Skip to main content
Log in

Expression of SSEA-4 and Oct-4 from somatic cells in primary mouse gastric cell culture induced by brief strong acid

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Environmental changes can stress and alter biology at the molecular and cellular level. For example, metal–protein interaction is a classic physic and biological property of nature, which is fundamentally influenced by acidity. Here, we report a unique cellular reprogramming phenomenon in that a brief strong acid treatment induced the expression of pluripotent stem cell (PSC) markers. We used strong acid to briefly challenge mix-cultured gastric cells, and then subcultured survived cells in a normal cell culture medium. We found that survival acid-treated cells expressed PSC markers detected by commonly used pluripotent antibodies such as SSEA-4 and Oct4. In addition, we observed that the survived cells from the acid challenge grew faster during the second and third weeks of subculture and had a relative short doubling time (DT) than the controls. PSC marker-labeled ‘older’ cells also presented immature cell-like morphology with some having marker Oct4 in the nucleus. Finally, the expression of the markers appeared to be sensitive to metal ion chelation. Removal of the metals during a brief acid treatment reduced pluripotent marker-positive cells, suggesting the dissociation of metals from metal-binding proteins may be a factor involved in the induction of stem cell markers. Our findings reveal that somatic cells appear to possess a plasticity feature to express pluripotent marker proteins or to select cell subpopulations that express pluripotent marker proteins when cells are transiently exposed to strong acid. It opens new directions for understanding conserved regulatory mechanisms involved in cellular survival under stressful stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data available on request.

References

  1. Wahl GM, Spike BT (2017) Cell state plasticity, stem cells, EMT, and the generation of intra-tumoral heterogeneity. NPJ Breast Cancer 3:14

    Article  Google Scholar 

  2. Zhao Y (2019) Chemically induced cell fate reprogramming and the acquisition of plasticity in somatic cells. Curr Opin Chem Biol 51:146–153

    Article  CAS  Google Scholar 

  3. Ruprecht V, Monzo P, Ravasio A, Yue Z, Makhija E, Strale PO, Gauthier N, Shivashankar GV, Studer V, Albiges-Rizo C, Viasnoff V (2017) How cells respond to environmental cues—insights from bio-functionalized substrates. J Cell Sci 130:51–61

    CAS  PubMed  Google Scholar 

  4. Silberman A, Goldman O, Boukobza Assayag O, Jacob A, Rabinovich S, Adler L, Lee JS, Keshet R, Sarver A, Frug J, Stettner N, Galai S, Persi E, Halpern KB, Zaltsman-Amir Y, Pode-Shakked B, Eilam R, Anikster Y, Nagamani SCS, Ulitsky I, Ruppin E, Erez A (2019) Acid-induced downregulation of ASS1 contributes to the maintenance of intracellular pH in cancer. Cancer Res 79:518–533

    Article  CAS  Google Scholar 

  5. Yang OCY, Loh SH (2019) Acidic stress triggers sodium-coupled bicarbonate transport and promotes survival in A375 human melanoma cells. Sci Rep 9:6858

    Article  Google Scholar 

  6. Reshkin SJ, Greco MR, Cardone RA (2014) Role of pHi, and proton transporters in oncogene-driven neoplastic transformation. Philos Trans R Soc B 369:20130100

    Article  Google Scholar 

  7. Paulino C, Kuhlbrandt W (2014) pH- and sodium-induced changes in a sodium/proton antiporter. Elife 3:e01412

    Article  Google Scholar 

  8. Whitten ST, Wooll JO, Razeghifard R, Garcia-Moreno B, Hilser VJ (2001) The origin of pH-dependent changes in m-values for the denaturant-induced unfolding of proteins. J Mol Biol 309:1165–1175

    Article  CAS  Google Scholar 

  9. Shan B, Bhattacharya S, Eliezer D, Raleigh DP (2008) The low-pH unfolded state of the C-terminal domain of the ribosomal protein L9 contains significant secondary structure in the absence of denaturant but is no more compact than the low-pH urea unfolded state. Biochemistry 47:9565–9573

    Article  CAS  Google Scholar 

  10. Allemand JF, Bensimon D, Jullien L, Bensimon A, Croquette V (1997) pH-dependent specific binding and combing of DNA. Biophys J 73:2064–2070

    Article  CAS  Google Scholar 

  11. Liu F, Wang K, Bai G, Zhang Y, Gao L (2004) The pH-induced emission switching and interesting DNA-binding properties of a novel dinuclear ruthenium(II) complex. Inorg Chem 43:1799–1806

