Skip to main content

Advertisement

Log in

Non-coding RNA: insights into the mechanism of methamphetamine neurotoxicity

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Chronic exposure of the methamphetamine has been shown to lead to neurotoxicity in rodents and humans. The manifestations of methamphetamine neurotoxicity include methamphetamine use disorder, methamphetamine abuse, methamphetamine addiction and methamphetamine behavioral sensitization. Repeated use of methamphetamine can cause methamphetamine use disorder. The abuse and addiction of methamphetamine are growing epidemic worldwide. Repeated intermittent exposure to methamphetamine can cause behavioral sensitization. In addition, many studies have shown that changes in the expression of non-coding RNA in the ventral tegmental area and nucleus accumbens will affect the behavioral effects of methamphetamine. Non-coding RNA plays an important role in the behavioral effects of methamphetamine. Therefore, it is important to study the relationship between methamphetamine and non-coding RNA. The purpose of this review is to study the non-coding RNA associated with methamphetamine neurotoxicity to search for the possible therapeutic target of the methamphetamine neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

Code availability

Not applicable.

References

  1. Kariisa M, Scholl L, Wilson N, Seth P, Hoots B (2019) Drug overdose deaths involving cocaine and psychostimulants with abuse potential—United States, 2003–2017. MMWR Morb Mortal Wkly Rep 68(17):388–395. https://doi.org/10.15585/mmwr.mm6817a3

    Article  PubMed  PubMed Central  Google Scholar 

  2. <CCSA-Canadian-Drug-Summary-Methamphetamine-2020-en.pdf>

  3. Merz F (2018) United Nations Office on Drugs and Crime: World Drug Report 2017. Sirius—Ztschrift Für Strategische Analysen 2

  4. <Key Substance Use and Mental Health Indicators in the United States_ Results from the 2018 National Survey on Drug Use and Health.pdf>

  5. Ciccarone D (2011) Stimulant abuse: pharmacology, cocaine, methamphetamine, treatment, attempts at pharmacotherapy. Prim Care 38(1):41–58. https://doi.org/10.1016/j.pop.2010.11.004

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kuczenski R, Segal DS, Cho AK, Melega W (1995) Hippocampus norepinephrine, caudate dopamine and serotonin, and behavioral responses to the stereoisomers of amphetamine and methamphetamine. J Neurosci 15(2):1308–1317. https://doi.org/10.1523/jneurosci.15-02-01308.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Melega WP, Cho AK, Schmitz D, Kuczenski R, Segal DS (1999) l-methamphetamine pharmacokinetics and pharmacodynamics for assessment of in vivo deprenyl-derived l-methamphetamine. J Pharmacol Exp Ther 288(2):752–758

    CAS  PubMed  Google Scholar 

  8. Mendelson J, Uemura N, Harris D, Nath RP, Fernandez E, Jacob P 3rd, Everhart ET, Jones RT (2006) Human pharmacology of the methamphetamine stereoisomers. Clin Pharmacol Ther 80(4):403–420. https://doi.org/10.1016/j.clpt.2006.06.013

    Article  CAS  PubMed  Google Scholar 

  9. Xue Z, Siemian JN, Zhu Q, Blough BE, Li JX (2019) Further pharmacological comparison of d-methamphetamine and l-methamphetamine in rats: abuse-related behavioral and physiological indices. Behav Pharmacol 30(5):422–428. https://doi.org/10.1097/fbp.0000000000000453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wilson JM, Kalasinsky KS, Levey AI, Bergeron C, Reiber G, Anthony RM, Schmunk GA, Shannak K, Haycock JW, Kish SJ (1996) Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Nat Med 2(6):699–703. https://doi.org/10.1038/nm0696-699

    Article  CAS  PubMed  Google Scholar 

  11. Moszczynska A, Fitzmaurice P, Ang L, Kalasinsky KS, Schmunk GA, Peretti FJ, Aiken SS, Wickham DJ, Kish SJ (2004) Why is parkinsonism not a feature of human methamphetamine users? Brain 127(Pt 2):363–370. https://doi.org/10.1093/brain/awh046

    Article  PubMed  Google Scholar 

  12. Sekine Y, Iyo M, Ouchi Y, Matsunaga T, Tsukada H, Okada H, Yoshikawa E, Futatsubashi M, Takei N, Mori N (2001) Methamphetamine-related psychiatric symptoms and reduced brain dopamine transporters studied with PET. Am J Psychiatry 158(8):1206–1214. https://doi.org/10.1176/appi.ajp.158.8.1206

    Article  CAS  PubMed  Google Scholar 

  13. Sekine Y, Ouchi Y, Takei N, Yoshikawa E, Nakamura K, Futatsubashi M, Okada H, Minabe Y, Suzuki K, Iwata Y, Tsuchiya KJ, Tsukada H, Iyo M, Mori N (2006) Brain serotonin transporter density and aggression in abstinent methamphetamine abusers. Arch Gen Psychiatry 63(1):90–100. https://doi.org/10.1001/archpsyc.63.1.90

