Blendea MC, McFarlane SI, Isenovic ER, Gick G, Sowers JR (2003) Heart disease in diabetic patients. Curr Diab Rep 3:223–229. https://doi.org/10.1007/s11892-003-0068-z
Article
PubMed
Google Scholar
Black CN, Penninx BW, Bot M, Odegaard AO, Gross MD, Matthews KA, Jacobs DR (2016) Oxidative stress, anti-oxidants and the cross-sectional and longitudinal association with depressive symptoms: results from the CARDIA study. Transl Psychiatry 6:e743. https://doi.org/10.1038/tp.2016.5
CAS
Article
PubMed
PubMed Central
Google Scholar
Savoiu Balint GBC, Cristescu C, Andoni M, Simu GM, Malita D, Malita I, Cheveresan A (2011) Endogenous and exogenous antioxidant protection for endothelial dysfunction. Revista de Chimie (Rev. Chim.) 62:680–683
Google Scholar
Chen Q, Wang Q, Zhu J, Xiao Q, Zhang L (2018) Reactive oxygen species: key regulators in vascular health and diseases. Br J Pharmacol 175:1279–1292. https://doi.org/10.1111/bph.13828
CAS
Article
PubMed
Google Scholar
Sena CM, Leandro A, Azul L, Seiça R, Perry G (2018) Vascular oxidative stress: impact and therapeutic approaches. Front Physiol 9:1668. https://doi.org/10.3389/fphys.2018.01668
Article
PubMed
PubMed Central
Google Scholar
Sturza A, Popoiu CM, Ionică M, Duicu OM, Olariu S, Muntean DM, Boia ES (2019) Monoamine oxidase-related vascular oxidative stress in diseases associated with inflammatory burden. Oxid Med Cell Longev 2019:8954201. https://doi.org/10.1155/2019/8954201
CAS
Article
PubMed
PubMed Central
Google Scholar
Youdim MBH (2018) Monoamine oxidase inhibitors, and iron chelators in depressive illness and neurodegenerative diseases. J Neural Transm (Vienna) 125:1719–1733. https://doi.org/10.1007/s00702-018-1942-9
CAS
Article
Google Scholar
Di Lisa F, Kaludercic N, Carpi A, Menabò R, Giorgio M (2009) Mitochondria and vascular pathology. Pharmacol Rep 61:123–130. https://doi.org/10.1016/s1734-1140(09)70014-3
Article
PubMed
Google Scholar
Lighezan R, Sturza A, Duicu OM, Ceausu RA, Vaduva A, Gaspar M, Feier H, Vaida M, Ivan V, Lighezan D, Muntean DM, Mornos C (2016) Monoamine oxidase inhibition improves vascular function in mammary arteries from nondiabetic and diabetic patients with coronary heart disease. Can J Physiol Pharmacol 94:1040–1047. https://doi.org/10.1139/cjpp-2015-0580
CAS
Article
PubMed
Google Scholar
Sturza A, Duicu OM, Vaduva A, Dănilă MD, Noveanu L, Varró A, Muntean DM (2015) Monoamine oxidases are novel sources of cardiovascular oxidative stress in experimental diabetes. Can J Physiol Pharmacol 93:555–561. https://doi.org/10.1139/cjpp-2014-0544
CAS
Article
PubMed
Google Scholar
Sturza A, Leisegang MS, Babelova A, Schroder K, Benkhoff S, Loot AE, Fleming I, Schulz R, Muntean DM, Brandes RP (2013) Monoamine oxidases are mediators of endothelial dysfunction in the mouse aorta. Hypertension 62:140–146. https://doi.org/10.1161/hypertensionaha.113.01314
CAS
Article
PubMed
Google Scholar
World Health Organization. WHO model list of essential medicines. World Health Organization; 2011. http://www.who. int/medicines/publications/essentialmedicines/en/index.html. Accessed April 30.
