Skip to main content
Log in

Exosomal microRNA-125a-3p from human adipose-derived mesenchymal stem cells promotes angiogenesis of wound healing through inhibiting PTEN

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Angiogenesis plays a key in the process of tissue repair and wound healing. Human adipose-derived mesenchymal stem cells (HADSCs) have been found to act a promotion role during angiogenesis. Moreover, miR-125a-3p in HADSCs could promote the angiogenesis of HUVECs, but their specific mechanism in wound healing needs further study. Western blotting and qRT-PCR were used for detecting the protein and mRNA level, respectively. Exosomes were isolated successfully, and transmission electron microscope was used to identify exosomes. Angiogenesis, cell migration, and proliferation were detected with tube formation, wound healing, and MTT assays. The interactions of miR-125a-3p and PTEN were validated using dual-luciferase reporter assay. Animal model was used to evaluate the effect of miR-125a-3p on wound healing. HADSCs-exosome remarkably promoted the viability, migration, and angiogenesis of HUVECs. Knockdown of miR-125a-3p in HADSCs could inhibit the effect of HADSCs–exosome, while overexpression of miR-125a-3p could further promote the effect of HADSCs–exosome on HUVECs. MiR-125a-3p from HADSCs–exosome inhibited the expression of PTEN in HUVECs. Knockdown of PTEN promoted the viability, migration, and angiogenesis of HUVECs and reversed the effect of miR-125a-3p knockdown on HUVECs. Finally, miR-125a-3p from HADSCs–exosome could promote wound healing and angiogenesis in mice by inhibiting PTEN in mice wound granulation tissues. MiR-125a-3p from the HADSCs–exosome promoted the wound healing and angiogenesis, and these effects were achieved through regulating PTEN. This study may provide a new thought for the treatment and prevention of tissue repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

HADSCs:

Human adipose-derived mesenchymal stem cells

TEM:

Transmission electron microscope

MSCs:

Mesenchymal stem cells

HADSCs–exosome:

Exosome derived from human adipose-derived mesenchymal stem cells

DLL4:

Delta-like 4

HUVEC:

Human umbilical vein endothelial cells

ATCC:

American type culture collection

HE:

Hematoxylin–eosin

References

  1. Wang X, Balaji S, Steen EH, Li H, Rae MM, Blum AJ, Miao Q, Butte MJ, Bollyky PL, Keswani SG (2019) T lymphocytes attenuate dermal scarring by regulating inflammation, neovascularization, and extracellular matrix remodeling. Adv Wound Care (New Rochelle) 8:527–537. https://doi.org/10.1089/wound.2019.0981

    Article  Google Scholar 

  2. Deng Y, Ren J, Chen G, Li G, Wu X, Wang G, Gu G, Li J (2017) Injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for abdominal tissue regeneration. Sci Rep 7:2699. https://doi.org/10.1038/s41598-017-02962-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Park S, Kim JW, Kim JH, Lim CW, Kim B (2015) Differential roles of angiogenesis in the induction of fibrogenesis and the resolution of fibrosis in liver. Biol Pharm Bull 38:980–985. https://doi.org/10.1248/bpb.b15-00325

    Article  CAS  PubMed  Google Scholar 

  4. Liu J, Hou W, Guan T, Tang L, Zhu X, Li Y, Hou S, Zhang J, Chen H, Huang Y (2018) Slit2/Robo1 signaling is involved in angiogenesis of glomerular endothelial cells exposed to a diabetic-like environment. Angiogenesis 21:237–249. https://doi.org/10.1007/s10456-017-9592-3

    Article  CAS  PubMed  Google Scholar 

  5. Huang CC, Kuo HM, Wu PC, Cheng SH, Chang TT, Chang YC, Kung ML, Wu DC, Chuang JH, Tai MH (2018) Soluble delta-like 1 homolog (DLK1) stimulates angiogenesis through Notch1/Akt/eNOS signaling in endothelial cells. Angiogenesis 21:299–312. https://doi.org/10.1007/s10456-018-9596-7

    Article  CAS  PubMed  Google Scholar 

  6. de Souza Junior DA, Mazucato VM, Santana AC, Oliver C, Jamur MC (2017) Mast cells interact with endothelial cells to accelerate in vitro angiogenesis. Int J Mol Sci. https://doi.org/10.3390/ijms18122674

