Skip to main content

Advertisement

Log in

Biglycan: an emerging small leucine-rich proteoglycan (SLRP) marker and its clinicopathological significance

Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Extracellular matrix (ECM) plays an important role in the structural organization of tissue and delivery of external cues to the cell. Biglycan, a class I small leucine-rich proteoglycans (SLRP), is a key component of the ECM that participates in scaffolding the collagen fibrils and mediates cell signaling. Dysregulation of biglycan expression can result in wide range of clinical conditions such as metabolic disorder, inflammatory disorder, musculoskeletal defects and malignancies. In this review, we aim to update our current understanding regarding the link between altered expression of biglycan and different clinicopathological states. Biglycan interacts with toll like receptors (TLR)-2 and TLR-4 on the immune cells which initiates inflammation and aggravates inflammatory disorders. ECM unbound soluble biglycan acts as a DAMP (danger associated molecular pattern) resulting in sterile inflammation. Dysregulation of biglycan expression is also observed in inflammatory metabolic conditions such as atherosclerosis and obesity. In cancer, high-biglycan expression facilitates tumor growth, invasion and metastasis which is associated with poor clinical outcome. As a pivotal structural component of the ECM, biglycan strengthens the musculoskeletal system and its absence is associated with musculoskeletal defects. Thus, SLRP biglycan is a potential marker which is significantly altered in different clinicopathological states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Allahverdian S, Ortega C, Francis GA (2020) Smooth muscle cell-proteoglycan-lipoprotein interactions as drivers of atherosclerosis. Handbook of experimental pharmacology. Springer, Berlin, pp 1–24

    Google Scholar 

  2. Schaefer L, Iozzo RV (2008) Biological functions of the small leucine-rich proteoglycans: from genetics to signal transduction. J Biol Chem 283:21305–21309. https://doi.org/10.1074/jbc.R800020200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Iozzo RV (1999) The biology of the small leucine-rich proteoglycans functional network of interactive proteins. J Biol Chem 274:18843–18846. https://doi.org/10.1074/jbc.274.27.18843

    Article  CAS  PubMed  Google Scholar 

  4. Nastase MV, Young MF, Schaefer L (2012) Biglycan: a multivalent proteoglycan providing structure and signals. J Histochem Cytochem 60:963–975. https://doi.org/10.1369/0022155412456380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McBride OW, Fisher LW, Young MF (1990) Localization of PGI (biglycan, BGN) and PGII (decorin, DCN, PG-40) genes on human chromosomes Xq13-qter and 12q, respectively. Genomics 6:219–225. https://doi.org/10.1016/0888-7543(90)90560-H

    Article  CAS  PubMed  Google Scholar 

  6. Matsushima N, Ohyanagi T, Tanaka T, Kretsinger RH (2000) Super-motifs and evolution of tandem leucine-rich repeats within the small proteoglycans—biglycan, decorin, lumican, fibromodulin, PRELP, keratocan, osteoadherin, epiphycan, and osteoglycin. Proteins 38(2):210–225. https://doi.org/10.1002/(SICI)1097-0134(20000201)38:2%3c210::AID-PROT9%3e3.0.CO;2-1

    Article  CAS  PubMed  Google Scholar 

  7. Scott PG, Dodd CM, Bergmann EM, Sheehan JK, Bishop PN (2006) Crystal structure of the biglycan dimer and evidence that dimerization is essential for folding and stability of class I small leucine-rich repeat proteoglycans. J Biol Chem 281:13324–13332. https://doi.org/10.1074/jbc.M513470200

    Article  CAS  PubMed  Google Scholar 

  8. McEwan PA, Scott PG, Bishop PN, Bella J (2006) Structural correlations in the family of small leucine-rich repeat proteins and proteoglycans. J Struct Biol 155(2):294–305. https://doi.org/10.1016/j.jsb.2006.01.016