    Article  CAS  PubMed  Google Scholar 

  14. Kish SJ, Fitzmaurice PS, Boileau I, Schmunk GA, Ang LC, Furukawa Y, Chang LJ, Wickham DJ, Sherwin A, Tong J (2009) Brain serotonin transporter in human methamphetamine users. Psychopharmacology 202(4):649–661. https://doi.org/10.1007/s00213-008-1346-x

    Article  CAS  PubMed  Google Scholar 

  15. Shin EJ, Dang DK, Tran TV, Tran HQ, Jeong JH, Nah SY, Jang CG, Yamada K, Nabeshima T, Kim HC (2017) Current understanding of methamphetamine-associated dopaminergic neurodegeneration and psychotoxic behaviors. Arch Pharm Res 40(4):403–428. https://doi.org/10.1007/s12272-017-0897-y

    Article  CAS  PubMed  Google Scholar 

  16. Cruickshank CC, Dyer KR (2009) A review of the clinical pharmacology of methamphetamine. Addiction 104(7):1085–1099. https://doi.org/10.1111/j.1360-0443.2009.02564.x

    Article  PubMed  Google Scholar 

  17. Courtney KE, Ray LA (2014) Methamphetamine: an update on epidemiology, pharmacology, clinical phenomenology, and treatment literature. Drug Alcohol Depend 143:11–21. https://doi.org/10.1016/j.drugalcdep.2014.08.003

    Article  CAS  PubMed  Google Scholar 

  18. Siegel G, Saba R, Schratt G (2011) microRNAs in neurons: manifold regulatory roles at the synapse. Curr Opin Genet Dev 21(4):491–497. https://doi.org/10.1016/j.gde.2011.04.008

    Article  CAS  PubMed  Google Scholar 

  19. Correia de Sousa M, Gjorgjieva M, Dolicka D, Sobolewski C, Foti M (2019) Deciphering miRNAs’ action through miRNA editing. Int J Mol Sci 20(24):6249. https://doi.org/10.3390/ijms20246249

  20. Sauvageau M, Goff LA, Lodato S, Bonev B, Groff AF, Gerhardinger C, Sanchez-Gomez DB, Hacisuleyman E, Li E, Spence M, Liapis SC, Mallard W, Morse M, Swerdel MR, D’Ecclessis MF, Moore JC, Lai V, Gong G, Yancopoulos GD, Frendewey D, Kellis M, Hart RP, Valenzuela DM, Arlotta P, Rinn JL (2013) Multiple knockout mouse models reveal lincRNAs are required for life and brain development. Elife 2:e01749. https://doi.org/10.7554/eLife.01749

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhu J, Fu H, Wu Y, Zheng X (2013) Function of lncRNAs and approaches to lncRNA-protein interactions. Sci China Life Sci 56(10):876–885. https://doi.org/10.1007/s11427-013-4553-6

    Article  CAS  PubMed  Google Scholar 

  22. Ferrè F, Colantoni A, Helmer-Citterich M (2016) Revealing protein-lncRNA interaction. Brief Bioinform 17(1):106–116. https://doi.org/10.1093/bib/bbv031

    Article  CAS  PubMed  Google Scholar 

  23. Zhang HD, Jiang LH, Sun DW, Hou JC, Ji ZL (2018) CircRNA: a novel type of biomarker for cancer. Breast Cancer 25(1):1–7. https://doi.org/10.1007/s12282-017-0793-9

    Article  PubMed  Google Scholar 

  24. Rong D, Sun H, Li Z, Liu S, Dong C, Fu K, Tang W, Cao H (2017) An emerging function of circRNA-miRNAs-mRNA axis in human diseases. Oncotarget 8(42):73271–73281. https://doi.org/10.18632/oncotarget.19154

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kitamura O, Takeichi T, Wang EL, Tokunaga I, Ishigami A, Kubo S (2010) Microglial and astrocytic changes in the striatum of methamphetamine abusers. Leg Med (Tokyo) 12(2):57–62. https://doi.org/10.1016/j.legalmed.2009.11.001

    Article  CAS  Google Scholar 

  26. Xu E, Liu J, Liu H, Wang X, Xiong H (2017) Role of microglia in methamphetamine-induced neurotoxicity. Int J Physiol Pathophysiol Pharmacol 9(3):84–100

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kuhn DM, Angoa-Pérez M, Thomas DM (2011) Nucleus accumbens invulnerability to methamphetamine neurotoxicity. Ilar j 52(3):352–365. https://doi.org/10.1093/ilar.52.3.352