    Article  PubMed  PubMed Central  Google Scholar 

  7. Vimalraj S, Pichu S, Pankajam T, Dharanibalan K, Djonov V, Chatterjee S (2019) Nitric oxide regulates intussusceptive-like angiogenesis in wound repair in chicken embryo and transgenic zebrafish models. Nitric Oxide 82:48–58. https://doi.org/10.1016/j.niox.2018.11.001

    Article  CAS  PubMed  Google Scholar 

  8. Chen CY, Rao SS, Ren L, Hu XK, Tan YJ, Hu Y, Luo J, Liu YW, Yin H, Huang J, Cao J, Wang ZX, Liu ZZ, Liu HM, Tang SY, Xu R, Xie H (2018) Exosomal DMBT1 from human urine-derived stem cells facilitates diabetic wound repair by promoting angiogenesis. Theranostics 8:1607–1623. https://doi.org/10.7150/thno.22958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Klymiuk MC, Balz N, Elashry MI, Heimann M, Wenisch S, Arnhold S (2019) Exosomes isolation and identification from equine mesenchymal stem cells. BMC Vet Res 15:42. https://doi.org/10.1186/s12917-019-1789-9

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhao L, Jiang X, Shi J, Gao S, Zhu Y, Gu T, Shi E (2019) Exosomes derived from bone marrow mesenchymal stem cells overexpressing microRNA-25 protect spinal cords against transient ischemia. J Thorac Cardiovasc Surg 157:508–517. https://doi.org/10.1016/j.jtcvs.2018.07.095

    Article  CAS  PubMed  Google Scholar 

  11. Chen S, Tang Y, Liu Y, Zhang P, Lv L, Zhang X, Jia L, Zhou Y (2019) Exosomes derived from miR-375-overexpressing human adipose mesenchymal stem cells promote bone regeneration. Cell Prolif 52:e12669. https://doi.org/10.1111/cpr.12669

    Article  PubMed  PubMed Central  Google Scholar 

  12. Huang JH, Xu Y, Yin XM, Lin FY (2020) Exosomes derived from miR-126-modified MSCs promote angiogenesis and neurogenesis and attenuate apoptosis after spinal cord injury in rats. Neuroscience 424:133–145. https://doi.org/10.1016/j.neuroscience.2019.10.043

    Article  CAS  PubMed  Google Scholar 

  13. Hao SC, Ma H, Niu ZF, Sun SY, Zou YR, Xia HC (2019) hUC-MSCs secreted exosomes inhibit the glioma cell progression through PTENP1/miR-10a-5p/PTEN pathway. Eur Rev Med Pharmacol Sci 23:10013–10023. https://doi.org/10.26355/eurrev_201911_19568

    Article  PubMed  Google Scholar 

  14. Jafarzadeh N, Safari Z, Pornour M, Amirizadeh N, Forouzandeh Moghadam M, Sadeghizadeh M (2019) Alteration of cellular and immune-related properties of bone marrow mesenchymal stem cells and macrophages by K562 chronic myeloid leukemia cell derived exosomes. J Cell Physiol 234:3697–3710. https://doi.org/10.1002/jcp.27142

    Article  CAS  PubMed  Google Scholar 

  15. Komaki M, Numata Y, Morioka C, Honda I, Tooi M, Yokoyama N, Ayame H, Iwasaki K, Taki A, Oshima N, Morita I (2017) Exosomes of human placenta-derived mesenchymal stem cells stimulate angiogenesis. Stem Cell Res Ther 8:219. https://doi.org/10.1186/s13287-017-0660-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu T, Luo Y, Wang J, Zhang N, Gu C, Li L, Qian D, Cai W, Fan J, Yin G (2020) Exosomal miRNA-128-3p from mesenchymal stem cells of aged rats regulates osteogenesis and bone fracture healing by targeting Smad5. J Nanobiotechnol 18:47. https://doi.org/10.1186/s12951-020-00601-w

    Article  CAS  Google Scholar 

  17. Liu J, Tang Q, Li S, Yang X (2016) Inhibition of HAX-1 by miR-125a reverses cisplatin resistance in laryngeal cancer stem cells. Oncotarget 7:86446–86456. https://doi.org/10.18632/oncotarget.13424

