Skip to main content

Advertisement

Log in

The possible role of sirtuins in male reproduction

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Global influence of male infertility is increasing in recent decades. Proper understanding of genetics, anatomy, physiology and the intricate interrelation of male reproductive system are much needed for explaining the etiology of male infertility; and a detailed study on the epigenetics, indeed, will reveal the molecular mechanism behind its etiology. Sirtuins, the molecular sensors, are NAD+ dependent histone deacetylases and ADP- ribosyl transferases, participate in the chief events of epigenetics. In mammals, sirtuin family comprises seven members (SIRT1-SIRT7), and they all possess a conserved NAD+ binding catalytic domain, termed the sirtuin core domain which is imperative for their activity. Sirtuins exert a pivotal role in cellular homeostasis, energy metabolism, apoptosis, age-related disorders and male reproductive system. However, their exact role in male reproduction is still obscure. This article specifically reviews the role of mammalian sirtuins in male reproductive function, thereby, prompting further research to discover the restorative methods and its implementation in reproductive medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not Applicable.

Code availability

Not Applicable.

Abbreviations

StAR:

Steroidogenic acute regulatory protein

DNMT:

DNA (cytosine-5) methyl transferases

HMTases:

Histone methyltransferases

SUMO:

Small ubiquitin-related modifier

HAT:

Histone acetyl transferases

HDAC:

Histone deacetylases

TSA:

Trichostatin A

Mnase:

Micrococcal nuclease

Brdt:

Bromodomain testis-specific protein

DFI:

DNA Fragmentation Index

Sir2 protein:

Silent information regulator protein

MEF:

Mouse embryonic fibroblasts

PCNA:

Proliferating cell nuclear antigen

TAU:

Triton, acetic acid, and urea

HKMT:

Histone lysine methyl transferase

KO:

Knockout

NDAC:

NAD-dependent deacetylase activity

ROS:

Reactive oxygen species

FISH:

Fluorescence in situ hybridization

MnSOD:

Manganese superoxide dismutase

NHEJ:

Nonhomologous end joining

DSB:

Double strand breaks

HPA:

Hypothalamus–pituitary–adrenal

HPT:

Hypothalamus-pituitary-thyroid

HPG:

Hypothalamus-pituitary–Gonadal

Polk:

DNA polymerase-kappa

GnRH:

Gonadotropin releasing hormone

LH:

Luteinizing hormone

FSH:

Follicle stimulating hormone

GO:

Gene Ontology

SF1:

Steroidogenic factor 1

CASA:

Computer-assisted semen analysis

Sp 56:

Sperm protein 56

LC3:

Microtubule-associated protein 1A/1B-light chain 3

OAT:

Oligoasthenoteratozoospermia

BPA:

Bisphenol A

AR:

Androgen receptor

ARKO:

Androgen receptor knockout

SCARKO:

Sertoli Cell-selective androgen receptor knockout

HFD:

High fat diet

CD:

Control diet

APRT:

Adenine phosphoribosyltransferase

HU:

Hydroxyurea

LPS:

Lipopolysaccharide

17β-HSD:

17β–Hydroxysteroid dehydrogenase

AMPK:

AMP-activated protein kinase

References

  1. Huhtaniemi I, Bartke A (2001) Perspective: male reproduction. Endocrinology 142(6):2178–2183. https://doi.org/10.1210/endo.142.6.8228

    Article  CAS  PubMed  Google Scholar 

  2. Neto FT, Bach PV, Najari BB, Li PS, Goldstein M (2016) Spermatogenesis in humans and its affecting factors. Semin Cell Dev Biol 59:10–26. https://doi.org/10.1016/j.semcdb.2016.04.009

    Article  PubMed  Google Scholar 

  3. Rato L, Alves MG, Socorro S, Duarte AI, Cavaco JE, Oliveira PF (2012) Metabolic regulation is important for spermatogenesis. Nat Rev Urol 9(6):330–338. https://doi.org/10.1038/nrurol.2012.77

    Article  CAS  PubMed  Google Scholar 

  4. Ge R, Chen G, Hardy MP (2008) The role of the Leydig cell in spermatogenic function. Adv Exp Med Biol 636:255–269. https://doi.org/10.1007/978-0-387-09597-4_14