LaMoia TE, Shulman GI (2020) Cellular and molecular mechanisms of metformin action. Endocr Rev. https://doi.org/10.1210/endrev/bnaa023
Article
PubMed Central
Google Scholar
Zilov AV, Abdelaziz SI, AlShammary A, Al Zahrani A, Amir A, Assaad Khalil SH, Brand K, Elkafrawy N, Hassoun AAK, Jahed A, Jarrah N, Mrabeti S, Paruk I (2019) Mechanisms of action of metformin with special reference to cardiovascular protection. Diabetes Metab Res Rev 35:e3173. https://doi.org/10.1002/dmrr.3173
Article
PubMed
PubMed Central
Google Scholar
Nesti L, Natali A (2017) Metformin effects on the heart and the cardiovascular system: A review of experimental and clinical data. Nutr Metab Cardiovasc Dis 27:657–669. https://doi.org/10.1016/j.numecd.2017.04.009
CAS
Article
PubMed
Google Scholar
Kinaan M, Ding H, Triggle CR (2015) Metformin: An old drug for the treatment of diabetes but a new drug for the protection of the endothelium. Med Princ Pract 24:401–415. https://doi.org/10.1159/000381643
Article
PubMed
PubMed Central
Google Scholar
Manzella D, Grella R, Esposito K, Giugliano D, Barbagallo M, Paolisso G (2004) Blood pressure and cardiac autonomic nervous system in obese type 2 diabetic patients: effect of metformin administration. Am J Hypertens 17:223–227. https://doi.org/10.1016/j.amjhyper.2003.11.006
CAS
Article
PubMed
Google Scholar
de Jager J, Kooy A, Schalkwijk C, van der Kolk J, Lehert P, Bets D, Wulffele MG, Donker AJ, Stehouwer CD (2014) Long-term effects of metformin on endothelial function in type 2 diabetes: a randomized controlled trial. J Intern Med 275:59–70. https://doi.org/10.1111/joim.12128
CAS
Article
PubMed
Google Scholar
Wulffele MG, Kooy A, Lehert P, Bets D, Donker AJ, Stehouwer CD (2005) Does metformin decrease blood pressure in patients with Type 2 diabetes intensively treated with insulin? Diabet Med 22:907–913. https://doi.org/10.1111/j.1464-5491.2005.01554.x
CAS
Article
PubMed
Google Scholar
de Aguiar LG, Bahia LR, Villela N, Laflor C, Sicuro F, Wiernsperger N, Bottino D, Bouskela E (2006) Metformin improves endothelial vascular reactivity in first-degree relatives of type 2 diabetic patients with metabolic syndrome and normal glucose tolerance. Diabetes Care 29:1083–1089. https://doi.org/10.2337/diacare.2951083
Article
PubMed
Google Scholar
Zhou JY, Poudel A, Welchko R, Mekala N, Chandramani-Shivalingappa P, Rosca MG, Li L (2019) Liraglutide improves insulin sensitivity in high fat diet induced diabetic mice through multiple pathways. Eur J Pharmacol 861:172594. https://doi.org/10.1016/j.ejphar.2019.172594
CAS
Article
PubMed
Google Scholar
Sturza A, Duicu OM, Vaduva A, Danila MD, Noveanu L, Varro A, Muntean DM (2015) Monoamine oxidases are novel sources of cardiovascular oxidative stress in experimental diabetes. Can J Physiol Pharmacol. https://doi.org/10.1139/cjpp-2014-0544
Article
PubMed
Google Scholar
Sturza A, Vaduva A, Utu D, Ratiu C, Pop N, Duicu O, Popoiu C, Boia E, Matusz P, Muntean DM, Olariu S (2018) Vitamin D improves vascular function and decreases monoamine oxidase A expression in experimental diabetes. Mol Cell Biochem. https://doi.org/10.1007/s11010-018-3429-2
Article
PubMed
Google Scholar
Danila MD, Privistirescu A, Duicu OM, Ratiu CD, Angoulvant D, Muntean DM, Sturza A (2017) The effect of purinergic signaling via the P2Y11 receptor on vascular function in a rat model of acute inflammation. Mol Cell Biochem. https://doi.org/10.1007/s11010-017-2973-5
Article
PubMed
Google Scholar
