Skip to main content

Advertisement

Log in

LncRNA TUG1 exhibits pro-fibrosis activity in hypertrophic scar through TAK1/YAP/TAZ pathway via miR-27b-3p

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hypertrophic Scar (HS) is a complicated fibrotic disease. In addition, its pathogenesis is still to be further explored. Long non-coding RNAs (lncRNAs) have been proved to be participated in multiple diseases, including HS. However, the role of lncRNA TUG1 in HS remains unclear. The expression level of RNA and protein in cells were detected by q-PCR and western blot, respectively. MTT assay was performed to test the cell proliferation. Cell migration was detected by transwell assay. Cell apoptosis was measured by flow cytometry. Dual luciferase report assay and RNA pull down were used to verify the relationship between TUG1, miR-27b-3p and TAK1.TUG1 and TAK1 were upregulated in HS, while miR-27b-3p was downregulated. Knockdown of TUG1 significantly suppressed the proliferation and migration and induced the apoptosis of HS fibroblasts (HSF). In addition, silencing of TUG1 notably inhibited the extracellular matrix (ECM) biosynthesis in HSF. Overexpression of miR-27b-3p has the same effect on HS as that of TUG1 knockdown. Meanwhile, TUG1 could sponge miR-27b-3p, and TAK1 was the direct target of miR-27b-3p. Furthermore, knockdown of TUG1 significantly suppressed the fibrosis in HS via miR-27b-3p/TAK1/YAP/TAZ axis mediation. LncRNA TUG1 promotes the fibrosis in HS via sponging miR-27b-3p and then activates TAK1/YAP/TAZ pathway, which may serve as a potential target for treatment of HS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

TAK1:

TGF-β-activated kinase-1

YAP:

Yes-activated protein

TAZ:

Traffic analysis zones

TUG1:

Taurine-upregulated gene 1

HS:

Hypertrophic scar

NS:

Normal skin

HSF:

HS fibroblasts

NSF:

NS fibroblasts

collagen I:

COL1A1

collagen III:

COL3A1

fibronectin 1:

FN1

References

  1. Zhou Y, Zhao Y, Du H, Suo Y, Chen H, Li H, Liang X, Li Q, Huang X (2020) Downregulation of CFTR is involved in the formation of hypertrophic scars. Biomed Res Int 2020:9526289. https://doi.org/10.1155/2020/9526289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ilies RF, Catana A, Popp R, Aioanei CS, Halmagyi SR, Lukacs I, Tokes RE, Rotar IC, Pop IV (2019) The influence of GSTT/GSTM null genotypes in scarring. Med Pharm Rep 92:S73–S77. https://doi.org/10.15386/mpr-1513

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cai W, Xu H, Zhang B, Gao X, Li S, Wei Z, Li S, Mao N, Jin F, Li Y, Liu H, Yang F (2020) Differential expression of lncRNAs during silicosis and the role of LOC103691771 in myofibroblast differentiation induced by TGF-beta1. Biomed Pharmacother 125:109980. https://doi.org/10.1016/j.biopha.2020.109980

    Article  CAS  PubMed  Google Scholar 

  4. Xu J, Sun Y, Lu J (2020) Knockdown of long noncoding RNA (lncRNA) AK094457 relieved angiotensin II induced vascular endothelial cell injury. Med Sci Monit 26:e919854. https://doi.org/10.12659/MSM.919854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ying X, Zhu Y, Jin X, Chang X (2020) Umbilical cord plasma-derived exosomes from preeclamptic women induce vascular dysfunction by targeting HMGCS1 in endothelial cells. Placenta 103:86–93. https://doi.org/10.1016/j.placenta.2020.10.022

    Article  CAS  PubMed  Google Scholar 

  6. Akkipeddi SMK, Velleca AJ, Carone DM (2020) Probing the function of long noncoding RNAs in the nucleus. Chromosome Res. https://doi.org/10.1007/s10577-019-09625-x

    Article  PubMed  PubMed Central  Google Scholar 

  7. Huang J, Sun R, Sun B (2020) Identification and evaluation of hub mRNAs and long non-coding RNAs in neutrophils during sepsis. Inflamm Res. https://doi.org/10.1007/s00011-020-01323-3

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tu L, Huang Q, Fu S, Liu D (2018) Aberrantly expressed long noncoding RNAs in hypertrophic scar fibroblasts in vitro: a microarray study. Int J Mol Med 41:1917–1930. https://doi.org/10.3892/ijmm.2018.3430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nong Q, Li S, Wu Y, Liu D (2018) LncRNA COL1A2-AS1 inhibits the scar fibroblasts proliferation via regulating miR-21/Smad7 pathway. Biochem Biophys Res Commun 495:319–324. https://doi.org/10.1016/j.bbrc.2017.11.027