    Article  CAS  PubMed  Google Scholar 

  5. Walker WH (2011) Testosterone signaling and the regulation of spermatogenesis. Spermatogenesis 1(2):116–120. https://doi.org/10.4161/spmg.1.2.16956

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ct Wu, Morris JR (2001) Genes, genetics, and epigenetics: a correspondence. Science (New York, N.Y.) 293(5532):1103–1105. https://doi.org/10.1126/science.293.5532.1103

    Article  Google Scholar 

  7. Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28(10):1057–1068. https://doi.org/10.1038/nbt.1685

    Article  CAS  PubMed  Google Scholar 

  8. Zamudio NM, Chong S, O’Bryan MK (2008) Epigenetic regulation in male germ cells. Reproduction (Cambridge, England) 136(2):131–146. https://doi.org/10.1530/REP-07-0576

    Article  CAS  Google Scholar 

  9. Dada R, Kumar M, Jesudasan R, Fernández JL, Gosálvez J, Agarwal A (2012) Epigenetics and its role in male infertility. J Assist Reprod Genet 29(3):213–223. https://doi.org/10.1007/s10815-012-9715-0

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lachner M, Jenuwein T (2002) The many faces of histone lysine methylation. Curr Opin Cell Biol 14(3):286–298. https://doi.org/10.1016/s0955-0674(02)00335-6

    Article  CAS  PubMed  Google Scholar 

  11. Güneş S, Kulaç T (2013) The role of epigenetics in spermatogenesis. Turkish J Urol 39(3):181–187. https://doi.org/10.5152/tud.2013.037

    Article  Google Scholar 

  12. Schagdarsurengin U, Steger K (2016) Epigenetics in male reproduction: effect of paternal diet on sperm quality and offspring health. Nat Rev Urol 13(10):584–595. https://doi.org/10.1038/nrurol.2016.157

    Article  CAS  PubMed  Google Scholar 

  13. Oliva R (2006) Protamines and male infertility. Hum Reprod Update 12(4):417–435. https://doi.org/10.1093/humupd/dml009

    Article  CAS  PubMed  Google Scholar 

  14. Norris KL, Lee JY, Yao TP (2009) Acetylation goes global: the emergence of acetylation biology. Sci Signal. https://doi.org/10.1126/scisignal.297pe76

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lundby A, Lage K, Weinert BT, Bekker-Jensen DB, Secher A, Skovgaard T, Olsen JV (2012) Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns. Cell Rep 2(2):419–431. https://doi.org/10.1016/j.celrep.2012.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Boissonnas CC, Jouannet P, Jammes H (2013) Epigenetic disorders and male subfertility. Fertil Steril 99(3):624–631

    Article  CAS  PubMed  Google Scholar 

  17. Shahbazian MD, Grunstein M (2007) Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76:75–100

    Article  CAS  PubMed  Google Scholar 

  18. Hazzouri M, Pivot-Pajot C, Faure AK, Usson Y, Pelletier R, Sèle B, Khochbin S, Rousseaux S (2000) Regulated hyperacetylation of core histones during mouse spermatogenesis: involvement of histone deacetylases. Eur J Cell Biol 79(12):950–960. https://doi.org/10.1078/0171-9335-00123

    Article  CAS  PubMed  Google Scholar 

  19. Sonnack V, Failing K, Bergmann M, Steger K (2002) Expression of hyperacetylated histone H4 during normal and impaired human spermatogenesis. Andrologia 34(6):384–390

    Article  CAS  PubMed  Google Scholar 

  20. Meistrich ML, Trostle-Weige PK, Lin R, Bhatnagar YM, Allis CD (1992) Highly acetylated H4 is associated with histone displacement in rat spermatids. Mol Reprod Dev 31(3):170–181. https://doi.org/10.1002/mrd.1080310303

    Article  CAS  PubMed  Google Scholar 

  21. Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL (2006) Histone H4–K16 acetylation controls chromatin structure and protein interactions. Science (New York, N.Y.) 311(5762):844–847. https://doi.org/10.1126/science.1124000