Duicu OM, Lighezan R, Sturza A, Balica R, Vaduva A, Feier H, Gaspar M, Ionac A, Noveanu L, Borza C, Muntean DM, Mornos C (2016) Assessment of Mitochondrial Dysfunction and Monoamine Oxidase Contribution to Oxidative Stress in Human Diabetic Hearts. Oxid Med Cell Longev 2016:8470394. https://doi.org/10.1155/2016/8470394
CAS
Article
PubMed
PubMed Central
Google Scholar
Miller JD, Chu Y, Brooks RM, Richenbacher WE, Pena-Silva R, Heistad DD (2008) Dysregulation of antioxidant mechanisms contributes to increased oxidative stress in calcific aortic valvular stenosis in humans. J Am Coll Cardiol 52:843–850. https://doi.org/10.1016/j.jacc.2008.05.043
CAS
Article
PubMed
PubMed Central
Google Scholar
Brandes RP, Weissmann N, Schröder K (2010) NADPH oxidases in cardiovascular disease. Free Radic Biol Med 49:687–706. https://doi.org/10.1016/j.freeradbiomed.2010.04.030
CAS
Article
PubMed
Google Scholar
Brandes RP, Weissmann N, Schröder K (2014) Nox family NADPH oxidases: Molecular mechanisms of activation. Free Radic Biol Med 76:208–226. https://doi.org/10.1016/j.freeradbiomed.2014.07.046
CAS
Article
PubMed
Google Scholar
King P, Peacock I, Donnelly R (1999) The UK prospective diabetes study (UKPDS): clinical and therapeutic implications for type 2 diabetes. Br J Clin Pharmacol 48:643–648. https://doi.org/10.1046/j.1365-2125.1999.00092.x
CAS
Article
PubMed
PubMed Central
Google Scholar
Griffin SJ, Leaver JK, Irving GJ (2017) Impact of metformin on cardiovascular disease: a meta-analysis of randomised trials among people with type 2 diabetes. Diabetologia 60:1620–1629. https://doi.org/10.1007/s00125-017-4337-9
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhou J, Massey S, Story D, Li L (2018) Metformin: An Old Drug with New Applications. Int J Mol Sci. https://doi.org/10.3390/ijms19102863
Article
PubMed
PubMed Central
Google Scholar
Ahmed FW, Bakhashab S, Bastaman IT, Crossland RE, Glanville M, Weaver JU (2018) Anti-Angiogenic miR-222, miR-195, and miR-21a Plasma Levels in T1DM Are Improved by Metformin Therapy, Thus Elucidating Its Cardioprotective Effect: The MERIT Study. Int J Mol Sci. https://doi.org/10.3390/ijms19103242
Article
PubMed
PubMed Central
Google Scholar
Dziubak A, Wójcicka G, Wojtak A, Bełtowski J (2018) Metabolic Effects of Metformin in the Failing Heart. Int J Mol Sci. https://doi.org/10.3390/ijms19102869
Article
PubMed
PubMed Central
Google Scholar
Albai O, Timar B, Paun DL, Sima A, Roman D, Timar R (2020) Metformin Treatment: A Potential Cause of Megaloblastic Anemia in Patients with Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 13:3873–3878. https://doi.org/10.2147/dmso.s270393
Article
PubMed
PubMed Central
Google Scholar
Cameron AR, Morrison VL, Levin D, Mohan M, Forteath C, Beall C, McNeilly AD, Balfour DJ, Savinko T, Wong AK, Viollet B, Sakamoto K, Fagerholm SC, Foretz M, Lang CC, Rena G (2016) Anti-Inflammatory Effects of Metformin Irrespective of Diabetes Status. Circ Res 119:652–665. https://doi.org/10.1161/circresaha.116.308445
CAS
Article
PubMed
PubMed Central
Google Scholar
Nafisa A, Gray SG, Cao Y, Wang T, Xu S, Wattoo FH, Barras M, Cohen N, Kamato D, Little PJ (2018) Endothelial function and dysfunction: Impact of metformin. Pharmacol Ther 192:150–162. https://doi.org/10.1016/j.pharmthera.2018.07.007
CAS
Article
PubMed
Google Scholar
McMurray F, Patten DA, Harper ME (2016) Reactive Oxygen Species and Oxidative Stress in Obesity-Recent Findings and Empirical Approaches. Obesity (Silver Spring) 24:2301–2310. https://doi.org/10.1002/oby.21654
CAS
Article
Google Scholar
Kutzer T, Dick M, Scudamore T, Wiener M, Schwartz T (2020) Antidepressant efficacy and side effect burden: an updated guide for clinicians. Drugs Context. https://doi.org/10.7573/dic.2020-2-2