    Article  CAS  PubMed  Google Scholar 

  9. Chen S, Sun M, Meng X, Iozzo RV, Kao WW, Birk DE (2011) Pathophysiological mechanisms of autosomal dominant congenital stromal corneal dystrophy: C-terminal–truncated decorin results in abnormal matrix assembly and altered expression of small leucine-rich proteoglycans. Am J Pathol 179:2409–2419. https://doi.org/10.1016/j.ajpath.2011.07.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schaefer L, Babelova A, Kiss E, Hausser HJ, Baliova M, Krzyzankova M et al (2005) The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. J Clin Invest 115:2223–2233. https://doi.org/10.1172/JCI23755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fallon JR, McNally EM (2018) Non-glycanated biglycan and LTBP4: leveraging the extracellular matrix for Duchenne muscular dystrophy therapeutics. Matrix Biol 68–69:616–627. https://doi.org/10.1016/j.matbio.2018.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pechanec MY, Boyd TN, Baar K, Mienaltowski MJ (2020) Adding exogenous biglycan or decorin improves tendon formation for equine peritenon and tendon proper cells in vitro. BMC Musculoskelet Disord 21(1):627. https://doi.org/10.1186/s12891-020-03650-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kram V, Kilts TM, Bhattacharyya N, Li L, Young MF (2017) Small leucine rich proteoglycans, a novel link to osteoclastogenesis. Sci Rep 7(1):12627. https://doi.org/10.1038/s41598-017-12651-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rajasekaran S, Soundararajan DCR, Tangavel C, Nayagam SM, Matchado MS, Muthurajan R et al (2020) Proteomic signature of nucleus pulposus in fetal intervertebral disc. Asian spine journal 14:409. Asian Spine J 14:409–420. https://doi.org/10.31616/asj.2019.0217

    Article  PubMed  PubMed Central  Google Scholar 

  15. Meester JA, Vandeweyer G, Pintelon I, Lammens M, Van Hoorick L, De Belder S et al (2017) Loss-of-function mutations in the X-linked biglycan gene cause a severe syndromic form of thoracic aortic aneurysms and dissections. Genet Med 19(4):386–395. https://doi.org/10.1038/gim.2016.126

    Article  CAS  PubMed  Google Scholar 

  16. Schönherr E, Witsch-Prehm P, Harrach B, Robenek H, Rauterberg J, Kresse H (1995) Interaction of biglycan with type I collagen. J Biol Chem 270:2776–2783. https://doi.org/10.1074/jbc.270.6.2776

    Article  PubMed  Google Scholar 

  17. McCorry MC, Kim J, Springer NL, Sandy J, Plaas A, Bonassar LJ (2019) Regulation of proteoglycan production by varying glucose concentrations controls fiber formation in tissue engineered menisci. Acta Biomater 100:173–183. https://doi.org/10.1016/j.actbio.2019.09.026

    Article  CAS  PubMed  Google Scholar 

  18. Ameye L, Young MF (2002) Mice deficient in small leucine-rich proteoglycans: novel in vivo models for osteoporosis, osteoarthritis, Ehlers-Danlos syndrome, muscular dystrophy, and corneal diseases. Glycobiology 12:107R-R116. https://doi.org/10.1093/glycob/cwf065

    Article  CAS  PubMed  Google Scholar 

  19. Mayer C, Adam M, Glashauser L, Dietrich K, Schwarzer J, Köhn FM et al (2016) Sterile inflammation as a factor in human male infertility: Involvement of Toll like receptor 2, biglycan and peritubular cells. Sci Rep 6:37128. https://doi.org/10.1038/srep37128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Roedig H, Nastase MV, Frey H, Moreth K, Zeng-Brouwers J, Poluzzi C et al (2019) Biglycan is a new high-affinity ligand for CD14 in macrophages. Matrix Biol 77:4–22. https://doi.org/10.1016/j.matbio.2018.05.006

    Article  CAS  PubMed  Google Scholar 

  21. Kim J, Lee SK, Shin JM, Jeoun UW, Jang YJ, Park HS et al (2016) Enhanced biglycan gene expression in the adipose tissues of obese women and its association with obesity-related genes and metabolic parameters. Sci Rep 6:30609. https://doi.org/10.1038/srep30609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Appunni S, Anand V, Khandelwal M, Gupta N, Rubens M, Sharma A (2019) Small leucine rich proteoglycans (decorin, biglycan and lumican) in cancer. Clin Chim Acta 491:1–7. https://doi.org/10.1016/j.cca.2019.01.003

    Article  CAS  PubMed  Google Scholar 

  23. Zhao SF, Yin XJ, Zhao WJ, Liu LC, Wang ZP (2020) Biglycan as a potential diagnostic and prognostic biomarker in multiple human cancers. Oncol Lett 19:1673–1682. https://doi.org/10.3892/ol.2020.11266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hsieh LT, Nastase MV, Zeng-Brouwers J, Iozzo RV, Schaefer L (2014) Soluble biglycan as a biomarker of inflammatory renal diseases. Int J Biochem Cell Biol 54:223–235. https://doi.org/10.1016/j.biocel.2014.07.020