    Article  CAS  Google Scholar 

  22. Govin J, Lestrat C, Caron C, Pivot-Pajot C, Rousseaux S, Khochbin S (2006) Histone acetylation-mediated chromatin compaction during mouse spermatogenesis. Ernst Schering Res Found Workshop 57:155–172. https://doi.org/10.1007/3-540-37633-x_9

    Article  CAS  Google Scholar 

  23. Yan W, Si Y, Slaymaker S, Li J, Zheng H, Young DL, Aslanian A, Saunders L, Verdin E, Charo IF (2010) Zmynd15 encodes a histone deacetylase-dependent transcriptional repressor essential for spermiogenesis and male fertility. J Biol Chem 285(41):31418–31426. https://doi.org/10.1074/jbc.M110.116418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang H, Li G, Jin H, Guo Y, Sun Y (2019) The effect of sperm DNA fragmentation index on assisted reproductive technology outcomes and its relationship with semen parameters and lifestyle. Transl Androl Urol 8(4):356–365. https://doi.org/10.21037/tau.2019.06.22

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kim JH, Jee BC, Lee JM, Suh CS, Kim SH (2014) Histone acetylation level and histone acetyltransferase/deacetylase activity in ejaculated sperm from normozoospermic men. Yonsei Med J 55(5):1333–1340. https://doi.org/10.3349/ymj.2014.55.5.1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Seto E, Yoshida M (2014) Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol 6(4):a018713. https://doi.org/10.1101/cshperspect.a018713

    Article  PubMed  PubMed Central  Google Scholar 

  27. Michan S, Sinclair D (2007) Sirtuins in mammals: insights into their biological function. Biochem J 404(1):1–13. https://doi.org/10.1042/BJ20070140

    Article  CAS  PubMed  Google Scholar 

  28. Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I (2005) Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 16(10):4623–4635. https://doi.org/10.1091/mbc.e05-01-0033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shoba B, Lwin ZM, Ling LS, Bay BH, Yip GW, Kumar SD (2009) Function of sirtuins in biological tissues. Anat Rec (Hoboken, N.J.: 2007) 292(4):536–543. https://doi.org/10.1002/ar.20875

    Article  CAS  Google Scholar 

  30. Frye RA (2000) Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 273(2):793–798. https://doi.org/10.1006/bbrc.2000.3000

    Article  CAS  PubMed  Google Scholar 

  31. Costantini S, Sharma A, Raucci R, Costantini M, Autiero I, Colonna G (2013) Genealogy of an ancient protein family: the Sirtuins, a family of disordered members. BMC Revol Biol 13:60. https://doi.org/10.1186/1471-2148-13-60

    Article  CAS  Google Scholar 

  32. Kupis W, Pałyga J, Tomal E, Niewiadomska E (2016) The role of sirtuins in cellular homeostasis. J Physiol Biochem 72(3):371–380. https://doi.org/10.1007/s13105-016-0492-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yamamoto H, Schoonjans K, Auwerx J (2007) Sirtuin functions in health and disease. Molecular endocrinology (Baltimore, Md.) 21(8):1745–1755. https://doi.org/10.1210/me.2007-0079

    Article  CAS  Google Scholar 

  34. Tanno M, Sakamoto J, Miura T, Shimamoto K, Horio Y (2007) Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J Biol Chem 282(9):6823–6832. https://doi.org/10.1074/jbc.M609554200

    Article  CAS  PubMed  Google Scholar 

  35. Gunes S, Al-Sadaan M, Agarwal A (2015) Spermatogenesis, DNA damage and DNA repair mechanisms in male infertility. Reprod Biomed Online 31(3):309–319

    Article  CAS  PubMed  Google Scholar 

  36. Yuan J, Pu M, Zhang Z, Lou Z (2009) Histone H3–K56 acetylation is important for genomic stability in mammals. Cell cycle (Georgetown, Tex.) 8(11):1747–1753

    Article  CAS  Google Scholar 

  37. Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D (2004) Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 16(1):93–105. https://doi.org/10.1016/j.molcel.2004.08.031

    Article  CAS  PubMed  Google Scholar 

  38. Fatoba ST, Okorokov AL (2011) Human SIRT1 associates with mitotic chromatin and contributes to chromosomal condensation. Cell cycle (Georgetown, Tex.) 10(14):2317–2322. https://doi.org/10.4161/cc.10.14.15913