Article
PubMed
PubMed Central
Google Scholar
Tipton KF (2018) 90 years of monoamine oxidase: some progress and some confusion. J Neural Transm (Vienna) 125:1519–1551. https://doi.org/10.1007/s00702-018-1881-5
CAS
Article
Google Scholar
Sturza A, Mirica SN, Duicu O, Gheorgheosu D, Noveanu L, Fira-Mladinescu O, Muntean DM (2013) Monoamine oxidase–a inhibition reverses endothelial dysfunction in hypertensive rat aortic rings. Rev Med Chir Soc Med Nat Iasi 117:165–171
CAS
PubMed
Google Scholar
Deshwal S, Di Sante M, Di Lisa F, Kaludercic N (2017) Emerging role of monoamine oxidase as a therapeutic target for cardiovascular disease. Curr Opin Pharmacol 33:64–69. https://doi.org/10.1016/j.coph.2017.04.003
CAS
Article
PubMed
Google Scholar
Kaludercic N, Carpi A, Menabò R, Di Lisa F, Paolocci N (2011) Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. Biochim Biophys Acta 1813:1323–1332. https://doi.org/10.1016/j.bbamcr.2010.09.010
CAS
Article
PubMed
Google Scholar
Kaludercic N, Mialet-Perez J, Paolocci N, Parini A, Di Lisa F (2014) Monoamine oxidases as sources of oxidants in the heart. J Mol Cell Cardiol 73:34–42. https://doi.org/10.1016/j.yjmcc.2013.12.032
CAS
Article
PubMed
Google Scholar
Muntean DM, Sturza A, Danila MD, Borza C, Duicu OM, Mornos C (2016) The Role of Mitochondrial Reactive Oxygen Species in Cardiovascular Injury and Protective Strategies. Oxid Med Cell Longev 2016:8254942. https://doi.org/10.1155/2016/8254942
CAS
Article
PubMed
PubMed Central
Google Scholar
Sturza A, Popoiu CM, Ionica M, Duicu OM, Olariu S, Muntean DM, Boia ES (2019) Monoamine Oxidase-Related Vascular Oxidative Stress in Diseases Associated with Inflammatory Burden. Oxid Med Cell Longev 2019:8954201. https://doi.org/10.1155/2019/8954201
CAS
Article
PubMed
PubMed Central
Google Scholar
Utu D, Pantea S, Duicu OM, Muntean DM, Sturza A (2017) Contribution of monoamine oxidases to vascular oxidative stress in patients with end-stage renal disease requiring hemodialysis. Can J Physiol Pharmacol 95:1383–1388. https://doi.org/10.1139/cjpp-2017-0067
CAS
Article
PubMed
Google Scholar
Sturza A, Olariu S, Ionică M, Duicu OM, Văduva AO, Boia E, Muntean DM, Popoiu CM (2019) Monoamine oxidase is a source of oxidative stress in obese patients with chronic inflammation (1). Can J Physiol Pharmacol 97:844–849. https://doi.org/10.1139/cjpp-2019-0028
CAS
Article
PubMed
Google Scholar
Ratiu C, Utu D, Petrus A, Norbert P, Olariu S, Duicu O, Sturza A, Muntean DM (2018) Monoamine oxidase inhibition improves vascular function and reduces oxidative stress in rats with lipopolysaccharide-induced inflammation. Gen Physiol Biophys 37:687–694. https://doi.org/10.4149/gpb_2018014
CAS
Article
PubMed
Google Scholar
Bułdak Ł, Łabuzek K, Bułdak RJ, Machnik G, Bołdys A, Basiak M, Bogusław O (2017) Metformin reduces the expression of NADPH oxidase and increases the expression of antioxidative enzymes in human monocytes/macrophages cultured in vitro. Exp Ther Med 13:794. https://doi.org/10.3892/etm.2016.3973
Article
PubMed
Google Scholar
Piwkowska A, Rogacka D, Jankowski M, Angielski S (2013) Metformin reduces NAD(P)H oxidase activity in mouse cultured podocytes through purinergic dependent mechanism by increasing extracellular ATP concentration. Acta Biochim Pol 60:607–612
PubMed
Google Scholar
Yu JW, Deng YP, Han X, Ren GF, Cai J, Jiang GJ (2016) Metformin improves the angiogenic functions of endothelial progenitor cells via activating AMPK/eNOS pathway in diabetic mice. Cardiovasc Diabetol 15:88. https://doi.org/10.1186/s12933-016-0408-3