    Article  CAS  Google Scholar 

  12. Deochand DK, Perera IC, Crochet RB, Gilbert NC, Newcomer ME, Grove A (2016) Histidine switch controlling pH-dependent protein folding and DNA binding in a transcription factor at the core of synthetic network devices. Mol Biosyst 12:2417–2426

    Article  CAS  Google Scholar 

  13. Putney LK, Barber DL (2003) Na-H exchange-dependent increase in intracellular pH times G2/M entry and transition. J Biol Chem 278:44645–44649

    Article  CAS  Google Scholar 

  14. Schreiber R (2005) Ca2+ signaling, intracellular pH and cell volume in cell proliferation. J Membr Biol 205:129–137

    Article  CAS  Google Scholar 

  15. Pantoliano MW, Valentine JS, Burger AR, Lippard SJ (1982) A pH-dependent superoxide dismutase activity for zinc-free bovine erythrocuprein. Reexamination of the role of zinc in the holoprotein. J Inorg Biochem 17:325–341

    Article  CAS  Google Scholar 

  16. Barboiu M, Lehn JM (2002) Dynamic chemical devices: modulation of contraction/extension molecular motion by coupled-ion binding/pH change-induced structural switching. Proc Natl Acad Sci USA 99:5201–5206

    Article  CAS  Google Scholar 

  17. Fong CY, Peh GS, Gauthaman K, Bongso A (2009) Separation of SSEA-4 and TRA-1-60 labelled undifferentiated human embryonic stem cells from a heterogeneous cell population using magnetic-activated cell sorting (MACS) and fluorescence-activated cell sorting (FACS). Stem Cell Rev Rep 5:72–80

    Article  CAS  Google Scholar 

  18. Kucia M, Halasa M, Wysoczynski M, Baskiewicz-Masiuk M, Moldenhawer S, Zuba-Surma E, Czajka R, Wojakowski W, Machalinski B, Ratajczak MZ (2007) Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human cord blood: preliminary report. Leukemia 21:297–303

    Article  CAS  Google Scholar 

  19. Slepchenko KG, Lu Q, Li YV (2017) Cross talk between increased intracellular zinc (Zn2+) and accumulation of reactive oxygen species in chemical ischemia. Am J Physiol Cell Physiol 313:C448–C459

    Article  CAS  Google Scholar 

  20. Slepchenko KG, Holub JM, Li YV (2018) Intracellular zinc increase affects phosphorylation state and subcellular localization of protein kinase C delta (delta). Cell Signal 44:148–157

    Article  CAS  Google Scholar 

  21. Neganova I, Zhang X, Atkinson S, Lako M (2009) Expression and functional analysis of G1 to S regulatory components reveals an important role for CDK2 in cell cycle regulation in human embryonic stem cells. Oncogene 28:20–30

    Article  CAS  Google Scholar 

  22. Koledova Z, Kafkova LR, Calabkova L, Krystof V, Dolezel P, Divoky V (2010) Cdk2 inhibition prolongs G1 phase progression in mouse embryonic stem cells. Stem Cells Dev 19:181–194

    Article  CAS  Google Scholar 

  23. Bralet J, Schreiber L, Bouvier C (1992) Effect of acidosis and anoxia on iron delocalization from brain homogenates. Biochem Pharmacol 43:979–983

    Article  CAS  Google Scholar 

  24. Freudenrich CC, Murphy E, Levy LA, London RE, Lieberman M (1992) Intracellular pH modulates cytosolic free magnesium in cultured chicken heart cells. Am J Physiol 262:C1024-1030

    Article  CAS  Google Scholar 

  25. Kiedrowski L (2012) Cytosolic acidification and intracellular zinc release in hippocampal neurons. J Neurochem 121:438–450

    Article  CAS  Google Scholar 

  26. Wang WZ, Chu XP, Li MH, Seeds J, Simon RP, Xiong ZG (2006) Modulation of acid-sensing ion channel currents, acid-induced increase of intracellular Ca2+, and acidosis-mediated neuronal injury by intracellular pH. J Biol Chem 281:29369–29378

    Article  CAS  Google Scholar 

  27. Terano A, Ivey KJ, Stachura J, Sekhon S, Hosojima H, McKenzie WN Jr, Krause WJ, Wyche JH (1982) Cell culture of rat gastric fundic mucosa. Gastroenterology 83:1280–1291