    Article  CAS  Google Scholar 

  39. Vaquero A, Scher MB, Lee DH, Sutton A, Cheng HL, Alt FW, Serrano L, Sternglanz R, Reinberg D (2006) SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev 20(10):1256–1261. https://doi.org/10.1101/gad.1412706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Serrano L, Martínez-Redondo P, Marazuela-Duque A, Vazquez BN, Dooley SJ, Voigt P, Beck DB, Kane-Goldsmith N, Tong Q, Rabanal RM, Fondevila D, Muñoz P, Krüger M, Tischfield JA, Vaquero A (2013) The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation. Genes Dev 27(6):639–653. https://doi.org/10.1101/gad.211342.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim HS, Patel K, Muldoon-Jacobs K, Bisht KS, Aykin-Burns N, Pennington JD, van der Meer R, Nguyen P, Savage J, Owens KM, Vassilopoulos A, Ozden O, Park SH, Singh KK, Abdulkadir SA, Spitz DR, Deng CX, Gius D (2010) SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 17(1):41–52. https://doi.org/10.1016/j.ccr.2009.11.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jeong SM, Xiao C, Finley LW, Lahusen T, Souza AL, Pierce K, Li YH, Wang X, Laurent G, German NJ, Xu X, Li C, Wang RH, Lee J, Csibi A, Cerione R, Blenis J, Clish CB, Kimmelman A, Deng CX, Haigis MC (2013) SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell 23(4):450–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang B, Zwaans BM, Eckersdorff M, Lombard DB (2009) The sirtuin SIRT6 deacetylates H3 K56Ac in vivo to promote genomic stability. Cell cycle (Georgetown, Tex.) 8(16):2662–2663. https://doi.org/10.4161/cc.8.16.9329

    Article  CAS  Google Scholar 

  44. Mao Z, Hine C, Tian X, Van Meter M, Au M, Vaidya A, Seluanov A, Gorbunova V (2011) SIRT6 promotes DNA repair under stress by activating PARP1. Science (New York, N.Y.) 332(6036):1443–1446. https://doi.org/10.1126/science.1202723

    Article  CAS  Google Scholar 

  45. Michishita E, McCord RA, Berber E, Kioi M, Padilla-Nash H, Damian M, Cheung P, Kusumoto R, Kawahara TL, Barrett JC, Chang HY, Bohr VA, Ried T, Gozani O, Chua KF (2008) SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452(7186):492–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Barber MF, Michishita-Kioi E, Xi Y, Tasselli L, Kioi M, Moqtaderi Z, Tennen RI, Paredes S, Young NL, Chen K, Struhl K, Garcia BA, Gozani O, Li W, Chua KF (2012) SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 487(7405):114–118. https://doi.org/10.1038/nature11043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Finkel T, Deng CX, Mostoslavsky R (2009) Recent progress in the biology and physiology of sirtuins. Nature 460(7255):587–591. https://doi.org/10.1038/nature08197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. McBurney MW, Yang X, Jardine K, Hixon M, Boekelheide K, Webb JR, Lemieux M (2003) The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol Cell Biol 23(1):38–54. https://doi.org/10.1128/mcb.23.1.38-54.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yamamoto M, Takahashi Y (2018) The Essential Role of SIRT1 in Hypothalamic-Pituitary Axis. Front Endocrinol 9:605. https://doi.org/10.3389/fendo.2018.00605

    Article  Google Scholar 

  50. Kolthur-Seetharam U, Teerds K, de Rooij DG, Wendling O, McBurney M, Sassone-Corsi P, Davidson I (2009) The histone deacetylase SIRT1 controls male fertility in mice through regulation of hypothalamic-pituitary gonadotropin signaling. Biol Reprod 80(2):384–391. https://doi.org/10.1095/biolreprod.108.070193

    Article  CAS  PubMed  Google Scholar 

  51. Coussens M, Maresh JG, Yanagimachi R, Maeda G, Allsopp R (2008) Sirt1 deficiency attenuates spermatogenesis and germ cell function. PLoS ONE 3(2):e1571. https://doi.org/10.1371/journal.pone.0001571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Seifert EL, Caron AZ, Morin K, Coulombe J, He XH, Jardine K, McBurney MW (2012) SirT1 catalytic activity is required for male fertility and metabolic homeostasis in mice. FASEB J 26(2):555–566. https://doi.org/10.1096/fj.11-193979