    Article  CAS  PubMed  Google Scholar 

  10. Zhu Y, Feng Z, Jian Z, Xiao Y (2018) Long noncoding RNA TUG1 promotes cardiac fibroblast transformation to myofibroblasts via miR29c in chronic hypoxia. Mol Med Rep 18:3451–3460. https://doi.org/10.3892/mmr.2018.9327

    Article  CAS  PubMed  Google Scholar 

  11. Du SS, Zuo XJ, Xin Y, Man JX, Wu ZL (2020) Expression of lncRNA TUG1 in hypertensive patients and its relationship with change state of an illness. Eur Rev Med Pharmacol Sci 24:870–877. https://doi.org/10.26355/eurrev_202001_20071

    Article  PubMed  Google Scholar 

  12. Hao SD, Ma JX, Liu Y, Liu PJ, Qin Y (2020) Long non-coding TUG1 accelerates prostate cancer progression through regulating miR-128-3p/YES1 axis. Eur Rev Med Pharmacol Sci 24:619–632. https://doi.org/10.26355/eurrev_202001_20038

    Article  PubMed  Google Scholar 

  13. Han X, Hong Y, Zhang K (2018) TUG1 is involved in liver fibrosis and activation of HSCs by regulating miR-29b. Biochem Biophys Res Commun 503:1394–1400. https://doi.org/10.1016/j.bbrc.2018.07.054

    Article  CAS  PubMed  Google Scholar 

  14. Lv X, Li J, Hu Y, Wang S, Yang C, Li C, Zhong G (2019) Overexpression of miR-27b-3p targeting Wnt3a regulates the signaling pathway of wnt/beta-catenin and attenuates atrial fibrosis in rats with atrial fibrillation. Oxid Med Cell Longev 2019:5703764. https://doi.org/10.1155/2019/5703764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Graham JR, Williams CM, Yang Z (2014) MicroRNA-27b targets gremlin 1 to modulate fibrotic responses in pulmonary cells. J Cell Biochem 115:1539–1548. https://doi.org/10.1002/jcb.24809

    Article  CAS  PubMed  Google Scholar 

  16. Ning P, Peng Y, Liu DW, Hu YH, Liu Y and Liu DM (2016) Tetrandrine induces microRNA differential expression in human hypertrophic scar fibroblasts in vitro. Genet Mol Res 15. doi: https://doi.org/10.4238/gmr.15017288

  17. Wu Y, Hu Y, Wang B, Li S, Ma C, Liu X, Moynagh PN, Zhou J, Yang S (2020) Dopamine uses the DRD5-ARRB2-PP2A signaling axis to block the TRAF6-mediated NF-kappaB pathway and suppress systemic inflammation. Mol Cell 78(42–56):e6. https://doi.org/10.1016/j.molcel.2020.01.022

    Article  CAS  Google Scholar 

  18. Kaminska B, Cyranowski S (2020) Recent advances in understanding mechanisms of TGF beta signaling and its role in glioma pathogenesis. Adv Exp Med Biol 1202:179–201. https://doi.org/10.1007/978-3-030-30651-9_9

    Article  CAS  PubMed  Google Scholar 

  19. Kim EN, Gao M, Choi H and Jeong GS (2020) Marine Microorganism-Derived Macrolactins Inhibit Inflammatory Mediator Effects in LPS-Induced Macrophage and Microglial Cells by Regulating BACH1 and HO-1/Nrf2 Signals through Inhibition of TLR4 Activation. Molecules 25. doi: https://doi.org/10.3390/molecules25030656

  20. Zhong W, Jiang H, Zou Y, Ren J, Li Z, He K, Zhao J, Zhou X, Mou D, Cai Y (2020) The YAP signaling pathway promotes the progression of lymphatic malformations through the activation of lymphatic endothelial cells. Pediatr Res. https://doi.org/10.1038/s41390-020-0863-0

    Article  PubMed  Google Scholar 

  21. Aravamudhan A, Haak AJ, Choi KM, Meridew JA, Caporarello N, Jones DL, Tan Q, Ligresti G and Tschumperlin DJ (2020) TBK1 regulates YAP/TAZ and fibrogenic fibroblast activation. Am. J. Physiol. Lung Cell Mol. Physiol. doi: https://doi.org/10.1152/ajplung.00324.2019

  22. Santoro R, Zanotto M, Simionato F, Zecchetto C, Merz V, Cavallini C, Piro G, Sabbadini F, Boschi F, Scarpa A, Melisi D (2020) Modulating TAK1 expression inhibits YAP and TAZ oncogenic functions in pancreatic cancer. Mol Cancer Ther 19:247–257. https://doi.org/10.1158/1535-7163.MCT-19-0270