    Article  CAS  PubMed  Google Scholar 

  25. Meissner M, Viehmann SF, Kurts C (2019) DAMPening sterile inflammation of the kidney. Kidney Int 95:489–491. https://doi.org/10.1016/j.kint.2018.12.007

    Article  CAS  PubMed  Google Scholar 

  26. Moreth K, Frey H, Hubo M, Zeng-Brouwers J, Nastase MV, Hsieh LT et al (2014) Biglycan-triggered TLR-2-and TLR-4-signaling exacerbates the pathophysiology of ischemic acute kidney injury. Matrix Biol 35:143–151. https://doi.org/10.1016/j.matbio.2014.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hsieh LT, Nastase MV, Roedig H, Zeng-Brouwers J, Poluzzi C, Schwalm S et al (2017) Biglycan-and sphingosine kinase-1 signaling crosstalk regulates the synthesis of macrophage chemoattractants. Int J Mol Sci 18:595. https://doi.org/10.3390/ijms18030595

    Article  CAS  PubMed Central  Google Scholar 

  28. Babelova A, Moreth K, Tsalastra-Greul W, Zeng-Brouwers J, Eickelberg O, Young MF et al (2009) Biglycan, a danger signal that activates the NLRP3 inflammasome via toll-like and P2X receptors. J Biol Chem 284:24035–24048. https://doi.org/10.1074/jbc.M109.014266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Han CY, Kang I, Harten IA, Gebe JA, Chan CK, Omer M et al (2020) Adipocyte-derived versican and macrophage-derived biglycan control adipose tissue inflammation in obesity. Cell Rep 31:107818. https://doi.org/10.1016/j.celrep.2020.107818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Poluzzi C, Nastase MV, Zeng-Brouwers J, Roedig H, Hsieh LT, Michaelis JB et al (2019) Biglycan evokes autophagy in macrophages via a novel CD44/Toll-like receptor 4 signaling axis in ischemia/reperfusion injury. Kidney Int 95:540–562. https://doi.org/10.1016/j.kint.2018.10.037

    Article  CAS  PubMed  Google Scholar 

  31. Nastase MV, Zeng-Brouwers J, Beckmann J, Tredup C, Christen U, Radeke HH et al (2018) Biglycan, a novel trigger of Th1 and Th17 cell recruitment into the kidney. Matrix Biol 68–69:293–317. https://doi.org/10.1016/j.matbio.2017.12.002

    Article  CAS  PubMed  Google Scholar 

  32. Moreth K, Brodbeck R, Babelova A, Gretz N, Spieker T, Zeng-Brouwers J et al (2010) The proteoglycan biglycan regulates expression of the B cell chemoattractant CXCL13 and aggravates murine lupus nephritis. J Clin Invest 120:4251–4272. https://doi.org/10.1172/JCI42213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sun P, Ye R, Wang C, Bai S, Zhao L (2019) Identification of proteomic signatures associated with COPD frequent exacerbators. Life Sci 230:1–9. https://doi.org/10.1016/j.lfs.2019.05.047

    Article  CAS  PubMed  Google Scholar 

  34. Grandoch M, Kohlmorgen C, Melchior-Becker A, Feldmann K, Homann S, Müller J et al (2016) Loss of biglycan enhances thrombin generation in apolipoprotein E-deficient mice: implications for inflammation and atherosclerosis. Arterioscler Thromb Vasc Biol 36:e41-50. https://doi.org/10.1161/ATVBAHA.115.306973

    Article  CAS  PubMed  Google Scholar 

  35. Siebuhr AS, Juhl P, Bay-Jensen AC, Karsdal MA, Franchimont N, Chavez JC (2019) Citrullinated vimentin and biglycan protein fingerprints as candidate serological biomarkers for disease activity in systemic sclerosis: a pilot study. Biomarkers 24:249–254. https://doi.org/10.1080/1354750X.2018.1548032

    Article  CAS  PubMed  Google Scholar 

  36. Hesselstrand R, Westergren-Thorsson G, Scheja A, Wildt M, Akesson A (2002) The association between changes in skin echogenicity and the fibroblast production of biglycan and versican in systemic sclerosis. Clin Exp Rheumatol 20:301–308

    CAS  PubMed  Google Scholar 

  37. Cohen DJ, Oliveira AV, Theodoro TR, Petri G, Melo CM, Cavalheiro RP et al (2018) Extracellular matrix alterations after blood instillation in tunica albuginea of rats. Int J Impot Res 30:85–92. https://doi.org/10.1038/s41443-017-0015-1

