Skip to main content
Log in

Nanoceria potently reduce superoxide fluxes from mitochondrial electron transport chain and plasma membrane NADPH oxidase in human macrophages

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cerium oxide nanoparticles, also known as nanoceria, possess antioxidative and anti-inflammatory activities in animal models of inflammatory disorders, such as sepsis. However, it remains unclear how nanoceria affect cellular superoxide fluxes in macrophages, a critical type of cells involved in inflammatory disorders. Using human ML-1 cell-derived macrophages, we showed that nanoceria at 1–100 μg/ml potently reduced superoxide flux from the mitochondrial electron transport chain (METC) in a concentration-dependent manner. The inhibitory effects of nanoceria were also shown in succinate-driven mitochondria isolated from the macrophages. Furthermore, nanoceria markedly mitigated the total intracellular superoxide flux in the macrophages. These data suggest that nanoceria could readily cross the plasma membrane and enter the mitochondrial compartment, reducing intracellular superoxide fluxes in unstimulated macrophages. In macrophages undergoing respiratory burst, nanoceria also strongly reduced superoxide flux from the activated macrophage plasma membrane NADPH oxidase (NOX) in a concentration-dependent manner. Token together, the results of the present study demonstrate that nanoceria can effectively diminish superoxide fluxes from both METC and NOX in human macrophages, which may have important implications for nanoceria-mediated protection against inflammatory disease processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

CDCL:

Coelenterazine hcp-derived chemiluminescence

DEPMPO:

5-(Diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide

EPR:

Electron paramagnetic resonance

FBS:

Fetal bovine serum

FCCP:

Carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone

LDCL:

Lucigenin-derived chemiluminescence

METC:

Mitochondrial electron transport chain

NOX:

NADPH oxidase

PBS:

Phosphate-buffered saline

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TPA:

12-O-Tetradecanoylphorbol 13-acetate

References

  1. Casals E, Zeng M, Parra-Robert M, Fernandez-Varo G, Morales-Ruiz M, Jimenez W, Puntes V, Casals G (2020) Cerium oxide nanoparticles: advances in biodistribution, toxicity, and preclinical exploration. Small 16:e1907322. https://doi.org/10.1002/smll.201907322

    Article  CAS  PubMed  Google Scholar 

  2. Niu J, Azfer A, Rogers LM, Wang X, Kolattukudy PE (2007) Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model of cardiomyopathy. Cardiovasc Res 73:549–559. https://doi.org/10.1016/j.cardiores.2006.11.031

    Article  CAS  PubMed  Google Scholar 

  3. Selvaraj V, Manne ND, Arvapalli R, Rice KM, Nandyala G, Fankenhanel E, Blough ER (2015) Effect of cerium oxide nanoparticles on sepsis induced mortality and NF-kappaB signaling in cultured macrophages. Nanomedicine (Lond) 10:1275–1288. https://doi.org/10.2217/nnm.14.205

    Article  CAS  Google Scholar 

  4. Hegazy MA, Maklad HM, Samy DM, Abdelmonsif DA, El Sabaa BM, Elnozahy FY (2017) Cerium oxide nanoparticles could ameliorate behavioral and neurochemical impairments in 6-hydroxydopamine induced Parkinson’s disease in rats. Neurochem Int 108:361–371. https://doi.org/10.1016/j.neuint.2017.05.011

    Article  CAS  PubMed  Google Scholar 

  5. Heckert EG, Karakoti AS, Seal S, Self WT (2008) The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials 29:2705–2709. https://doi.org/10.1016/j.biomaterials.2008.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang Z, Shen X, Gao X, Zhao Y (2019) Simultaneous enzyme mimicking and chemical reduction mechanisms for nanoceria as a bio-antioxidant: a catalytic model bridging computations and experiments for nanozymes. Nanoscale 11:13289–13299. https://doi.org/10.1039/c9nr03473k

    Article  CAS  PubMed  Google Scholar 

  7. Codo AC, Davanzo GG, Monteiro LB, de Souza GF, Muraro SP, Virgilio-da-Silva JV, Prodonoff JS, Carregari VC, de Biagi Junior CAO, Crunfli F, Jimenez Restrepo JL, Vendramini PH, Reis-de-Oliveira G, Bispo Dos Santos K, Toledo-Teixeira DA, Parise PL, Martini MC, Marques RE, Carmo HR, Borin A, Coimbra LD, Boldrini VO, Brunetti NS, Vieira AS, Mansour E, Ulaf RG, Bernardes AF, Nunes TA, Ribeiro LC, Palma AC, Agrela MV, Moretti ML, Sposito AC, Pereira FB, Velloso LA, Vinolo MAR, Damasio A, Proenca-Modena JL, Carvalho RF, Mori MA, Martins-de-Souza D, Nakaya HI, Farias AS, Moraes-Vieira PM (2020) Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1alpha/glycolysis-dependent axis. Cell Metab. https://doi.org/10.1016/j.cmet.2020.07.007

