regulation of DENND2D in oral squamous cell carcinoma. Sci Rep 6:38750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen Y, Xie Y, Xu L, Zhan S, Xiao Y, Gao Y, Wu B, Ge W (2017) Protein content and functional characteristics of serum-purified exosomes from patients with colorectal cancer revealed by quantitative proteomics. Int J Cancer 140:900–913

    Article  CAS  PubMed  Google Scholar 

  36. Heikkila K, Ebrahim S, Lawlor DA (2007) A systematic review of the association between circulating concentrations of C reactive protein and cancer. J Epidemiol Commun Health 61:824–833

    Article  Google Scholar 

  37. Acharya S, Kale J, Hallikeri K, Anehosur V, Arnold D (2018) Clinical significance of preoperative serum C-reactive protein in oral squamous cell carcinoma. Int J Oral Maxillofac Surg 47:16–23

    Article  CAS  PubMed  Google Scholar 

  38. Hsu YP, Hsieh CH, Chien HT, Lai CH, Tsao CK, Liao CT, Kang CJ, Wang HM, Chang JT, Huang SF (2015) Serum markers of CYFRA 21–1 and C-reactive proteins in oral squamous cell carcinoma. World J Surg Oncol 13:253

    Article  PubMed  PubMed Central  Google Scholar 

  39. Xie ZB, Zhang YF, Jin C, Mao YS, Fu DL (2019) LRG-1 promotes pancreatic cancer growth and metastasis via modulation of the EGFR/p38 signaling. J Exp Clin Cancer Res 38:75

    Article  PubMed  PubMed Central  Google Scholar 

  40. Honda H, Fujimoto M, Serada S, Urushima H, Mishima T, Lee H, Ohkawara T, Kohno N, Hattori N, Yokoyama A (2017) Leucine-rich alpha-2 glycoprotein promotes lung fibrosis by modulating TGF-beta signaling in fibroblasts. Physiol Rep 5:e13556

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Shinozaki E, Tanabe K, Akiyoshi T, Tsuchida T, Miyazaki Y, Kojima N, Igarashi M, Ueno M, Suenaga M, Mizunuma N (2018) Serum leucine-rich alpha-2-glycoprotein-1 with fucosylated triantennary N-glycan: a novel colorectal cancer marker. BMC Cancer 18:406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Kawahara R, Bollinger JG, Rivera C, Ribeiro AC, Brandao TB, Paes Leme AF, MacCoss MJ (2016) A targeted proteomic strategy for the measurement of oral cancer candidate biomarkers in human saliva. Proteomics 16:159–173

    Article  CAS  PubMed  Google Scholar 

  43. Chen Y, Azman SN, Kerishnan JP, Zain RB, Chen YN, Wong YL, Gopinath SC (2014) Identification of host-immune response protein candidates in the sera of human oral squamous cell carcinoma patients. PLoS One 9:e109012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Sadler JE (2013) von Willebrand factor in its native environment. Blood 121:2583–2584

    Article  CAS  PubMed  Google Scholar 

  45. Yang AJ, Wang M, Wang Y, Cai W, Li Q, Zhao TT, Zhang LH, Houck K, Chen X, Jin YL (2018) Cancer cell-derived von Willebrand factor enhanced metastasis of gastric adenocarcinoma. Oncogenesis 7:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Pepin M, Kleinjan A, Hajage D, Buller HR, Di Nisio M, Kamphuisen PW, Salomon L, Veyradier A, Stepanian A, Mahe I (2016) ADAMTS-13 and von Willebrand factor predict venous thromboembolism in patients with cancer. J Thromb Haemost 14:306–315

    Article  CAS  PubMed  Google Scholar 

  47. Liu Y, Wang X, Li S, Hu H, Zhang D, Hu P, Yang Y, Ren H (2014) The role of von Willebrand factor as a biomarker of tumor development in hepatitis B virus-associated human hepatocellular carcinoma: a quantitative proteomic based study. J Proteomics 106:99–112

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the reviewers who participated in the review and MJEditor (www.mjeditor.com) for its linguistic assistance during the preparation of this manuscript.

Funding

This work is supported by grants from Guangxi medical and health appropriate technology research and development project (Grant Nos.: S201538), Guangxi Clinical Research Center for Craniofacial Deformity (Grant Nos.: GKAD17129004) and National Natural Science Foundation of China (81670970, 81870748).

Author information

Authors and Affiliations

Authors

Contributions

HJG, CPL-collected serum samples; HJG, WDJ, SHH-conducted mass spectrometry analysis, verification tests and statistical analysis; HJG, CPL, XPH-wrote the manuscript.

Corresponding authors

Correspondence to Xuanping Huang or Cuiping Li.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Ethics Committee of Guangxi Medical University (the committee’s reference number: 2018-082). Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11010_2021_4254_MOESM1_ESM.tif

Supplementary file1: Mass spectra of differentially-expressed proteins. The identified peptide fragments of four biomarkers including the b-ion and y-ion series. A CRP; B LRG; C VWF; D C1QA (TIF 731 kb)

11010_2021_4254_MOESM2_ESM.tif

Supplementary file2: RT-PCR validation of MS/MS data. A1-A2/B1-B2/C1-C2/D1-D2 CRP/LRG/VWF/C1QA mRNA expression levels in tissues assayed by RT-PCR. LNM: oral squamous cell carcinoma with lymph node metastasis; NLNM: oral squamous cell carcinoma with no lymph node metastasis; CT: cancerous tissues; CAT: corresponding adjacent tissues. Data were shown as mean ± SD. (nonparametric test, p < 0 .05 was considered statistically significant) (TIF 25514 kb)

11010_2021_4254_MOESM3_ESM.tif

Supplementary file3: Clinical interrelation from RT-PCR results of tissue samples. A1-A7, B1-B7, C1-C7, D1-D7 represented the expressions of CRP, LRG, VWF, C1QA in gender, nationality, stage, differentiation degree, smoking, drinking, and the grades of age brackets. WDSCC: Well differentiated squamous-cell carcinoma; LDSCC: Low differentiated squamous-cell carcinoma. Data were shown as mean ± SD. (Chi-square test, McNemar and Fisher’s exact tests, p < 0.05 was considered statistically significant) (TIF 25515 kb)

11010_2021_4254_MOESM4_ESM.tif

Supplementary file4: The results from GEPIA analysis. Gene expression profile, stage plots, and survival plots showed the connection between CRP, LRG, VWF, and C1QA and head and neck squamous cell carcinoma. A CRP; B LRG; C VWF; D C1QA (TIF 61956 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Jiang, W., Huang, S. et al. Serum exosome-derived biomarkers for the early detection of oral squamous cell carcinoma. Mol Cell Biochem 476, 4435–4447 (2021). https://doi.org/10.1007/s11010-021-04254-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04254-7

Keywords

Navigation