    Article  CAS  PubMed  Google Scholar 

  38. Vesterhus M, Nielsen MJ, Hov JR, Saffioti F, Manon-Jensen T, Leeming DJ et al (2021) Comprehensive assessment of ECM turnover using serum biomarkers establishes PBC as a high-turnover autoimmune liver disease. JHEP Rep 3:100178. https://doi.org/10.1016/j.jhepr.2020.100178

    Article  PubMed  Google Scholar 

  39. Sobhy A, Azeem HA, Ashmawy AM, Khalifa HO (2019) Significance of biglycan and osteopontin as non-invasive markers of liver fibrosis in patients with chronic hepatitis B virus and chronic hepatitis C virus. J Investig Med 67:681–685. https://doi.org/10.1136/jim-2018-000840

    Article  PubMed  Google Scholar 

  40. Ciftciler R, Ozenirler S, Yucel AA, Cengiz M, Erkan G, Buyukdemirci E et al (2017) The importance of serum biglycan levels as a fibrosis marker in patients with chronic hepatitis B. J Clin Lab Anal 31:e22109. https://doi.org/10.1002/jcla.22109

    Article  CAS  Google Scholar 

  41. Cuellar J, Pietikäinen A, Glader O, Liljenbäck H, Söderström M, Hurme S et al (2019) Borrelia burgdorferi infection in biglycan knockout mice. J Infect Dis 220:116–126. https://doi.org/10.1093/infdis/jiz050

    Article  PubMed  Google Scholar 

  42. Ying Z, Byun HR, Meng Q, Noble E, Zhang G, Yang X et al (2018) Biglycan gene connects metabolic dysfunction with brain disorder. Biochim Biophys Acta Mol Basis Dis 1864:3679–3687. https://doi.org/10.1016/j.bbadis.2018.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Adapala VJ, Ward M, Ajuwon KM (2012) Adipose tissue biglycan as a potential anti-inflammatory target of sodium salicylate in mice fed a high fat diet. J Inflamm (Lond) 9:15. https://doi.org/10.1186/1476-9255-9-15

    Article  CAS  Google Scholar 

  44. Peek V, Neumann E, Inoue T, Koenig S, Pflieger FJ, Gerstberger R et al (2020) Age-dependent changes of adipokine and cytokine secretion from rat adipose tissue by endogenous and exogenous toll-like receptor agonists. Front Immunol 11:1800. https://doi.org/10.3389/fimmu.2020.01800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mangat R, Warnakula S, Borthwick F, Hassanali Z, Uwiera RR, Russell JC et al (2012) Arterial retention of remnant lipoproteins ex vivo is increased in insulin resistance because of increased arterial biglycan and production of cholesterol-rich atherogenic particles that can be improved by ezetimibe in the JCR: LA-cp rat. J Am Heart Assoc 1:e003434. https://doi.org/10.1161/JAHA.112.003434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chiba T, Chang MY, Wang S, Wight TN, McMillen TS, Oram JF et al (2011) Serum amyloid A facilitates the binding of high-density lipoprotein from mice injected with lipopolysaccharide to vascular proteoglycans. Arterioscler Thromb Vasc Biol 31:1326–1332. https://doi.org/10.1161/ATVBAHA.111.226159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hiukka A, Ståhlman M, Pettersson C, Levin M, Adiels M, Teneberg S et al (2009) ApoCIII-enriched LDL in type 2 diabetes displays altered lipid composition, increased susceptibility for sphingomyelinase, and increased binding to biglycan. Diabetes 58:2018–2026. https://doi.org/10.2337/db09-0206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Scuruchi M, Potì F, Rodríguez-Carrio J, Campo GM, Mandraffino G (2020) Biglycan and atherosclerosis: lessons from high cardiovascular risk conditions. Biochim Biophys Acta Mol Cell Biol Lipids 1865:158545. https://doi.org/10.1016/j.bbalip.2019.158545

    Article  CAS  PubMed  Google Scholar 

  49. Wilson PG, Thompson JC, Yoder MH, Charnigo R, Tannock LR (2017) Prevention of renal apoB retention is protective against diabetic nephropathy: role of TGF-β inhibition. J Lipid Res 58:2264–2274. https://doi.org/10.1194/jlr.M078204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Thompson JC, Tang T, Wilson PG, Yoder MH, Tannock LR (2014) Increased atherosclerosis in mice with increased vascular biglycan content. Atherosclerosis 235:71–75. https://doi.org/10.1016/j.atherosclerosis.2014.03.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Barth M, Selig JI, Klose S, Schomakers A, Kiene LS, Raschke S et al (2019) Degenerative aortic valve disease and diabetes: Implications for a link between proteoglycans and diabetic disorders in the aortic valve. Diab Vasc Dis Res 16:254–269. https://doi.org/10.1177/1479164118817922

