Skip to main content
Log in

Pleiotropic, non-cell death-associated effects of inhibitors of receptor-interacting protein kinase 1 in the heart

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Inhibition of receptor-interacting protein kinase 1 (RIP1) has been recognized as a compelling tool for limiting necroptosis. Recent findings have indicated that RIP1 inhibitor, necrostatin-1 (Nec-1), is also able to modify heart function under non-cell death conditions. In this study, we investigated its underlying molecular mechanisms and compared with those of novel pharmacologically improved agents (Nec-1s and GSK’772) and its inactive analog (Nec-1i). Heart function was examined in Langendorff-perfused rat hearts. Certain proteins regulating myocardial contraction–relaxation cycle and oxidative stress (OS) were evaluated by immunoblotting and as the extent of lipid peroxidation, protein carbonylation and nitration, respectively. In spite of the increase of left ventricular developed pressure (LVDP) due to treatment by both Nec-1 and Nec-1i, only the former agent increased the phosphorylation of Ca2+/calmodulin-dependent protein kinase II delta (CaMKIIδ) at threonine 287 and cardiac myosin-binding protein-C (cMyBPc) at serine 282. In contrast, Nec-1s did not elicit such changes, while it also increased LVDP. GSK’772 activated CaMKIIδ-phospholamban (PLN) axis. Neither protein kinase A (PKA) nor its selected molecular targets, such as serine 16 phosphorylated PLN and sarco/endoplasmic reticulum Ca2+-ATPase 2a (SERCA2a), were affected by either RIP1 inhibitor. Nec-1, like other necrostatins (Nec-1i, Nec-1s), but not GSK’772, elevated protein tyrosine nitration without affecting other markers of OS. In conclusion, this study indicated for the first time that Nec-1 may affect basal heart function by the modulation of OS and activation of some proteins of contraction–relaxation cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

BP:

Blood pressure

CaMKIIδ:

Ca2+/calmodulin-dependent protein kinase II delta

cMYBPc:

Cardiac myosin-binding protein-C

DNPH:

2,4-Dinitrophenylhydrazine

ECC:

Excitation–contraction coupling

EG:

Electrogram

GSK’772:

GSK2982772

HR:

Heart rate

IDO:

Indoleamine 2,3-dioxygenase

LVDP:

Left ventricular developed pressure

Nec-1:

Necrostatin-1

Nec-1i:

Necrostatin-1i

Nec-1s:

Necrostatin-1s

OS:

Oxidative stress

PKA:

Protein kinase A

PLN:

Phospholamban

PVDF:

Polyvinylidene difluoride

RIP1:

Receptor-interacting protein kinase 1

TBARS:

Thiobarbituric acid reactive substances

SERCA2a:

Sarco/endoplasmic reticulum Ca2+-ATPase

References

  1. Vandenabeele P, Declercq W, Van Herreweghe F, Vanden Berghe T (2010) The role of the kinases RIP1 and RIP3 in TNF-induced necrosis. Sci Signal 3(115):re4. https://doi.org/10.1126/scisignal.3115re4

    Article  CAS  PubMed  Google Scholar 

  2. Stanger BZ, Leder P, Lee T-H et al (1995) RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell 81:513–523. https://doi.org/10.1016/0092-8674(95)90072-1

    Article  CAS  PubMed  Google Scholar 

  3. Kang T-B, Jeong J-S, Yang S-H et al (2018) Caspase-8 deficiency in mouse embryos triggers chronic RIPK1-dependent activation of inflammatory genes, independently of RIPK3. Cell Death Differ 25:1107–1117. https://doi.org/10.1038/s41418-018-0104-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. O’Donnell MA, Legarda-Addison D, Skountzos P et al (2007) Ubiquitination of RIP1 regulates an NF-κB-independent cell death switch in TNF signaling. Curr Biol 17:418–424. https://doi.org/10.1016/j.cub.2007.01.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kelliher MA, Grimm S, Ishida Y et al (1998) The death domain kinase RIP mediates the TNF-induced NF-κB signal. Immunity 8:297–303. https://doi.org/10.1016/S1074-7613(00)80535-X

