Skip to main content

Advertisement

Log in

Design and development of novel inhibitors of aldo-ketoreductase 1C1 as potential lead molecules in treatment of breast cancer

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Aldo–keto reductase 1C1 (AKR1C1) is a hydroxysteroid dehydrogenase, known to inactivate the biologically active progesterone into its corresponding 20 α-hydroxyprogesterone. Increased expression of the AKR1C1 gene in oncogenesis is linked with resistance to various anticancer agents and hence it is considered as an emerging drug target for the design and developing the novel anticancer drugs. We have performed QSAR pharmacophore modeling for AKR1C1 inhibitors followed by a virtual screening of ~ 59,000 compounds present at the Maybridge database. The screened compounds were refined using drug-like filters of Lipinski rule, ADMET plot, molecular docking and scoring and subsequently top 20 hits were selected. Selected compounds were subjected to the in vitro for AKR1C1 inhibition assay and best seven compounds bearing excellent binding affinity to the AKR1C1 were finally selected. The identified compounds may be exploited in hit-to-lead development and may also prove as an interventional strategy in preventing a pre-term birth due to declining levels of progesterone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(2015):E359-386. https://doi.org/10.1002/ijc.29210

    Article  CAS  PubMed  Google Scholar 

  2. WHO World Cancer Report 2008, Anticancer Res. 29 (2009) 29.11.10a

  3. Lydon JP, DeMayo FJ, Funk CR, Mani SK, Hughes AR, Montgomery CA, Shyamala G, Conneely OM, O’Malley BW (1995) Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev 9:2266–2278. https://doi.org/10.1101/gad.9.18.2266

    Article  CAS  PubMed  Google Scholar 

  4. Graham JD, Clarke CL (1997) Physiological action of progesterone in target tissues. Endocr Rev 18:502–519. https://doi.org/10.1210/edrv.18.4.0308

    Article  CAS  PubMed  Google Scholar 

  5. Mendelson CR (2009) Minireview: fetal-maternal hormonal signaling in pregnancy and labor. Mol Endocrinol 23:947–954. https://doi.org/10.1210/me.2009-0016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tan H, Yi L, Rote NS, Hurd WW, Mesiano S (2012) Progesterone receptor-A and -B have opposite effects on proinflammatory gene expression in human myometrial cells: implications for progesterone actions in human pregnancy and parturition. J Clin Endocrinol Metab 97:E719–E730. https://doi.org/10.1210/jc.2011-3251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. da Fonseca EB, Bittar RE, Carvalho MHB, Zugaib M (2003) Prophylactic administration of progesterone by vaginal suppository to reduce the incidence of spontaneous preterm birth in women at increased risk: a randomized placebo-controlled double-blind study. Am J Obstet Gynecol 188:419–424. https://doi.org/10.1067/mob.2003.41

    Article  CAS  PubMed  Google Scholar 

  8. Norwitz ER, Caughey AB (2011) Progesterone supplementation and the prevention of preterm birth. Rev Obstet Gynecol 4:60–72

    PubMed  PubMed Central  Google Scholar 

  9. Cicinelli E, de Ziegler D (1999) Transvaginal progesterone: evidence for a new functional “portal system” flowing from the vagina to the uterus. Hum Reprod Update 5:365–372. https://doi.org/10.1093/humupd/5.4.365

    Article  CAS  PubMed  Google Scholar 

  10. Rock JA, Wentz AC, Cole KA, Kimball AW, Zacur HA, Early SA, Jones GS (1985) Fetal malformations following progesterone therapy during pregnancy: a preliminary report. Fertil Steril 44:17–19. https://doi.org/10.1016/s0015-0282(16)48670-x

    Article  CAS  PubMed  Google Scholar 

  11. Chlebowski RT, Rohan TE, Manson JE, Aragaki AK, Kaunitz A, Stefanick ML, Simon MS, Johnson KC, Wactawski-Wende J, O’Sullivan MJ, Adams-Campbell LL, Nassir R, Lessin LS, Prentice RL (2015) Breast cancer after use of estrogen plus progestin and estrogen alone. JAMA Oncol 1:296–305. https://doi.org/10.1001/jamaoncol.2015.0494

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rižner TL, Penning TM (2014) Role of aldo-keto reductase family 1 (AKR1) enzymes in human steroid metabolism. Steroids 79:49–63. https://doi.org/10.1016/j.steroids.2013.10.012

    Article  CAS  PubMed  Google Scholar 

  13. Piekorz RP, Gingras S, Hoffmeyer A, Ihle JN, Weinstein Y (2005) Regulation of progesterone levels during pregnancy and parturition by signal transducer and activator of transcription 5 and 20α-hydroxysteroid dehydrogenase. Mol Endocrinol 19:431–440. https://doi.org/10.1210/me.2004-0302