    Article  CAS  PubMed  Google Scholar 

  28. Kousik SM, Napier TC, Carvey PM (2012) The effects of psychostimulant drugs on blood brain barrier function and neuroinflammation. Front Pharmacol 3:121. https://doi.org/10.3389/fphar.2012.00121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Segal DL, Marty MA, Coolidge FL (2013) Diagnostic and Statistical Manual of Mental Disorders, 5th edn (DSM-5)

  30. Zhao Y, Zhang K, Jiang H, Du J, Na Z, Hao W, Yu S, Zhao M (2016) Decreased expression of plasma microRNA in patients with methamphetamine (MA) use disorder. J Neuroimmune Pharmacol 11(3):542–548. https://doi.org/10.1007/s11481-016-9671-z

    Article  PubMed  Google Scholar 

  31. Zhang K, Wang Q, Jing X, Zhao Y, Jiang H, Du J, Yu S, Zhao M (2016) miR-181a is a negative regulator of GRIA2 in methamphetamine-use disorder. Sci Rep 6:35691. https://doi.org/10.1038/srep35691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Krasnova IN, Justinova Z, Cadet JL (2016) Methamphetamine addiction: involvement of CREB and neuroinflammatory signaling pathways. Psychopharmacology 233(10):1945–1962. https://doi.org/10.1007/s00213-016-4235-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. <methamphetamine-research-report.pdf>

  34. Rusyniak DE (2013) Neurologic manifestations of chronic methamphetamine abuse. Psychiatr Clin North Am 36(2):261–275. https://doi.org/10.1016/j.psc.2013.02.005

    Article  PubMed  PubMed Central  Google Scholar 

  35. Akindipe T, Wilson D, Stein DJ (2014) Psychiatric disorders in individuals with methamphetamine dependence: prevalence and risk factors. Metab Brain Dis 29(2):351–357. https://doi.org/10.1007/s11011-014-9496-5

    Article  CAS  PubMed  Google Scholar 

  36. Panenka WJ, Procyshyn RM, Lecomte T, MacEwan GW, Flynn SW, Honer WG, Barr AM (2013) Methamphetamine use: a comprehensive review of molecular, preclinical and clinical findings. Drug Alcohol Depend 129(3):167–179. https://doi.org/10.1016/j.drugalcdep.2012.11.016

    Article  CAS  PubMed  Google Scholar 

  37. Bai Y, Zhang Y, Hua J, Yang X, Zhang X, Duan M, Zhu X, Huang W, Chao J, Zhou R, Hu G, Yao H (2016) Silencing microRNA-143 protects the integrity of the blood-brain barrier: implications for methamphetamine abuse. Sci Rep 6:35642. https://doi.org/10.1038/srep35642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang L, Han B, Zhang Y, Bai Y, Chao J, Hu G, Yao H (2018) Engagement of circular RNA HECW2 in the nonautophagic role of ATG5 implicated in the endothelial-mesenchymal transition. Autophagy 14(3):404–418. https://doi.org/10.1080/15548627.2017.1414755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang Y, Shen K, Bai Y, Lv X, Huang R, Zhang W, Chao J, Nguyen LK, Hua J, Gan G, Hu G, Yao H (2016) Mir143-BBC3 cascade reduces microglial survival via interplay between apoptosis and autophagy: Implications for methamphetamine-mediated neurotoxicity. Autophagy 12(9):1538–1559. https://doi.org/10.1080/15548627.2016.1191723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Du L, Shen K, Bai Y, Chao J, Hu G, Zhang Y, Yao H (2019) Involvement of NLRP3 inflammasome in methamphetamine-induced microglial activation through miR-143/PUMA axis. Toxicol Lett 301:53–63. https://doi.org/10.1016/j.toxlet.2018.10.020

    Article  CAS  PubMed  Google Scholar 

  41. Huang R, Zhang Y, Han B, Bai Y, Zhou R, Gan G, Chao J, Hu G, Yao H (2017) Circular RNA HIPK2 regulates astrocyte activation via cooperation of autophagy and ER stress by targeting MIR124-2HG. Autophagy 13(10):1722–1741. https://doi.org/10.1080/15548627.2017.1356975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Meade CS, Towe SL, Watt MH, Lion RR, Myers B, Skinner D, Kimani S, Pieterse D (2015) Addiction and treatment experiences among active methamphetamine users recruited from a township community in Cape Town, South Africa: a mixed-methods study. Drug Alcohol Depend 152:79–86. https://doi.org/10.1016/j.drugalcdep.2015.04.016

    Article  PubMed  PubMed Central  Google Scholar 

  43. Koob GF, Ahmed SH, Boutrel B, Chen SA, Kenny PJ, Markou A, O’Dell LE, Parsons LH, Sanna PP (2004) Neurobiological mechanisms in the transition from drug use to drug dependence. Neurosci Biobehav Rev 27(8):739–749. https://doi.org/10.1016/j.neubiorev.2003.11.007