    Article  CAS  PubMed  Google Scholar 

  6. Degterev A, Hitomi J, Germscheid M et al (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4:313–321. https://doi.org/10.1038/nchembio.83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Moriwaki K, Chan FKM (2014) Necrosis-dependent and independent signaling of the RIP kinases in inflammation. Cytokine Growth Factor Rev 25:167–174

    Article  CAS  PubMed  Google Scholar 

  8. Takahashi N, Duprez L, Grootjans S et al (2012) Necrostatin-1 analogues: critical issues on the specificity, activity and in vivo use in experimental disease models. Cell Death Dis 3:e437–e437. https://doi.org/10.1038/cddis.2012.176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Oerlemans MIFJ, Liu J, Arslan F et al (2012) Inhibition of RIP1-dependent necrosis prevents adverse cardiac remodeling after myocardial ischemia–reperfusion in vivo. Basic Res Cardiol 107:270. https://doi.org/10.1007/s00395-012-0270-8

    Article  CAS  PubMed  Google Scholar 

  10. Adameova A, Hrdlicka J, Szobi A et al (2017) Evidence of necroptosis in hearts subjected to various forms of ischemic insults. https://doi.org/10.1139/cjpp-2016-0609

  11. Dmitriev YV, Minasian SM, Demchenko EA, Galagudza MM (2013) Study of cardioprotective effects of necroptosis inhibitors on isolated rat heart subjected to global ischemia-reperfusion. Bull Exp Biol Med 155:245–248. https://doi.org/10.1007/s10517-013-2124-2

    Article  CAS  PubMed  Google Scholar 

  12. Koudstaal S, Oerlemans MIFJ, Van der Spoel TIG et al (2015) Necrostatin-1 alleviates reperfusion injury following acute myocardial infarction in pigs. Eur J Clin Investig 45:150–159. https://doi.org/10.1111/eci.12391

    Article  CAS  Google Scholar 

  13. Szobi A, Farkašová-Ledvényiová V, Lichý M et al (2018) Cardioprotection of ischaemic preconditioning is associated with inhibition of translocation of MLKL within the plasma membrane. J Cell Mol Med 22:4183–4196. https://doi.org/10.1111/jcmm.13697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vandenabeele P, Grootjans S, Callewaert N, Takahashi N (2013) Necrostatin-1 blocks both RIPK1 and IDO: consequences for the study of cell death in experimental disease models. Cell Death Differ 20:185–187. https://doi.org/10.1038/cdd.2012.151

    Article  CAS  PubMed  Google Scholar 

  15. Harris PA, Berger SB, Jeong JU et al (2017) Discovery of a first-in-class receptor interacting protein 1 (RIP1) kinase specific clinical candidate (GSK2982772) for the treatment of inflammatory diseases. J Med Chem 60:1247–1261. https://doi.org/10.1021/acs.jmedchem.6b01751

    Article  CAS  PubMed  Google Scholar 

  16. Szobi A, Rajtik T, Adameova A (2016) Effects of necrostatin-1, an inhibitor of necroptosis, and its inactive analogue Nec-1i on basal cardiovascular function. Physiol Res 65:861–865

    Article  CAS  PubMed  Google Scholar 

  17. Dhalla NS, Elmoselhi AB, Hata T, Makino N (2000) Status of myocardial antioxidants in ischemia–reperfusion injury. Cardiovasc Res 47:446–456. https://doi.org/10.1016/s0008-6363(00)00078-x

    Article  CAS  PubMed  Google Scholar 

  18. Ulrich F, Ning X, Huige L (2017) Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res 120:713–735. https://doi.org/10.1161/CIRCRESAHA.116.309326

    Article  CAS  Google Scholar 

  19. Adameova A, Shah AK, Dhalla NS (2020) Role of oxidative stress in the genesis of ventricular arrhythmias. Int J Mol Sci 21:1–16. https://doi.org/10.3390/ijms21124200