    Article  CAS  PubMed  Google Scholar 

  23. Li G, Zhang H, Wu J, Wang A, Yang F, Chen B, Gao Y, Ma X, Xu Y (2020) Hepcidin deficiency causes bone loss through interfering with the canonical Wnt/beta-catenin pathway via forkhead box O3a. J Orthop Translat 23:67–76. https://doi.org/10.1016/j.jot.2020.03.012

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bui AD, Grob SR, Tao JP (2020) 5-Fluorouracil management of oculofacial scars: a systematic literature review. Ophthalmic Plast Reconstr Surg. https://doi.org/10.1097/IOP.0000000000001532

    Article  PubMed  Google Scholar 

  25. Tutuianu R, Rosca AM, Florea G, Pruna V, Iacomi DM, Radulescu LA, Neagu TP, Lascar I, Titorencu ID (2019) Heterogeneity of human fibroblasts isolated from hypertrophic scar. Rom J Morphol Embryol 60:793–802

    PubMed  Google Scholar 

  26. Gold MH, Andriessen A, Bhatia AC, Bitter P Jr, Chilukuri S, Cohen JL, Robb CW (2020) Topical stabilized hypochlorous acid: the future gold standard for wound care and scar management in dermatologic and plastic surgery procedures. J Cosmet Dermatol 19:270–277. https://doi.org/10.1111/jocd.13280

    Article  PubMed  Google Scholar 

  27. Yuan FL, Wang J, Sun ZL, Wu QY, Li X, Lv GZ (2019) Comments on"Comparison of efficacy and safety of intralesional triamcinolone and combination of triamcinolone with 5-fluorouracil in the treatment of keloids and hypertrophic scars: randomisedcontrol trial". Burns. https://doi.org/10.1016/j.burns.2018.10.029

    Article  PubMed  Google Scholar 

  28. Chen J, Zhou R, Liang Y, Fu X, Wang D, Wang C (2019) Blockade of lncRNA-ASLNCS5088-enriched exosome generation in M2 macrophages by GW4869 dampens the effect of M2 macrophages on orchestrating fibroblast activation. FASEB J 33:12200–12212. https://doi.org/10.1096/fj.201901610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li M, Wang J, Liu D, Huang H (2018) Highthroughput sequencing reveals differentially expressed lncRNAs and circRNAs, and their associated functional network, in human hypertrophic scars. Mol Med Rep 18:5669–5682. https://doi.org/10.3892/mmr.2018.9557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang F, Gao X, Zhang R, Zhao P, Sun Y, Li C (2019) LncRNA TUG1 ameliorates diabetic nephropathy by inhibiting miR-21 to promote TIMP3-expression. Int J Clin Exp Pathol 12:717–729

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zang XJ, Li L, Du X, Yang B, Mei CL (2019) LncRNA TUG1 inhibits the proliferation and fibrosis of mesangial cells in diabetic nephropathy via inhibiting the PI3K/AKT pathway. Eur Rev Med Pharmacol Sci 23:7519–7525. https://doi.org/10.26355/eurrev_201909_18867

    Article  PubMed  Google Scholar 

  32. Wang S, Li C, Yu Y, Qiao J (2019) Decreased expression of microRNA-145 promotes the biological functions of fibroblasts in hypertrophic scar tissues by upregulating the expression of transcription factor SOX-9. Exp Ther Med 18:3450–3460. https://doi.org/10.3892/etm.2019.7972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Qi J, Liu Y, Hu K, Zhang Y, Wu Y, Zhang X (2019) MicroRNA-205-5p regulates extracellular matrix production in hyperplastic scars by targeting Smad2. Exp Ther Med 17:2284–2290. https://doi.org/10.3892/etm.2019.7187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen G, Chen Z, Zhao H (2020) MicroRNA-155-3p promotes glioma progression and temozolomide resistance by targeting Six1. J Cell Mol Med. https://doi.org/10.1111/jcmm.15192

    Article  PubMed  PubMed Central  Google Scholar 

  35. Murata Y, Yamashiro T, Kessoku T, Jahan I, Usuda H, Tanaka T, Okamoto T, Nakajima A, Wada K (2019) Up-regulated MicroRNA-27b promotes adipocyte differentiation via induction of Acyl-CoA thioesterase 2 expression. Biomed Res Int 2019:2916243. https://doi.org/10.1155/2019/2916243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu L, Liu D and Yang Y (2019) Enhanced expression of circular RNA circ-DCAF6 predicts adverse prognosis and promotes cell progression via sponging miR-1231 and miR-1256 in gastric cancer. Exp Mol Pathol 110:104273. doi: 10.1016/j.yexmp.2019.104273