    Article  CAS  PubMed  Google Scholar 

  44. Bosch PJ, Benton MC, Macartney-Coxson D, Kivell BM (2015) mRNA and microRNA analysis reveals modulation of biochemical pathways related to addiction in the ventral tegmental area of methamphetamine self-administering rats. BMC Neurosci 16:43. https://doi.org/10.1186/s12868-015-0186-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhu L, Zhu J, Liu Y, Chen Y, Li Y, Chen S, Li T, Dang Y, Chen T (2015) Chronic methamphetamine regulates the expression of MicroRNAs and putative target genes in the nucleus accumbens of mice. J Neurosci Res 93(10):1600–1610. https://doi.org/10.1002/jnr.23605

    Article  CAS  PubMed  Google Scholar 

  46. Sim MS, Soga T, Pandy V, Wu YS, Parhar IS, Mohamed Z (2017) MicroRNA expression signature of methamphetamine use and addiction in the rat nucleus accumbens. Metab Brain Dis 32(6):1767–1783. https://doi.org/10.1007/s11011-017-0061-x

    Article  CAS  PubMed  Google Scholar 

  47. Li HC, Lin YB, Li C, Luo CH, Zhou YT, Ou JY, Li J, Mo ZX (2018) Expression of miRNAs in serum exosomes versus hippocampus in methamphetamine-induced rats and intervention of rhynchophylline. Evid Based Complement Alternat Med 2018:8025062. https://doi.org/10.1155/2018/8025062

    Article  PubMed  PubMed Central  Google Scholar 

  48. Li J, Shi Q, Wang Q, Tan X, Pang K, Liu X, Zhu S, Xi K, Zhang J, Gao Q, Hu Y, Sun J (2019) Profiling circular RNA in methamphetamine-treated primary cortical neurons identified novel circRNAs related to methamphetamine addiction. Neurosci Lett 701:146–153. https://doi.org/10.1016/j.neulet.2019.02.032

    Article  CAS  PubMed  Google Scholar 

  49. Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev 18(3):247–291. https://doi.org/10.1016/0165-0173(93)90013-p

    Article  CAS  PubMed  Google Scholar 

  50. Paulson PE, Camp DM, Robinson TE (1991) Time course of transient behavioral depression and persistent behavioral sensitization in relation to regional brain monoamine concentrations during amphetamine withdrawal in rats. Psychopharmacology 103(4):480–492. https://doi.org/10.1007/bf02244248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res 396(2):157–198. https://doi.org/10.1016/s0006-8993(86)80193-7

    Article  CAS  PubMed  Google Scholar 

  52. Antelman SM, Eichler AJ, Black CA, Kocan D (1980) Interchangeability of stress and amphetamine in sensitization. Science 207(4428):329–331. https://doi.org/10.1126/science.7188649

    Article  CAS  PubMed  Google Scholar 

  53. Jing L, Liu B, Zhang M, Liang JH (2018) Involvement of dopamine D2 receptor in a single methamphetamine-induced behavioral sensitization in C57BL/6J mice. Neurosci Lett 681:87–92. https://doi.org/10.1016/j.neulet.2018.02.067

    Article  CAS  PubMed  Google Scholar 

  54. Zhu L, Zhu J, Liu Y, Chen Y, Li Y, Huang L, Chen S, Li T, Dang Y, Chen T (2015) Methamphetamine induces alterations in the long non-coding RNAs expression profile in the nucleus accumbens of the mouse. BMC Neurosci 16:18. https://doi.org/10.1186/s12868-015-0157-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ni T, Li Y, Wang R, Hu T, Guan F, Zhu L, Han W, Chen T (2019) The potential involvement of miR-204-3p-axon guidance network in methamphetamine-induced locomotor sensitization of mice. Neurosci Lett 707:134303. https://doi.org/10.1016/j.neulet.2019.134303

    Article  CAS  PubMed  Google Scholar 

  56. Su H, Zhu L, Li J, Wang R, Liu D, Han W, Cadet JL, Chen T (2019) Regulation of microRNA-29c in the nucleus accumbens modulates methamphetamine-induced locomotor sensitization in mice. Neuropharmacology 148:160–168. https://doi.org/10.1016/j.neuropharm.2019.01.007

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This review was funded by National Natural Science Foundation of China (No. 81973404, 81503058); Department of Education of Liaoning Province (No. JC2019034); and Natural Science Foundation of Liaoning Province (No. 2014021065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Wang.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, YJ., Chen, L., Cheng, L. et al. Non-coding RNA: insights into the mechanism of methamphetamine neurotoxicity. Mol Cell Biochem 476, 3319–3328 (2021). https://doi.org/10.1007/s11010-021-04160-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04160-y

Keywords

Navigation