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chen J, Chen J, Cheng Y, Fu Y, Zhao H, Tang M, Zhao H, Lin N, Shi X, Lei Y, Wang S, Huang L, Wu W, Tan J (2020) Mesenchymal stem cell-derived exosomes protect beta cells against hypoxia-induced apoptosis via miR-21 by alleviating ER stress and inhibiting p38 MAPK phosphorylation. Stem Cell Res Ther 11:97. https://doi.org/10.1186/s13287-020-01610-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Han Y, Ren J, Bai Y, Pei X, Han Y (2019) Exosomes from hypoxia-treated human adipose-derived mesenchymal stem cells enhance angiogenesis through VEGF/VEGF-R. Int J Biochem Cell Biol 109:59–68. https://doi.org/10.1016/j.biocel.2019.01.017

    Article  CAS  PubMed  Google Scholar 

  20. Xie Y, Dang W, Zhang S, Yue W, Yang L, Zhai X, Yan Q, Lu J (2019) The role of exosomal noncoding RNAs in cancer. Mol Cancer 18:37. https://doi.org/10.1186/s12943-019-0984-4

    Article  PubMed  PubMed Central  Google Scholar 

  21. Qin X, Wan Y, Wang S, Xue M (2016) MicroRNA-125a-5p modulates human cervical carcinoma proliferation and migration by targeting ABL2. Drug Des Dev Ther 10:71–79. https://doi.org/10.2147/DDDT.S93104

    Article  CAS  Google Scholar 

  22. Zhou X, Zhang W, Yao Q, Zhang H, Dong G, Zhang M, Liu Y, Chen JK, Dong Z (2017) Exosome production and its regulation of EGFR during wound healing in renal tubular cells. Am J Physiol Renal Physiol 312:F963–F970. https://doi.org/10.1152/ajprenal.00078.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mendonca L, Trindade A, Carvalho C, Correia J, Badenes M, Gigante J, Duarte A (2019) Metastasis is impaired by endothelial-specific Dll4 loss-of-function through inhibition of epithelial-to-mesenchymal transition and reduction of cancer stem cells and circulating tumor cells. Clin Exp Metastasis 36:365–380. https://doi.org/10.1007/s10585-019-09973-2

    Article  CAS  PubMed  Google Scholar 

  24. Hou P, Li H, Yong H, Chen F, Chu S, Zheng J, Bai J (2019) PinX1 represses renal cancer angiogenesis via the mir-125a-3p/VEGF signaling pathway. Angiogenesis 22:507–519. https://doi.org/10.1007/s10456-019-09675-z

    Article  CAS  PubMed  Google Scholar 

  25. Wade SM, Ohnesorge N, McLoughlin H, Biniecka M, Carter SP, Trenkman M, Cunningham CC, McGarry T, Canavan M, Kennedy BN, Veale DJ, Fearon U (2019) Dysregulated miR-125a promotes angiogenesis through enhanced glycolysis. EBioMedicine 47:402–413. https://doi.org/10.1016/j.ebiom.2019.08.043

    Article  PubMed  PubMed Central  Google Scholar 

  26. Puzar Dominkus P, Stenovec M, Sitar S, Lasic E, Zorec R, Plemenitas A, Zagar E, Kreft M, Lenassi M (2018) PKH26 labeling of extracellular vesicles: characterization and cellular internalization of contaminating PKH26 nanoparticles. Biochim Biophys Acta Biomembr 1860:1350–1361. https://doi.org/10.1016/j.bbamem.2018.03.013

    Article  CAS  PubMed  Google Scholar 

  27. Lobb RJ, van Amerongen R, Wiegmans A, Ham S, Larsen JE, Moller A (2017) Exosomes derived from mesenchymal non-small cell lung cancer cells promote chemoresistance. Int J Cancer 141:614–620. https://doi.org/10.1002/ijc.30752

    Article  CAS  PubMed  Google Scholar 

  28. Rodrigues FV, Wainstock J, de Almeida LC (1970) Treatment of vaginal trichomoniasis using a new drug. Results using Naxogin (K-1900). Hospital (Rio J) 77:417–424

    CAS  Google Scholar 

  29. Liang X, Zhang L, Wang S, Han Q, Zhao RC (2016) Exosomes secreted by mesenchymal stem cells promote endothelial cell angiogenesis by transferring miR-125a. J Cell Sci 129:2182–2189. https://doi.org/10.1242/jcs.170373