    Article  CAS  PubMed  Google Scholar 

  14. Ji Q, Aoyama C, Nien Y-D, Liu PI, Chen PK, Chang L, Stanczyk FZ, Stolz A (2004) Selective loss of AKR1C1 and AKR1C2 in breast cancer and their potential effect on progesterone signaling. Cancer Res 64:7610–7617. https://doi.org/10.1158/0008-5472.CAN-04-1608

    Article  CAS  PubMed  Google Scholar 

  15. Lewis MJ, Wiebe JP, Heathcote JG (2004) Expression of progesterone metabolizing enzyme genes (AKR1C1, AKR1C2, AKR1C3, SRD5A1, SRD5A2) is altered in human breast carcinoma. BMC Cancer 4:27. https://doi.org/10.1186/1471-2407-4-27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Higaki Y, Usami N, Shintani S, Ishikura S, El-Kabbani O, Hara A (2003) Selective and potent inhibitors of human 20α-hydroxysteroid dehydrogenase (AKR1C1) that metabolizes neurosteroids derived from progesterone. Chem Biol Interact 143–144:503–513. https://doi.org/10.1016/S0009-2797(02)00206-5

    Article  CAS  PubMed  Google Scholar 

  17. Rizner TL, Smuc T, Rupreht R, Sinkovec J, Penning TM (2006) AKR1C1 and AKR1C3 may determine progesterone and estrogen ratios in endometrial cancer. Mol Cell Endocrinol 248:126–135. https://doi.org/10.1016/j.mce.2005.10.009

    Article  CAS  PubMed  Google Scholar 

  18. Jamieson SMF, Brooke DG, Heinrich D, Atwell GJ, Silva S, Hamilton EJ, Turnbull AP, Rigoreau LJM, Trivier E, Soudy C, Samlal SS, Owen PJ, Schroeder E, Raynham T, Flanagan JU, Denny WA (2012) 3-(3,4-Dihydroisoquinolin-2(1H)-ylsulfonyl)benzoic acids: highly potent and selective inhibitors of the type 5 17-β-hydroxysteroid dehydrogenase AKR1C3. J Med Chem 55:7746–7758. https://doi.org/10.1021/jm3007867

    Article  CAS  PubMed  Google Scholar 

  19. Dhagat U, Carbone V, Chung RP-T, Matsunaga T, Endo S, Hara A, El-Kabbani O (2007) A salicylic acid-based analogue discovered from virtual screening as a potent inhibitor of human 20alpha-hydroxysteroid dehydrogenase. Med Chem 3:546–550. https://doi.org/10.2174/157340607782360399

    Article  CAS  PubMed  Google Scholar 

  20. Chen M, Adeniji AO, Twenter BM, Winkler JD, Christianson DW, Penning TM (2012) Crystal structures of AKR1C3 containing an N-(aryl)amino-benzoate inhibitor and a bifunctional AKR1C3 inhibitor and androgen receptor antagonist. Therapeutic leads for castrate resistant prostate cancer. Bioorg Med Chem Lett 22:3492–3497. https://doi.org/10.1016/j.bmcl.2012.03.085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Adeniji AO, Twenter BM, Byrns MC, Jin Y, Chen M, Winkler JD, Penning TM (2012) Development of potent and selective inhibitors of aldo-keto reductase 1C3 (type 5 17β-hydroxysteroid dehydrogenase) based on N-phenyl-aminobenzoates and their structure-activity relationships. J Med Chem 55:2311–2323. https://doi.org/10.1021/jm201547v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. El-Kabbani O, Dhagat U, Hara A (2011) Inhibitors of human 20α-hydroxysteroid dehydrogenase (AKR1C1). J Steroid Biochem Mol Biol 125:105–111. https://doi.org/10.1016/j.jsbmb.2010.10.006

    Article  CAS  PubMed  Google Scholar 

  23. Štefane B, Brožič P, Vehovc M, Rižner TL, Gobec S (2009) New cyclopentane derivatives as inhibitors of steroid metabolizing enzymes AKR1C1 and AKR1C3. Eur J Med Chem 44:2563–2571. https://doi.org/10.1016/j.ejmech.2009.01.028

    Article  CAS  PubMed  Google Scholar 

  24. El-Kabbani O, Dhagat U, Soda M, Endo S, Matsunaga T, Hara A (2011) Probing the inhibitor selectivity pocket of human 20α-hydroxysteroid dehydrogenase (AKR1C1) with X-ray crystallography and site-directed mutagenesis. Bioorg Med Chem Lett 21:2564–2567. https://doi.org/10.1016/j.bmcl.2011.01.076