    Article  PubMed  PubMed Central  Google Scholar 

  8. Korsvik C, Patil S, Seal S, Self WT (2007) Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem Commun (Camb). https://doi.org/10.1039/b615134e

    Article  Google Scholar 

  9. Pirmohamed T, Dowding JM, Singh S, Wasserman B, Heckert E, Karakoti AS, King JE, Seal S, Self WT (2010) Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun (Camb) 46:2736–2738. https://doi.org/10.1039/b922024k

    Article  CAS  Google Scholar 

  10. Nolan M, Parker SC, Watson GW (2006) CeO2 catalysed conversion of CO, NO2 and NO from first principles energetics. Phys Chem Chem Phys 8:216–218. https://doi.org/10.1039/b514782d

    Article  CAS  PubMed  Google Scholar 

  11. Nolan M, Parker SC, Watson GW (2006) Reduction of NO2 on ceria surfaces. J Phys Chem B 110:2256–2262. https://doi.org/10.1021/jp055624b

    Article  CAS  PubMed  Google Scholar 

  12. Hopkins RZ (2016) Superoxide in biology and medicine: an overview. React Oxyg Species (Apex) 1:99–109. https://doi.org/10.20455/ros.2016.825

    Article  Google Scholar 

  13. Nickel AG, von Hardenberg A, Hohl M, Loffler JR, Kohlhaas M, Becker J, Reil JC, Kazakov A, Bonnekoh J, Stadelmaier M, Puhl SL, Wagner M, Bogeski I, Cortassa S, Kappl R, Pasieka B, Lafontaine M, Lancaster CR, Blacker TS, Hall AR, Duchen MR, Kastner L, Lipp P, Zeller T, Muller C, Knopp A, Laufs U, Bohm M, Hoth M, Maack C (2015) Reversal of mitochondrial transhydrogenase causes oxidative stress in heart failure. Cell Metab 22:472–484. https://doi.org/10.1016/j.cmet.2015.07.008

    Article  CAS  PubMed  Google Scholar 

  14. Mills EL, Kelly B, Logan A, Costa ASH, Varma M, Bryant CE, Tourlomousis P, Dabritz JHM, Gottlieb E, Latorre I, Corr SC, McManus G, Ryan D, Jacobs HT, Szibor M, Xavier RJ, Braun T, Frezza C, Murphy MP, O’Neill LA (2016) Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell. https://doi.org/10.1016/j.cell.2016.08.064

    Article  PubMed  PubMed Central  Google Scholar 

  15. Li Y, Zhu H, Kuppusamy P, Roubaud V, Zweier JL, Trush MA (1998) Validation of lucigenin (bis-N-methylacridinium) as a chemilumigenic probe for detecting superoxide anion radical production by enzymatic and cellular systems. J Biol Chem 273:2015–2023. https://doi.org/10.1074/jbc.273.4.2015

    Article  CAS  PubMed  Google Scholar 

  16. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  17. Li Y, Zhu H, Trush MA (1999) Detection of mitochondria-derived reactive oxygen species production by the chemilumigenic probes lucigenin and luminol. Biochim Biophys Acta 1428:1–12. https://doi.org/10.1016/s0304-4165(99)00040-9

    Article  CAS  PubMed  Google Scholar 

  18. Li Y, Zhu H, Kuppusamy P, Zweier JL, Trush MA (2016) Mitochondrial electron transport chain-derived superoxide exits macrophages: implications for mononuclear cell-mediated pathophysiological processes. React Oxygen Species (Apex) 1:81–98. https://doi.org/10.20455/ros.2016.815

    Article  Google Scholar 

  19. Munzel T, Afanas’ev IB, Kleschyov AL, Harrison DG (2002) Detection of superoxide in vascular tissue. Arterioscler Thromb Vasc Biol 22:1761–1768. https://doi.org/10.1161/01.atv.0000034022.11764.ec

    Article  PubMed  Google Scholar 

  20. Rembish SJ, Trush MA (1994) Further evidence that lucigenin-derived chemiluminescence monitors mitochondrial superoxide generation in rat alveolar macrophages. Free Radic Biol Med 17:117–126. https://doi.org/10.1016/0891-5849(94)90109-0