    Article  CAS  PubMed  Google Scholar 

  53. Wu L, Zhang A, Sun Y, Zhu X, Fan W, Lu X, Feng Y (2012) Sirt1 exerts anti-inflammatory effects and promotes steroidogenesis in Leydig cells. Fertil Steril 98(1):194–199. https://doi.org/10.1016/j.fertnstert.2012.04.008

    Article  CAS  PubMed  Google Scholar 

  54. Cheng HL, Mostoslavsky R, Saito S, Manis JP, Gu Y, Patel P, Bronson R, Appella E, Alt FW, Chua KF (2003) Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci USA 100(19):10794–10799. https://doi.org/10.1073/pnas.1934713100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bell EL, Nagamori I, Williams EO, Del Rosario AM, Bryson BD, Watson N, Guarente L (2014) SirT1 is required in the male germ cell for differentiation and fecundity in mice. Development (Cambridge, England) 141(18):3495–3504. https://doi.org/10.1242/dev.110627

    Article  CAS  Google Scholar 

  56. Di Sante G, Wang L, Wang C, Jiao X, Casimiro MC, Chen K, Pestell RG (2015) Sirt1-deficient mice have hypogonadotropic hypogonadism due to defective GnRH neuronal migration. Molecular endocrinology (Baltimore, Md.) 29(2):200–212. https://doi.org/10.1210/me.2014-1228

    Article  CAS  Google Scholar 

  57. Liu C, Song Z, Wang L, Yu H, Liu W, Shang Y, Li W (2017) Sirt1 regulates acrosome biogenesis by modulating autophagic flux during spermiogenesis in mice. Development (Cambridge, England) 144(3):441–451. https://doi.org/10.1242/dev.147074

    Article  CAS  Google Scholar 

  58. Mostafa T, Nabil N, Rashed L, Makeen K, El-Kasas MA, Mohamaed HA (2018) Seminal SIRT1 expression in infertile oligoasthenoteratozoospermic men with varicocoele. Andrology 6(2):301–305. https://doi.org/10.1111/andr.12462

    Article  CAS  PubMed  Google Scholar 

  59. Chianese R, Viggiano A, Urbanek K, Cappetta D, Troisi J, Scafuro M, Meccariello R (2018) Chronic exposure to low dose of bisphenol A impacts on the first round of spermatogenesis via SIRT1 modulation. Scientific reports 8(1):2961. https://doi.org/10.1038/s41598-018-21076-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fu M, Liu M, Sauve AA, Jiao X, Zhang X, Wu X, Powell MJ, Yang T, Gu W, Avantaggiati ML, Pattabiraman N, Pestell TG, Wang F, Quong AA, Wang C, Pestell RG (2006) Hormonal control of androgen receptor function through SIRT1. Mol Cell Biol 26(21):8122–8135. https://doi.org/10.1128/MCB.00289-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. De Gendt K, Swinnen JV, Saunders PT, Schoonjans L, Dewerchin M, Devos A, Tan K, Atanassova N, Claessens F, Lécureuil C, Heyns W, Carmeliet P, Guillou F, Sharpe RM, Verhoeven G (2004) A Sertoli cell-selective knockout of the androgen receptor causes spermatogenic arrest in meiosis. Proc Natl Acad Sci USA 101(5):1327–1332. https://doi.org/10.1073/pnas.0308114100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Palmer NO, Fullston T, Mitchell M, Setchell BP, Lane M (2011) SIRT6 in mouse spermatogenesis is modulated by diet-induced obesity. Reprod Fertil Dev 23(7):929–939. https://doi.org/10.1071/RD10326

    Article  CAS  PubMed  Google Scholar 

  63. Vazquez BN, Thackray JK, Simonet NG, Kane-Goldsmith N, Martinez-Redondo P, Nguyen T, Serrano L (2016) SIRT7 promotes genome integrity and modulates non-homologous end joining DNA repair. EMBO J 35(14):1488–1503. https://doi.org/10.15252/embj.201593499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. North BJ, Marshall BL, Borra MT, Denu JM, Verdin E (2003) The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell 11(2):437–444. https://doi.org/10.1016/s1097-2765(03)00038-8