    Article  CAS  PubMed  Google Scholar 

  52. Neufeld EB, Zadrozny LM, Phillips D, Aponte A, Yu ZX, Balaban RS (2014) Decorin and biglycan retain LDL in disease-prone valvular and aortic subendothelial intimal matrix. Atherosclerosis 233:113–121. https://doi.org/10.1016/j.atherosclerosis.2013.12.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Song R, Fullerton DA, Ao L, Zheng D, Zhao KS, Meng X (2015) BMP-2 and TGF-β1 mediate biglycan-induced pro-osteogenic reprogramming in aortic valve interstitial cells. J Mol Med (Berl) 93:403–412. https://doi.org/10.1007/s00109-014-1229-z

    Article  CAS  Google Scholar 

  54. Tang T, Thompson JC, Wilson PG, Yoder MH, Müeller J, Fischer JW et al (2014) Biglycan deficiency: increased aortic aneurysm formation and lack of atheroprotection. J Mol Cell Cardiol 75:174–180. https://doi.org/10.1016/j.yjmcc.2014.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mandraffino G, Imbalzano E, Mamone F, Aragona C, Gullo AL, D’Ascola A et al (2014) Biglycan expression in current cigarette smokers: a possible link between active smoking and atherogenesis. Atherosclerosis 237:471–479. https://doi.org/10.1016/j.atherosclerosis.2014.10.024

    Article  CAS  PubMed  Google Scholar 

  56. Mandraffino G, Aragona CO, Scuruchi M, Mamone F, D’Ascola A, Alibrandi A et al (2017) Biglycan expression, earlier vascular damage and pro-atherogenic profile improvement after smoke cessation in young people. Atherosclerosis 257:109–115. https://doi.org/10.1016/j.atherosclerosis.2017.01.012

    Article  CAS  PubMed  Google Scholar 

  57. Sardo MA, Mandraffino G, Campo S, Saitta C, Bitto A, Alibrandi A et al (2009) Biglycan expression in hypertensive subjects with normal or increased carotid intima-media wall thickness. Clin Chim Acta 406:89–93. https://doi.org/10.1016/j.cca.2009.05.024

    Article  CAS  PubMed  Google Scholar 

  58. Sardo MA, Mandraffino G, Riggio S, D’Ascola A, Alibrandi A, Saitta C et al (2010) Effects of the angiotensin II receptor blocker losartan on the monocyte expression of biglycan in hypertensive patients. Clin Exp Pharmacol Physiol 37:933–938. https://doi.org/10.1111/j.1440-1681.2010.05407.x

    Article  CAS  PubMed  Google Scholar 

  59. Heegaard AM, Corsi A, Danielsen CC, Nielsen KL, Jorgensen HL, Riminucci M et al (2007) Biglycan deficiency causes spontaneous aortic dissection and rupture in mice. Circulation 115:2731–2738. https://doi.org/10.1161/CIRCULATIONAHA.106.653980

    Article  CAS  PubMed  Google Scholar 

  60. Kolb M, Margetts PJ, Sime PJ, Gauldie J (2001) Proteoglycans decorin and biglycan differentially modulate TGF-β-mediated fibrotic responses in the lung. Am J Physiol Lung Cell Mol Physiol 280:L1327-1334. https://doi.org/10.1152/ajplung.2001.280.6.L1327

    Article  CAS  PubMed  Google Scholar 

  61. Thompson JC, Wilson PG, Wyllie AP, Wyllie AK, Tannock LR (2018) Elevated circulating TGF-β is not the cause of increased atherosclerosis development in biglycan deficient mice. Atherosclerosis 268:68–75. https://doi.org/10.1016/j.atherosclerosis.2017.11.005

    Article  CAS  PubMed  Google Scholar 

  62. Meng Q, Ying Z, Noble E, Zhao Y, Agrawal R, Mikhail A et al (2016) Systems nutrigenomics reveals brain gene networks linking metabolic and brain disorders. EBioMedicine 7:157–166. https://doi.org/10.1016/j.ebiom.2016.04.008

    Article  PubMed  PubMed Central  Google Scholar 

  63. Appunni S, Anand V, Khandelwal M, Seth A, Mathur S, Sharma A (2017) Altered expression of small leucine-rich proteoglycans (Decorin, Biglycan and Lumican): plausible diagnostic marker in urothelial carcinoma of bladder. Tumour Biol 39:1010428317699112. https://doi.org/10.1177/1010428317699112