    Article  CAS  PubMed  Google Scholar 

  21. Lucas M, Solano F (1992) Coelenterazine is a superoxide anion-sensitive chemiluminescent probe: its usefulness in the assay of respiratory burst in neutrophils. Anal Biochem 206:273–277. https://doi.org/10.1016/0003-2697(92)90366-f

    Article  CAS  PubMed  Google Scholar 

  22. Tarpey MM, White CR, Suarez E, Richardson G, Radi R, Freeman BA (1999) Chemiluminescent detection of oxidants in vascular tissue. Lucigenin but not coelenterazine enhances superoxide formation. Circ Res 84:1203–1211. https://doi.org/10.1161/01.res.84.10.1203

    Article  CAS  PubMed  Google Scholar 

  23. (2020) Correction to: Heart disease and stroke statistics-2019 update: a report from the American heart association. Circulation 141:e33 https://doi.org/10.1161/CIR.0000000000000746

  24. Dowding JM, Song W, Bossy K, Karakoti A, Kumar A, Kim A, Bossy B, Seal S, Ellisman MH, Perkins G, Self WT, Bossy-Wetzel E (2014) Cerium oxide nanoparticles protect against Abeta-induced mitochondrial fragmentation and neuronal cell death. Cell Death Differ 21:1622–1632. https://doi.org/10.1038/cdd.2014.72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kwon HJ, Cha MY, Kim D, Kim DK, Soh M, Shin K, Hyeon T, Mook-Jung I (2016) Mitochondria-targeting ceria nanoparticles as antioxidants for Alzheimer’s disease. ACS Nano 10:2860–2870. https://doi.org/10.1021/acsnano.5b08045

    Article  CAS  PubMed  Google Scholar 

  26. Hussain S, Kodavanti PP, Marshburg JD, Janoshazi A, Marinakos SM, George M, Rice A, Wiesner MR, Garantziotis S (2016) Decreased uptake and enhanced mitochondrial protection underlie reduced toxicity of nanoceria in human monocyte-derived macrophages. J Biomed Nanotechnol 12:2139–2150. https://doi.org/10.1166/jbn.2016.2320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou X, Wang B, Jiang P, Chen Y, Mao Z, Gao C (2015) Uptake of cerium oxide nanoparticles and its influence on functions of mouse leukemic monocyte macrophages. J Nanopart Res 17:28. https://doi.org/10.1007/s11051-014-2815-2

    Article  CAS  Google Scholar 

  28. Li Y, Stansbury KH, Zhu H, Trush MA (1999) Biochemical characterization of lucigenin (Bis-N-methylacridinium) as a chemiluminescent probe for detecting intramitochondrial superoxide anion radical production. Biochem Biophys Res Commun 262:80–87. https://doi.org/10.1006/bbrc.1999.1174

    Article  CAS  PubMed  Google Scholar 

  29. Arya A, Sethy NK, Das M, Singh SK, Das A, Ujjain SK, Sharma RK, Sharma M, Bhargava K (2014) Cerium oxide nanoparticles prevent apoptosis in primary cortical culture by stabilizing mitochondrial membrane potential. Free Radic Res 48:784–793. https://doi.org/10.3109/10715762.2014.906593

    Article  CAS  PubMed  Google Scholar 

  30. Cachat J, Deffert C, Hugues S, Krause KH (2015) Phagocyte NADPH oxidase and specific immunity. Clin Sci (Lond) 128:635–648. https://doi.org/10.1042/CS20140635

    Article  CAS  Google Scholar 

  31. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313. https://doi.org/10.1152/physrev.00044.2005

    Article  CAS  PubMed  Google Scholar 

  32. Zhu H (2016) Assays for detecting biological superoxide. React Oxyg Species (Apex) 1:65–80. https://doi.org/10.20455/ros.2016.813

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported in part by a grant from the National Institutes of Health (GM124652). The EPR facility used in this study was supported by an Institutional Development Grant (IDG-1018) from the North Carolina Biotechnology Center (Research Triangle Park, NC). The Berthold LB9505 luminometer was provided by Dr. Michael A. Trush from The Johns Hopkins University (Baltimore, MD).

Funding

This study was supported in part by a Grant (GM124652) from the National Institutes of Health, Bethesda, MD, and an Institutional Development Grant (IGD-1018) from the North Carolina Biotechnology Center, Research triangle Park, NC.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the study conception, design, performance, data analysis, and writing. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Y. Robert Li.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Research involving human and animal rights

This work does not involve animals or human subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y.R., Zhu, H. Nanoceria potently reduce superoxide fluxes from mitochondrial electron transport chain and plasma membrane NADPH oxidase in human macrophages. Mol Cell Biochem 476, 4461–4470 (2021). https://doi.org/10.1007/s11010-021-04246-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04246-7

Keywords

Navigation