    Article  CAS  PubMed  Google Scholar 

  25. Brožič P, Turk S, Adeniji AO, Konc J, Janežič D, Penning TM, Rižner TL, Gobec S (2012) Selective inhibitors of Aldo-keto reductases AKR1C1 and AKR1C3 discovered by virtual screening of a fragment library. J Med Chem 55:7417–7424. https://doi.org/10.1021/jm300841n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dhagat U, Endo S, Sumii R, Hara A, El-Kabbani O (2008) Selectivity determinants of inhibitor binding to human 20alpha-hydroxysteroid dehydrogenase: crystal structure of the enzyme in ternary complex with coenzyme and the potent inhibitor 3,5-dichlorosalicylic acid. J Med Chem 51:4844–4848. https://doi.org/10.1021/jm8003575

    Article  CAS  PubMed  Google Scholar 

  27. Carbone V, Chung R, Endo S, Hara A, El-Kabbani O (2008) Structure of aldehyde reductase in ternary complex with coenzyme and the potent 20α-hydroxysteroid dehydrogenase inhibitor 3,5-dichlorosalicylic acid: Implications for inhibitor binding and selectivity. Arch Biochem Biophys 479:82–87. https://doi.org/10.1016/j.abb.2008.08.014

    Article  CAS  PubMed  Google Scholar 

  28. El-Kabbani O, Scammells PJ, Gosling J, Dhagat U, Endo S, Matsunaga T, Soda M, Hara A (2009) Structure-guided design, synthesis, and evaluation of salicylic acid-based inhibitors targeting a selectivity pocket in the active site of human 20alpha-hydroxysteroid dehydrogenase (AKR1C1). J Med Chem 52:3259–3264. https://doi.org/10.1021/jm9001633

    Article  CAS  PubMed  Google Scholar 

  29. Usami N, Yamamoto T, Shintani S, Ishikura S, Higaki Y, Katagiri Y, Hara A (2002) Substrate specificity of human 3(20)alpha-hydroxysteroid dehydrogenase for neurosteroids and its inhibition by benzodiazepines. Biol Pharm Bull 25:441–445. https://doi.org/10.1248/bpb.25.441

    Article  CAS  PubMed  Google Scholar 

  30. Kwitkowski VE, Prowell TM, Ibrahim A, Farrell AT, Justice R, Mitchell SS, Sridhara R, Pazdur R (2010) FDA approval summary: temsirolimus as treatment for advanced renal cell carcinoma. Oncologist 15:428–435. https://doi.org/10.1634/theoncologist.2009-0178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Okamoto K, Ikemori-Kawada M, Jestel A, von König K, Funahashi Y, Matsushima T, Tsuruoka A, Inoue A, Matsui J (2014) Distinct binding mode of multikinase inhibitor Lenvatinib revealed by biochemical characterization. ACS Med Chem Lett 6:89–94. https://doi.org/10.1021/ml500394m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lin S-K (2000) Pharmacophore perception, development and use in drug design. Edited by Osman F. Güner. Molecules 5:987–989. https://doi.org/10.3390/50700987

    Article  Google Scholar 

  33. Kurogi Y, Güner OF (2001) Pharmacophore modeling and three-dimensional database searching for drug design using catalyst. Curr Med Chem 8:1035–1055. https://doi.org/10.2174/0929867013372481

    Article  CAS  PubMed  Google Scholar 

  34. Sakkiah S, Thangapandian S, John S, Kwon YJ, Lee KW (2010) 3D QSAR pharmacophore based virtual screening and molecular docking for identification of potential HSP90 inhibitors. Eur J Med Chem 45:2132–2140. https://doi.org/10.1016/j.ejmech.2010.01.016

    Article  CAS  PubMed  Google Scholar 

  35. Chandrasekaran M, Sakkiah S, Lee KW (2011) Combined ligand based pharmacophore modeling, virtual screening methods to identify critical chemical features of novel potential inhibitors for phosphodiesterase-5. J Taiwan Inst Chem Eng 42:709–718. https://doi.org/10.1016/j.jtice.2011.02.012

    Article  CAS  Google Scholar 

  36. Neves BJ, Braga RC, Melo-Filho CC, Moreira-Filho JT, Muratov EN, Andrade CH (2018) QSAR-based virtual screening: advances and applications in drug discovery. Front Pharmacol. https://doi.org/10.3389/fphar.2018.01275

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhao Y, Zheng X, Zhang H, Zhai J, Zhang L, Li C, Zeng K, Chen Y, Li Q, Hu X (2015) In vitro inhibition of AKR1Cs by sulphonylureas and the structural basis. Chem Biol Interact 240:310–315. https://doi.org/10.1016/j.cbi.2015.09.006