    Article  CAS  PubMed  Google Scholar 

  64. Maishi N, Ohba Y, Akiyama K, Ohga N, Hamada J, Nagao-Kitamoto H et al (2016) Tumour endothelial cells in high metastatic tumours promote metastasis via epigenetic dysregulation of biglycan. Sci Rep 6:28039. https://doi.org/10.1038/srep28039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Aggelidakis J, Berdiaki A, Nikitovic D, Papoutsidakis A, Papachristou DJ, Tsatsakis AM et al (2018) Biglycan regulates MG63 osteosarcoma cell growth through a LPR6/β-catenin/IGFR-IR signaling axis. Front Oncol 8:470. https://doi.org/10.3389/fonc.2018.00470

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hua R, Ni Q, Eliason TD, Han Y, Gu S, Nicolella DP et al (2020) Biglycan and chondroitin sulfate play pivotal roles in bone toughness via retaining bound water in bone mineral matrix. Matrix Biol 94:95–109. https://doi.org/10.1016/j.matbio.2020.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhong Z, Yu J, Virshup DM, Madan B (2020) Wnts and the hallmarks of cancer. Cancer Metastasis Rev 39:625–645. https://doi.org/10.1007/s10555-020-09887-6

    Article  PubMed  Google Scholar 

  68. Li H, Zhong A, Li S, Meng X, Wang X, Xu F et al (2017) The integrated pathway of TGFβ/Snail with TNFα/NFκB may facilitate the tumor-stroma interaction in the EMT process and colorectal cancer prognosis. Sci Rep 7:4915. https://doi.org/10.1038/s41598-017-05280-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fang D, Lai Z, Wang Y (2019) Overexpression of biglycan is associated with resistance to rapamycin in human WERI-Rb-1 retinoblastoma cells by inducing the activation of the phosphatidylinositol 3-kinases (PI3K)/Akt/nuclear factor kappa B (NF-κB) signaling pathway. Med Sci Monit 25:6639–6648. https://doi.org/10.12659/MSM.915075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chen S, Guo D, Lei B, Bi J, Yang H (2020) Biglycan protects human neuroblastoma cells from nitric oxide-induced death by inhibiting AMPK-mTOR mediated autophagy and intracellular ROS level. Biotechnol Lett 42:657–668. https://doi.org/10.1007/s10529-020-02818-z

    Article  CAS  PubMed  Google Scholar 

  71. Roedig H, Damiescu R, Zeng-Brouwers J, Kutija I, Trebicka J, Wygrecka M et al (2020) Danger matrix molecules orchestrate CD14/CD44 signaling in cancer development. Semin Cancer Biol 62:31–47. https://doi.org/10.1016/j.semcancer.2019.07.026

    Article  CAS  PubMed  Google Scholar 

  72. Yamamoto K, Ohga N, Hida Y, Maishi N, Kawamoto T, Kitayama K et al (2012) Biglycan is a specific marker and an autocrine angiogenic factor of tumour endothelial cells. Br J Cancer 106:1214–1223. https://doi.org/10.1038/bjc.2012.59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hu L, Zang MD, Wang HX, Li JF, Su LP, Yan M (2016) Biglycan stimulates VEGF expression in endothelial cells by activating the TLR signaling pathway. Mol Oncol 10:1473–1484. https://doi.org/10.1016/j.molonc.2016.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Maishi N, Hida K (2017) Tumor endothelial cells accelerate tumor metastasis. Cancer Sci 108:1921–1926. https://doi.org/10.1111/cas.13336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Xing X, Gu X, Ma T (2015) Knockdown of biglycan expression by RNA interference inhibits the proliferation and invasion of, and induces apoptosis in, the HCT116 colon cancer cell line. Mol Med Rep 12:7538–7544. https://doi.org/10.3892/mmr.2015.4383

    Article  CAS  PubMed  Google Scholar 

  76. Hu L, Duan YT, Li JF, Su LP, Yan M, Zhu ZG et al (2014) Biglycan enhances gastric cancer invasion by activating FAK signaling pathway. Oncotarget 5:1885–1896. https://doi.org/10.18632/oncotarget.1871

    Article  PubMed  PubMed Central  Google Scholar 

  77. Guo D, Zhang W, Yang H, Bi J, Xie Y, Cheng B et al (2019) Celastrol induces necroptosis and ameliorates inflammation via targeting biglycan in human gastric carcinoma. Int J Mol Sci 20:5716. https://doi.org/10.3390/ijms20225716