    Article  CAS  Google Scholar 

  28. Rabhi N, Denechaud PD, Gromada X, Hannou SA, Zhang H, Rashid T, Salas E, Durand E, Sand O, Bonnefond A, Yengo L, Chavey C, Bonner C, Kerr-Conte J, Abderrahmani A, Auwerx J, Fajas L, Froguel P, Annicotte JS (2016) KAT2B is required for pancreatic beta cell adaptation to metabolic stress by controlling the unfolded protein response. Cell Rep 15:1051–1061

    Article  CAS  Google Scholar 

  29. Yang Y, Ishak Gabra MB, Hanse EA, Lowman XH, Tran TQ, Li H, Milman N, Liu J, Reid MA, Locasale JW, Gil Z, Kong M (2019) MiR-135 suppresses glycolysis and promotes pancreatic cancer cell adaptation to metabolic stress by targeting phosphofructokinase-1. Nat Commun 10:809

    Article  CAS  Google Scholar 

  30. Tsvetkov P, Detappe A, Cai K, Keys HR, Brune Z, Ying W, Thiru P, Reidy M, Kugener G, Rossen J, Kocak M, Kory N, Tsherniak A, Santagata S, Whitesell L, Ghobrial IM, Markley JL, Lindquist S, Golub TR (2019) Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nat Chem Biol 15:681–689

    Article  CAS  Google Scholar 

  31. Xia P, Wang S, Ye B, Du Y, Huang G, Zhu P, Fan Z (2015) Sox2 functions as a sequence-specific DNA sensor in neutrophils to initiate innate immunity against microbial infection. Nat Immunol 16:366–375

    Article  CAS  Google Scholar 

  32. Nakada D, Levi BP, Morrison SJ (2011) Integrating physiological regulation with stem cell and tissue homeostasis. Neuron 70:703–718

    Article  CAS  Google Scholar 

  33. Zhang J, Nuebel E, Daley GQ, Koehler CM, Teitell MA (2012) Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell 11:589–595

    Article  CAS  Google Scholar 

  34. Mena HA, Zubiry PR, Dizier B, Schattner M, Boisson-Vidal C, Negrotto S (2018) Acidic preconditioning of endothelial colony-forming cells (ECFC) promote vasculogenesis under proinflammatory and high glucose conditions in vitro and in vivo. Stem Cell Res Ther 9:120

    Article  CAS  Google Scholar 

  35. Aizawa S (2016) Results of an attempt to reproduce the STAP phenomenon. F1000Research 5:1056

    Article  Google Scholar 

  36. De Los Angeles A, Ferrari F, Fujiwara Y, Mathieu R, Lee S, Lee S, Tu HC, Ross S, Chou S, Nguyen M, Wu Z, Theunissen TW, Powell BE, Imsoonthornruksa S, Chen J, Borkent M, Krupalnik V, Lujan E, Wernig M, Hanna JH, Hochedlinger K, Pei D, Jaenisch R, Deng H, Orkin SH, Park PJ, Daley GQ (2015) Failure to replicate the STAP cell phenomenon. Nature 525:E6-9

    Article  Google Scholar 

  37. Shriver JW (2009) Protein structure, stability, and interactions. Humana, New York

    Book  Google Scholar 

  38. Konermann L (2012) Protein unfolding and denaturants. Wiley, Chichester

    Book  Google Scholar 

  39. Kochanczyk T, Nowakowski M, Wojewska D, Kocyla A, Ejchart A, Kozminski W, Krezel A (2016) Metal-coupled folding as the driving force for the extreme stability of Rad50 zinc hook dimer assembly. Sci Rep 6:36346

    Article  CAS  Google Scholar 

  40. Reddi AR, Gibney BR (2007) Role of protons in the thermodynamic contribution of a Zn(II)-Cys4 site toward metalloprotein stability. Biochemistry 46:3745–3758

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Osteopathic Heritage Foundations, Graduate Studies Assistance Program at Ohio University Heritage College of Osteopathic Medicine for supporting graduate student YH.

Author information

Authors and Affiliations

Authors

Contributions

YH performed the experiments and collected the data. YVL conceived and designed the study. All authors analyzed the data, interpreted results, and wrote and revised the manuscript.

Corresponding author

Correspondence to Yang V. Li.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Li, Y.V. Expression of SSEA-4 and Oct-4 from somatic cells in primary mouse gastric cell culture induced by brief strong acid. Mol Cell Biochem 476, 2813–2821 (2021). https://doi.org/10.1007/s11010-021-04124-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04124-2

Keywords

Navigation