    Article  CAS  Google Scholar 

  20. Degterev A, Huang Z, Boyce M et al (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112

    Article  CAS  PubMed  Google Scholar 

  21. Moritz CP (2017) Tubulin or not tubulin: heading toward total protein staining as loading control in Western blots. Proteomics 17:1600189. https://doi.org/10.1002/pmic.201600189

    Article  CAS  Google Scholar 

  22. Conrad CC, Talent JM, Malakowsky CA, Gracy RW (2000) Post-electrophoretic identification of oxidized proteins. Biol Proced Online 2:39–45. https://doi.org/10.1251/bpo17

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shlafer M, Shepard BM (1984) A method to reduce interference by sucrose in the detection of thiobarbituric acid-reactive substances. Anal Biochem 137:269–276. https://doi.org/10.1016/0003-2697(84)90084-8

    Article  CAS  PubMed  Google Scholar 

  24. Curtis MJ, Alexander S, Cirino G et al (2018) Experimental design and analysis and their reporting II: updated and simplified guidance for authors and peer reviewers. Br J Pharmacol 175:987–993. https://doi.org/10.1111/bph.14153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kirchberger MA, Tada M, Katz AM (1974) Adenosine 3’:5’-monophosphate-dependent protein kinase-catalyzed phosphorylation reaction and its relationship to calcium transport in cardiac sarcoplasmic reticulum. J Biol Chem 249:6166–6173

    Article  CAS  PubMed  Google Scholar 

  26. MacLennan DH, Kranias EG (2003) Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol 4:566–577. https://doi.org/10.1038/nrm1151

    Article  CAS  PubMed  Google Scholar 

  27. Anderson ME, Brown JH, Bers DM (2011) CaMKII in myocardial hypertrophy and heart failure. J Mol Cell Cardiol 51:468–473. https://doi.org/10.1016/j.yjmcc.2011.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Szobi A, Rajtik T, Carnicka S et al (2014) Mitigation of postischemic cardiac contractile dysfunction by CaMKII inhibition: effects on programmed necrotic and apoptotic cell death. Mol Cell Biochem 388:269–276. https://doi.org/10.1007/s11010-013-1918-x

    Article  CAS  PubMed  Google Scholar 

  29. Zhang T, Zhang Y, Cui M et al (2016) CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat Med. https://doi.org/10.1038/nm.4017

    Article  PubMed  PubMed Central  Google Scholar 

  30. Szobi A, Lichy M, Carnicka S et al (2016) Pleiotropic effects of simvastatin on some calcium regulatory and myofibrillar proteins in ischemic/reperfused heart: causality of statins cardioprotection? Curr Pharm Des 22:6451–6458. https://doi.org/10.2174/1381612822666160813235243

    Article  CAS  PubMed  Google Scholar 

  31. Grimm M, Brown JH (2010) Beta-adrenergic receptor signaling in the heart: role of CaMKII. J Mol Cell Cardiol 48:322–330. https://doi.org/10.1016/j.yjmcc.2009.10.016

    Article  CAS  PubMed  Google Scholar 

  32. Meoli DF, White RJ (2009) Thrombin induces fibronectin-specific migration of pulmonary microvascular endothelial cells: requirement of calcium/calmodulin-dependent protein kinase II. Am J Physiol Cell Mol Physiol 297:L706–L714. https://doi.org/10.1152/ajplung.90598.2008

    Article  CAS  Google Scholar 

  33. Muthalif MM, Karzoun NA, Benter IF et al (2002) Functional significance of activation of calcium/calmodulin-dependent protein kinase II in angiotensin II-induced vascular hyperplasia and hypertension. Hypertension (Dallas, Tex 1979) 39:704–709. https://doi.org/10.1161/hy0202.103823