    Article  CAS  PubMed Central  Google Scholar 

  78. Liu B, Xu T, Xu X, Cui Y, Xing X (2018) Biglycan promotes the chemotherapy resistance of colon cancer by activating NF-κB signal transduction. Mol Cell Biochem 449:285–294. https://doi.org/10.1007/s11010-018-3365-1

    Article  CAS  PubMed  Google Scholar 

  79. Ruan T, Lu S, Xu J, Zhou JY (2021) lncRNA LINC00460 Functions as a competing endogenous RNA and regulates expression of BGN by sponging miR-149-5p in colorectal cancer. Technol Cancer Res Treat 20:1533033820964238. https://doi.org/10.1177/1533033820964238

    Article  PubMed  PubMed Central  Google Scholar 

  80. Schulz GB, Grimm T, Sers C, Riemer P, Elmasry M, Kirchner T et al (2019) Prognostic value and association with epithelial-mesenchymal transition and molecular subtypes of the proteoglycan biglycan in advanced bladder cancer. Urol Oncol 37:530.e9-530.e18. https://doi.org/10.1016/j.urolonc.2019.05.011

    Article  CAS  Google Scholar 

  81. Fujiwara-Tani R, Sasaki T, Fujii K, Luo Y, Mori T, Kishi S et al (2020) Diabetes mellitus is associated with liver metastasis of colorectal cancer through production of biglycan-rich cancer stroma. Oncotarget 11:2982–2994. https://doi.org/10.18632/oncotarget.27674

    Article  PubMed  PubMed Central  Google Scholar 

  82. Andrlová H, Mastroianni J, Madl J, Kern JS, Melchinger W, Dierbach H et al (2017) Biglycan expression in the melanoma microenvironment promotes invasiveness via increased tissue stiffness inducing integrin-β1 expression. Oncotarget 8:42901–42916. https://doi.org/10.18632/oncotarget.17160

    Article  PubMed  PubMed Central  Google Scholar 

  83. Jacobsen F, Kraft J, Schroeder C, Hube-Magg C, Kluth M, Lang DS et al (2017) Up-regulation of biglycan is associated with poor prognosis and PTEN deletion in patients with prostate cancer. Neoplasia 19:707–715. https://doi.org/10.1016/j.neo.2017.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Allen DG, Whitehead NP, Froehner SC (2016) Absence of dystrophin disrupts skeletal muscle signaling: roles of Ca2+, reactive oxygen species, and nitric oxide in the development of muscular dystrophy. Physiol Rev 96:253–305. https://doi.org/10.1152/physrev.00007.2015

    Article  CAS  PubMed  Google Scholar 

  85. Kharraz Y, Guerra J, Pessina P, Serrano AL, Muñoz-Cánoves P (2014) Understanding the process of fibrosis in Duchenne muscular dystrophy. Biomed Res Int 2014:965631. https://doi.org/10.1155/2014/965631

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ito M, Ehara Y, Li J, Inada K, Ohno K (2017) Protein-anchoring therapy of biglycan for Mdx Mouse Model of Duchenne muscular dystrophy. Hum Gene Ther 28:428–436. https://doi.org/10.1089/hum.2015.088

    Article  CAS  PubMed  Google Scholar 

  87. Amenta AR, Yilmaz A, Bogdanovich S, McKechnie BA, Abedi M, Khurana TS et al (2011) Biglycan recruits utrophin to the sarcolemma and counters dystrophic pathology in mdx mice. Proc Natl Acad Sci USA 108:762–767. https://doi.org/10.1073/pnas.1013067108

    Article  CAS  PubMed  Google Scholar 

  88. Smith LR, Pichika R, Meza RC, Gillies AR, Baliki MN, Chambers HG et al (2021) Contribution of extracellular matrix components to the stiffness of skeletal muscle contractures in patients with cerebral palsy. Connect Tissue Res. https://doi.org/10.1080/03008207.2019.1694011

    Article  PubMed  Google Scholar 

  89. Wang M, Xue S, Fang Q, Zhang M, He Y, Zhang Y et al (2019) Expression and localization of the small proteoglycans decorin and biglycan in articular cartilage of Kashin-Beck disease and rats induced by T-2 toxin and selenium deficiency. Glycoconj J 36:451–459. https://doi.org/10.1007/s10719-019-09889-9