  37. Liu Y, Liu K, Huang Y, Sun M, Tian Q, Zhang S, Qin Y (2020) TRIM25 promotes TNF-alpha-induced NF-kappaB activation through potentiating the K63-linked ubiquitination of TRAF2. J Immunol. https://doi.org/10.4049/jimmunol.1900482

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gao J, Wang Y, Zhang W, Zhang J, Lu S, Meng K, Yin X, Sun Z and He QY (2020) C20orf27 Promotes Cell Growth and Proliferation of Colorectal Cancer via the TGFbetaR-TAK1-NFkB Pathway. Cancers (Basel) 12. doi: https://doi.org/10.3390/cancers12020336

  39. Wei Q, Tu Y, Zuo L, Zhao J, Chang Z, Zou Y, Qiu J (2020) MiR-345-3p attenuates apoptosis and inflammation caused by oxidized low-density lipoprotein by targeting TRAF6 via TAK1/p38/NF-kB signaling in endothelial cells. Life Sci 241:117142. https://doi.org/10.1016/j.lfs.2019.117142

    Article  CAS  PubMed  Google Scholar 

  40. Iriondo O, Liu Y, Lee G, Elhodaky M, Jimenez C, Li L, Lang J, Wang P, Yu M (2018) TAK1 mediates microenvironment-triggered autocrine signals and promotes triple-negative breast cancer lung metastasis. Nat Commun 9:1994. https://doi.org/10.1038/s41467-018-04460-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tey SK, Tse EYT, Mao X, Ko FCF, Wong AST, Cheuk-Lam Lo R, Ng IO, Yam JWP (2017) Nuclear Met promotes hepatocellular carcinoma tumorigenesis and metastasis by upregulation of TAK1 and activation of NF-κB pathway. Cancer Lett. https://doi.org/10.1016/j.canlet.2017.09.047

    Article  PubMed  Google Scholar 

  42. Cui HS, Joo SY, Cho YS, Kim JB and Seo CH (2020) CPEB1 or CPEB4 knockdown suppresses the TAK1 and Smad signalings in THP-1 macrophage-like cells and dermal fibroblasts. Arch. Biochem. Biophys.:108322. doi: https://doi.org/10.1016/j.abb.2020.108322

  43. Wang J, Zhang Y, Zhang N, Wang C, Herrler T, Li Q (2015) An updated review of mechanotransduction in skin disorders: transcriptional regulators, ion channels, and microRNAs. Cell Mol Life Sci 72:2091–2106. https://doi.org/10.1007/s00018-015-1853-y

    Article  CAS  PubMed  Google Scholar 

  44. Haak AJ, Kostallari E, Sicard D, Ligresti G, Choi KM, Caporarello N, Jones DL, Tan Q, Meridew J, Diaz Espinosa AM, Aravamudhan A, Maiers JL, Britt RD, Roden AC, Pabelick CM, Prakash YS, Nouraie SM, Li X, Zhang Y, Kass DJ, Lagares D, Tager AM, Varelas X, Shah VH and Tschumperlin DJ (2019) Selective YAP/TAZ inhibition in fibroblasts via dopamine receptor D1 agonism reverses fibrosis. Sci Transl Med 11. doi: https://doi.org/10.1126/scitranslmed.aau6296

Download references

Acknowledgements

Not applicable.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

guarantor of integrity of the entire study: T-LZ; study concepts: X-ML; study design: X-ML, T-LZ; definition of intellectual content: W-YY, QC; literature research: H-RZ, S-YG; experimental studies: X-ML, W-YY; data acquisition: X-ML, T-LZ, QC; data analysis: X-ML, H-Ru Zhuang; statistical analysis: X-ML, H-RZ; manuscript preparation: X-ML, T-LZ; manuscript editing X-ML, S-YG; manuscript review: T-LZ.

Corresponding author

Correspondence to Tian-Lan Zhao.

Ethics declarations

Conflict of interest

These authors declared no competing interests in this study.

Ethics approval

This research was approved by Ethics Committee of The Second Affiliated Hospital of Soochow University.

Consent to participate

All patients were informed of the study and signed the written consent.

Consent for publication

The informed consent obtained from study participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XM., Yu, WY., Chen, Q. et al. LncRNA TUG1 exhibits pro-fibrosis activity in hypertrophic scar through TAK1/YAP/TAZ pathway via miR-27b-3p. Mol Cell Biochem 476, 3009–3020 (2021). https://doi.org/10.1007/s11010-021-04142-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04142-0

Keywords

Navigation