    Article  CAS  Google Scholar 

  34. Prasad AM, Morgan DA, Nuno DW et al (2015) Calcium/calmodulin-dependent kinase II inhibition in smooth muscle reduces angiotensin II-induced hypertension by controlling aortic remodeling and baroreceptor function. J Am Heart Assoc 4:e001949–e001949. https://doi.org/10.1161/JAHA.115.001949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Neza A, Marjorie B, de Marion PS et al (2019) Camk2n1 is a negative regulator of blood pressure, left ventricular mass, insulin sensitivity, and promotes adiposity. Hypertension 74:687–696. https://doi.org/10.1161/HYPERTENSIONAHA.118.12409

    Article  CAS  Google Scholar 

  36. Sadayappan S, Gulick J, Osinska H et al (2005) Cardiac myosin-binding protein-C phosphorylation and cardiac function. Circ Res 97:1156–1163. https://doi.org/10.1161/01.RES.0000190605.79013.4d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. El-Armouche A, Pohlmann L, Schlossarek S et al (2007) Decreased phosphorylation levels of cardiac myosin-binding protein-C in human and experimental heart failure. J Mol Cell Cardiol 43:223–229. https://doi.org/10.1016/j.yjmcc.2007.05.003

    Article  CAS  PubMed  Google Scholar 

  38. El-Armouche A, Boknik P, Eschenhagen T et al (2006) Molecular determinants of altered Ca2+ handling in human chronic atrial fibrillation. Circulation 114:670–680. https://doi.org/10.1161/CIRCULATIONAHA.106.636845

    Article  CAS  PubMed  Google Scholar 

  39. Dhalla NS, Temsah RM, Netticadan T (2000) Role of oxidative stress in cardiovascular diseases. J Hypertens 18:655–673

    Article  CAS  PubMed  Google Scholar 

  40. Aimo A, Castiglione V, Borrelli C et al (2019) Oxidative stress and inflammation in the evolution of heart failure: from pathophysiology to therapeutic strategies. Eur J Prev Cardiol 27:494–510. https://doi.org/10.1177/2047487319870344

    Article  PubMed  Google Scholar 

  41. Ramana KV, Srivastava S, Singhal SS (2013) Lipid peroxidation products in human health and disease. Oxid Med Cell Longev 2013:583438. https://doi.org/10.1155/2013/583438

    Article  PubMed  PubMed Central  Google Scholar 

  42. Walter MF, Jacob RF, Jeffers B et al (2004) Serum levels of thiobarbituric acid reactive substances predict cardiovascular events in patients with stable coronary artery disease: a longitudinal analysis of the PREVENT study. J Am Coll Cardiol 44:1996–2002. https://doi.org/10.1016/j.jacc.2004.08.029

    Article  CAS  PubMed  Google Scholar 

  43. Vona R, Gambardella L, Cittadini C et al (2019) Biomarkers of oxidative stress in metabolic syndrome and associated diseases. Oxid Med Cell Longev 2019:8267234. https://doi.org/10.1155/2019/8267234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dalle-Donne I, Rossi R, Giustarini D et al (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329:23–38. https://doi.org/10.1016/S0009-8981(03)00003-2

    Article  CAS  PubMed  Google Scholar 

  45. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424. https://doi.org/10.1152/physrev.00029.2006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ms. J. Formankova for her skillful technical assistance and Mgr. I. Jarabicova for her assistance with biochemical methods.

Funding

This study was supported by The Slovak Research and Development Agency, Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic (APVV‐15‐607, APVV-20-0242, APVV-19-0540, VEGA SR 1/0016/20 and 2/0141/18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Adameova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Protocol of this study has been approved by the Ethics Committee of the Faculty of Pharmacy, Comenius University in Bratislava. All procedures described herein were performed in accordance with the Guide for the care and Use of Laboratory Animals, published by the US National Institutes of Health (Guide, NRC 2011) and approved by the Animal Health and Welfare Division of the State Veterinary and Food Administration of the Slovak Republic.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horvath, C., Szobi, A., Kindernay, L. et al. Pleiotropic, non-cell death-associated effects of inhibitors of receptor-interacting protein kinase 1 in the heart. Mol Cell Biochem 476, 3079–3087 (2021). https://doi.org/10.1007/s11010-021-04136-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04136-y

Keywords

Navigation