    Article  CAS  PubMed  Google Scholar 

  90. Avenoso A, D’Ascola A, Scuruchi M, Mandraffino G, Calatroni A, Saitta A et al (2018) The proteoglycan biglycan mediates inflammatory response by activating TLR-4 in human chondrocytes: Inhibition by specific siRNA and high polymerized Hyaluronan. Arch Biochem Biophys 640:75–82. https://doi.org/10.1016/j.abb.2018.01.007

    Article  CAS  PubMed  Google Scholar 

  91. Barreto G, Soininen A, Ylinen P, Sandelin J, Konttinen YT, Nordström DC et al (2015) Soluble biglycan: a potential mediator of cartilage degradation in osteoarthritis. Arthritis Res Ther 17:1–15. https://doi.org/10.1186/s13075-015-0902-0

    Article  CAS  Google Scholar 

  92. Tsang AS, Dart AJ, Biasutti SA, Jeffcott LB, Smith MM, Little CB (2019) Effects of tendon injury on uninjured regional tendons in the distal limb: an in-vivo study using an ovine tendinopathy model. PLoS ONE 14:e0215830. https://doi.org/10.1371/journal.pone.0215830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhang YJ, Qing Q, Zhang YJ, Ning LJ, Cui J, Yao X et al (2019) Enhancement of tenogenic differentiation of rat tendon-derived stem cells by biglycan. J Cell Physiol 234:15898–15910. https://doi.org/10.1002/jcp.28247

    Article  CAS  Google Scholar 

  94. Schneider MC, Chu S, Randolph MA, Bryant SJ (2019) An in vitro and in vivo comparison of cartilage growth in chondrocyte-laden matrix metalloproteinase-sensitive poly (ethylene glycol) hydrogels with localized transforming growth factor β3. Acta Biomater 93:97–110. https://doi.org/10.1016/j.actbio.2019.03.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ameye L, Aria D, Jepsen K, Oldberg A, Xu T, Young MF (2002) Abnormal collagen fibrils in tendons of biglycan/fibromodulin-deficient mice lead to gait impairment, ectopic ossification, and osteoarthritis. FASEB 16:673–680. https://doi.org/10.1096/fj.01-0848com

    Article  CAS  Google Scholar 

  96. Kram V, Jani P, Kilts TM, Li L, Chu EY et al (2020) OPG-Fc treatment partially rescues low bone mass phenotype in mature Bgn/Fmod deficient mice but is deleterious to the young mouse skeleton. J Struct Biol 212:107627. https://doi.org/10.1016/j.jsb.2020.107627

    Article  CAS  PubMed  Google Scholar 

  97. Morony S, Warmington K, Adamu S, Asuncion F, Geng Z, Grisanti M et al (2005) The inhibition of RANKL causes greater suppression of bone resorption and hypercalcemia compared with bisphosphonates in two models of humoral hypercalcemia of malignancy. Endocrinology 146:3235–3243. https://doi.org/10.1210/en.2004-1583

    Article  CAS  PubMed  Google Scholar 

  98. Myren M, Kirby DJ, Noonan ML, Maeda A, Owens RT, Ricard-Blum S et al (2016) Biglycan potentially regulates angiogenesis during fracture repair by altering expression and function of endostatin. Matrix Biol 52:141–150. https://doi.org/10.1016/j.matbio.2016.03.008

    Article  CAS  PubMed  Google Scholar 

  99. Cho SY, Bae JS, Kim NK, Forzano F, Girisha KM, Baldo C et al (2016) BGN mutations in X-linked spondyloepimetaphyseal dysplasia. Am J Hum Genet 98:1243–1248. https://doi.org/10.1016/j.ajhg.2016.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chen S, Wang J, Chen Y, Mo X, Fan C (2021) Tenogenic adipose-derived stem cell sheets with nanoyarn scaffolds for tendon regeneration. Mater Sci Eng C Mater Biol Appl 119:111506. https://doi.org/10.1016/j.msec.2020.111506

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research received no specific Grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

SA wrote the first draft of the manuscript. MR, VR, VA, MK and AS critically reviewed and revised the manuscript for important intellectual content. All authors approved the final version for publication.

Corresponding author

Correspondence to Alpana Sharma.

Ethics declarations

Conflict of interest

No potential conflicts of interest relevant to this article were reported.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Appunni, S., Rubens, M., Ramamoorthy, V. et al. Biglycan: an emerging small leucine-rich proteoglycan (SLRP) marker and its clinicopathological significance. Mol Cell Biochem 476, 3935–3950 (2021). https://doi.org/10.1007/s11010-021-04216-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04216-z

Keywords

Navigation