    Article  CAS  PubMed  Google Scholar 

  65. Parab S, Shetty O, Gaonkar R, Balasinor N, Khole V, Parte P (2015) HDAC6 deacetylates alpha tubulin in sperm and modulates sperm motility in Holtzman rat. Cell Tissue Res 359(2):665–678. https://doi.org/10.1007/s00441-014-2039-x

    Article  CAS  PubMed  Google Scholar 

  66. Ahn BH, Kim HS, Song S, Lee IH, Liu J, Vassilopoulos A, Finkel T (2008) A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci USA 105(38):14447–14452. https://doi.org/10.1073/pnas.0803790105

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP (2009) Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Investig 119(9):2758–2771. https://doi.org/10.1172/JCI39162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Someya S, Yu W, Hallows WC, Xu J, Vann JM, Leeuwenburgh C, Prolla TA (2010) Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143(5):802–812. https://doi.org/10.1016/j.cell.2010.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Koksal IT, Usta M, Orhan I, Abbasoglu S, Kadioglu A (2003) Potential role of reactive oxygen species on testicular pathology associated with infertility. Asian J Androl 5(2):95–99

    CAS  PubMed  Google Scholar 

  70. Cito G, Becatti M, Natali A, Fucci R, Picone R, Cocci A, Coccia ME (2019) Redox status assessment in infertile patients with non-obstructive azoospermia undergoing testicular sperm extraction: A prospective study. Andrology. https://doi.org/10.1111/andr.12721

    Article  PubMed  Google Scholar 

  71. Sadasivam M, Ramatchandirin B, Ayyanar A, Prahalathan C (2014) Bacterial lipopolysaccharide differently modulates steroidogenic enzymes gene expressions in the brain and testis in rats. Neurosci Res 83:81–88. https://doi.org/10.1016/j.neures.2014.02.011

    Article  CAS  PubMed  Google Scholar 

  72. Ramatchandirin B, Sadasivam M, Kannan A, Prahalathan C (2016) Sirtuin 4 Regulates Lipopolysaccharide Mediated Leydig Cell Dysfunction. J Cell Biochem 117(4):904–916. https://doi.org/10.1002/jcb.25374

    Article  CAS  PubMed  Google Scholar 

  73. Yu J, Sadhukhan S, Noriega LG, Moullan N, He B, Weiss RS, Auwerx J (2013) Metabolic characterization of a Sirt5 deficient mouse model. Sci Rep 3:2806. https://doi.org/10.1038/srep02806

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

CP acknowledges Department of Science and Technology (DST)—Science and Engineering Research Board (SERB) for the financial assistance (EMR/2017/003670). And also acknowledges RUSA-MHRD, DST-PURSE and DST-FIST for the infrastructure provided to the Department of Biochemistry, Bharathidasan University. AK acknowledges the financial assistance as Senior Research Fellowship (RBMH/FW/2018/13) from Indian Council for Medical Research (ICMR), New Delhi and LFMA gratefully acknowledges financial assistance from Department of Science and Technology (DST)—Innovation in Science Pursuit for Inspired Research (INSPIRE).

Funding

CP acknowledges Department of Science and Technology (DST)—Science and Engineering Research Board (SERB) for the financial assistance (EMR/2017/003670).

Author information

Authors and Affiliations

Authors

Contributions

CL: Conceptualization and initial draft. CP: Design and supervision. CL, CP, SAK, KA, AK, AP, LFMA: Critical revision and suggestions. All authors discussed and approved the final manuscript.

Corresponding author

Correspondence to Chidambaram Prahalathan.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any financial or non-financial relationships that could be construed as a potential conflict of interest.

Ethical approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loganathan, C., Kannan, A., Panneerselvam, A. et al. The possible role of sirtuins in male reproduction. Mol Cell Biochem 476, 2857–2867 (2021). https://doi.org/10.1007/s11010-021-04116-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04116-2

Keywords

Navigation