    Article  CAS  PubMed  Google Scholar 

  38. Wu G, Robertson DH, Brooks CL, Vieth M (2003) Detailed analysis of grid-based molecular docking: a case study of CDOCKER-A CHARMm-based MD docking algorithm. J Comput Chem 24:1549–1562. https://doi.org/10.1002/jcc.10306

    Article  CAS  PubMed  Google Scholar 

  39. EZDetectTM Aldo-keto Reductase Activity Assay Kit (Colorimetric) | K847 | BioVision, Inc. (n.d.). https://www.biovision.com/ezdetecttm-aldo-keto-reductase-activity-assay-kit-colorimetric.html. Accessed 14 May 2020

  40. Elumalai P, Liu H-L, Zhao J-H, Chen W, Lin DS, Chuang C-K, Tsai W-B, Ho Y (2012) Pharmacophore modeling, virtual screening and docking studies to identify novel HNMT inhibitors. J Taiwan Inst Chem Eng 43:493–503. https://doi.org/10.1016/j.jtice.2012.01.004

    Article  CAS  Google Scholar 

  41. Ross RK, Paganini-Hill A, Wan PC, Pike MC (2000) Effect of hormone replacement therapy on breast cancer risk: estrogen versus estrogen plus progestin. J Natl Cancer Inst 92:328–332. https://doi.org/10.1093/jnci/92.4.328

    Article  CAS  PubMed  Google Scholar 

  42. Pike MC, Spicer DV, Dahmoush L, Press MF (1993) Estrogens, progestogens, normal breast cell proliferation, and breast cancer risk. Epidemiol Rev 15:17–35. https://doi.org/10.1093/oxfordjournals.epirev.a036102

    Article  CAS  PubMed  Google Scholar 

  43. Porter PL (2009) Global trends in breast cancer incidence and mortality. Salud Publica Mex 51(Suppl 2):s141-146. https://doi.org/10.1590/s0036-36342009000800003

    Article  PubMed  Google Scholar 

  44. Babu GR, Lakshmi SB, Thiyagarajan JA (2013) Epidemiological correlates of breast cancer in South India. Asian Pac J Cancer Prev 14:5077–5083. https://doi.org/10.7314/apjcp.2013.14.9.5077

    Article  PubMed  Google Scholar 

  45. Ali I, Wani W, Saleem K, Correspondence (2011) Cancer scenario in India with future perspectives. Cancer Ther 8:56–70

    Google Scholar 

  46. Srinath Reddy K, Shah B, Varghese C, Ramadoss A (2005) Responding to the threat of chronic diseases in India. Lancet 366:1744–1749. https://doi.org/10.1016/S0140-6736(05)67343-6

    Article  CAS  PubMed  Google Scholar 

  47. Balasubramaniam SM, Rotti SB, Vivekanandam S (2013) Risk factors of female breast carcinoma: a case control study at Puducherry. Indian J Cancer 50:65–70. https://doi.org/10.4103/0019-509X.112307

    Article  CAS  PubMed  Google Scholar 

  48. Kaarthigeyan K (2012) Cervical cancer in India and HPV vaccination. Indian J Med Paediatr Oncol 33:7–12. https://doi.org/10.4103/0971-5851.96961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lange CA, Richer JK, Horwitz KB (1999) Hypothesis: progesterone primes breast cancer cells for cross-talk with proliferative or antiproliferative signals. Mol Endocrinol 13:829–836. https://doi.org/10.1210/mend.13.6.0290

    Article  CAS  PubMed  Google Scholar 

  50. Clarke CL, Sutherland RL (1990) Progestin regulation of cellular proliferation. Endocr Rev 11:266–301. https://doi.org/10.1210/edrv-11-2-266

    Article  CAS  PubMed  Google Scholar 

  51. Ma H, Penning TM (1999) Conversion of mammalian 3α-hydroxysteroid dehydrogenase to 20α-hydroxysteroid dehydrogenase using loop chimeras: changing specificity from androgens to progestins. Proc Natl Acad Sci USA 96:11161–11166

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the fellowship grant from the Department of Health & Research, MoHFW, New Delhi, and to the Dr B R. Ambedkar Center for Biomedical Research (DU) for providing the Bioinformatics Infrastructure Facility (BIF).

Funding

This work was supported by the Department of Health & Research, MoHFW, New Delhi research grant (No: V.25011/450-HRD/2016-h).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Archana Singh or Indrakant K. Singh.

Ethics declarations

Conflict of interest

No competing interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1865 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, P., Hassan, M.I., Singh, A. et al. Design and development of novel inhibitors of aldo-ketoreductase 1C1 as potential lead molecules in treatment of breast cancer. Mol Cell Biochem 476, 2975–2987 (2021). https://doi.org/10.1007/s11010-021-04134-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04134-0

Keywords

Navigation