    Article  CAS  PubMed  Google Scholar 

  30. Zheng Z, Liu L, Zhan Y, Yu S, Kang T (2018) Adipose-derived stem cell-derived microvesicle-released miR-210 promoted proliferation, migration and invasion of endothelial cells by regulating RUNX3. Cell Cycle 17:1026–1033. https://doi.org/10.1080/15384101.2018.1480207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Miscianinov V, Martello A, Rose L, Parish E, Cathcart B, Mitic T, Gray GA, Meloni M, Al Haj Zen A, Caporali A (2018) MicroRNA-148b targets the TGF-beta pathway to regulate angiogenesis and endothelial-to-mesenchymal transition during skin wound healing. Mol Ther 26:1996–2007. https://doi.org/10.1016/j.ymthe.2018.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li X, Chen B, Chi D, Zhang Y, Jiang W (2019) lncRNA CASC9 regulates cell migration and invasion in hemangioma endothelial cells by targeting miR-125a-3p/Nrg1. Onco Targets Ther 12:423–432. https://doi.org/10.2147/OTT.S181914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang Y, Mao W, Wang L, Lu L, Pang Y (2021) Circular RNA circLMF1 regulates PDGF-BB-induced proliferation and migration of human aortic smooth muscle cells by regulating the miR-125a-3p/VEGFA or FGF1 axis. Clin Hemorheol Microcirc. https://doi.org/10.3233/CH-211166

    Article  PubMed  Google Scholar 

  34. Liang L, Gao C, Li Y, Sun M, Xu J, Li H, Jia L, Zhao Y (2017) miR-125a-3p/FUT5-FUT6 axis mediates colorectal cancer cell proliferation, migration, invasion and pathological angiogenesis via PI3K-Akt pathway. Cell Death Dis 8:e2968. https://doi.org/10.1038/cddis.2017.352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ma J, Sun X, Wang Y, Chen B, Qian L, Wang Y (2019) Fibroblast-derived CXCL12 regulates PTEN expression and is associated with the proliferation and invasion of colon cancer cells via PI3k/Akt signaling. Cell Commun Signal 17:119. https://doi.org/10.1186/s12964-019-0432-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zheng T, Shi Y, Zhang J, Peng J, Zhang X, Chen K, Chen Y, Liu L (2019) MiR-130a exerts neuroprotective effects against ischemic stroke through PTEN/PI3K/AKT pathway. Biomed Pharmacother 117:109117. https://doi.org/10.1016/j.biopha.2019.109117

    Article  CAS  PubMed  Google Scholar 

  37. Ding XY, Ding J, Wu K, Wen W, Liu C, Yan HX, Chen C, Wang S, Tang H, Gao CK, Guo LN, Cao D, Li Z, Feng GS, Wang HY, Xu ZF (2012) Cross-talk between endothelial cells and tumor via delta-like ligand 4/Notch/PTEN signaling inhibits lung cancer growth. Oncogene 31:2899–2906. https://doi.org/10.1038/onc.2011.467

    Article  CAS  PubMed  Google Scholar 

  38. Kang H, Park Y, Lee A, Seo H, Kim MJ, Choi J, Jo HN, Jeong HN, Cho JG, Chang W, Lee MS, Jeon R, Kim J (2017) Negative regulation of NOD1 mediated angiogenesis by PPARgamma-regulated miR-125a. Biochem Biophys Res Commun 482:28–34. https://doi.org/10.1016/j.bbrc.2016.11.032

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Guarantor: LQ; concepts: LQ; study design: LQ; clinical studies: LP; experimental studies: XXM; data acquisition: LY; data analysis: LY, BRF; preparation: BRF; editing: XXM; manuscript review: LP. All the authors approved for the final version.

Corresponding author

Correspondence to Li Qian.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

Not Applicable. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pi, L., Yang, L., Fang, BR. et al. Exosomal microRNA-125a-3p from human adipose-derived mesenchymal stem cells promotes angiogenesis of wound healing through inhibiting PTEN. Mol Cell Biochem 477, 115–127 (2022). https://doi.org/10.1007/s11010-021-04251-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04251-w

Keywords

Navigation