CAS
Article
PubMed
PubMed Central
Google Scholar
Davis BJ, Xie Z, Viollet B, Zou MH (2006) Activation of the AMP-activated kinase by antidiabetes drug metformin stimulates nitric oxide synthesis in vivo by promoting the association of heat shock protein 90 and endothelial nitric oxide synthase. Diabetes 55:496–505. https://doi.org/10.2337/diabetes.55.02.06.db05-1064
CAS
Article
PubMed
Google Scholar
Eriksson L, Nyström T (2014) Activation of AMP-activated protein kinase by metformin protects human coronary artery endothelial cells against diabetic lipoapoptosis. Cardiovasc Diabetol 13:152. https://doi.org/10.1186/s12933-014-0152-5
CAS
Article
PubMed
PubMed Central
Google Scholar
Batchuluun B, Inoguchi T, Sonoda N, Sasaki S, Inoue T, Fujimura Y, Miura D, Takayanagi R (2014) Metformin and liraglutide ameliorate high glucose-induced oxidative stress via inhibition of PKC-NAD(P)H oxidase pathway in human aortic endothelial cells. Atherosclerosis 232:156–164. https://doi.org/10.1016/j.atherosclerosis.2013.10.025
CAS
Article
PubMed
Google Scholar
Cheang WS, Tian XY, Wong WT, Lau CW, Lee SS, Chen ZY, Yao X, Wang N, Huang Y (2014) Metformin protects endothelial function in diet-induced obese mice by inhibition of endoplasmic reticulum stress through 5’ adenosine monophosphate-activated protein kinase-peroxisome proliferator-activated receptor δ pathway. Arterioscler Thromb Vasc Biol 34:830–836. https://doi.org/10.1161/atvbaha.113.301938
CAS
Article
PubMed
Google Scholar
Pyla R, Osman I, Pichavaram P, Hansen P, Segar L (2014) Metformin exaggerates phenylephrine-induced AMPK phosphorylation independent of CaMKKβ and attenuates contractile response in endothelium-denuded rat aorta. Biochem Pharmacol 92:266–279. https://doi.org/10.1016/j.bcp.2014.08.024
CAS
Article
PubMed
PubMed Central
Google Scholar
Yee SW, Lin L, Merski M, Keiser MJ, Gupta A, Zhang Y, Chien HC, Shoichet BK, Giacomini KM (2015) Prediction and validation of enzyme and transporter off-targets for metformin. J Pharmacokinet Pharmacodyn 42:463–475. https://doi.org/10.1007/s10928-015-9436-y
CAS
Article
PubMed
PubMed Central
Google Scholar
Sturza A, Duicu OM, Vaduva A, Danila MD, Noveanu L, Varro A, Muntean DM (2015) Monoamine oxidases are novel sources of cardiovascular oxidative stress in experimental diabetes. Can J Physiol Pharmacol 93:555–561. https://doi.org/10.1139/cjpp-2014-0544
CAS
Article
PubMed
Google Scholar
Abudawood M (2019) Diabetes and cancer: A comprehensive review. J Res Med Sci 24:94. https://doi.org/10.4103/jrms.JRMS_242_19
CAS
Article
PubMed
PubMed Central
Google Scholar
Shrestha M, Ng A, Al-Ghareeb A, Alenazi F, Gray R (2020) Association between subthreshold depression and self-care behaviors in people with type 2 diabetes: a systematic review of observational studies. Syst Rev 9:45. https://doi.org/10.1186/s13643-020-01302-z
Article
PubMed
PubMed Central
Google Scholar
Guo M, Mi J, Jiang QM, Xu JM, Tang YY, Tian G, Wang B (2014) Metformin may produce antidepressant effects through improvement of cognitive function among depressed patients with diabetes mellitus. Clin Exp Pharmacol Physiol 41:650–656. https://doi.org/10.1111/1440-1681.12265
CAS
Article
PubMed
Google Scholar
Binda C, Aldeco M, Geldenhuys WJ, Tortorici M, Mattevi A, Edmondson DE (2011) Molecular Insights into Human Monoamine Oxidase B Inhibition by the Glitazone Anti-Diabetes Drugs. ACS Med Chem Lett 3:39–42. https://doi.org/10.1021/ml200196p
CAS
Article
PubMed
PubMed Central
Google Scholar