Skip to main content
Log in

Dexmedetomidine reversed hypoxia/reoxygenation injury-induced oxidative stress and endoplasmic reticulum stress-dependent apoptosis of cardiomyocytes via SIRT1/CHOP signaling pathway

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

We aimed to investigate the protective role and mechanism of dexmedetomidine (DEX) on H9c2 cardiomyocytes after hypoxia/reoxygenation (H/R) injury. Six experimental groups were designed as follows: normal control group (group C), H/R group, H/R + DEX group, H/R + gastrodin group, H/R + Ex527 (SIRT1 inhibitor) group, and H/R + DEX + Ex527 group. Lactate dehydrogenase (LDH) activity and the levels of oxidative stress-related enzymes such as malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) were measured using corresponding commercial kits. Cell counting kit (CCK)-8 assay was used to detect cell survival rate while flow cytometry and caspase 3/7 activity were used to determine cell apoptosis, respectively. Western blot was used to detect the expression of silent information regulator 1 (SIRT1), C/EBP homologous protein (CHOP), cleaved-caspase-12/3 and pro-caspase-12/3 in each group. From our findings, when compared with H/R, H/R + Ex527 and H/R + DEX + Ex527 groups, DEX pretreatment of cells in H/R + DEX group significantly increased cell survival rate, and simultaneously reduced LDH activity, oxidative stress and the apoptosis rate of H9c2 cells with H/R injury. Moreover, DEX up-regulated SIRT1 expression level and down-regulated the levels of endoplasmic reticulum (ER) stress-related markers such as CHOP, cleaved-caspase-12 and cleaved-caspase-3, respectively. Ex527 could completely block DEX-induced upregulated expression of SIRT1, and partially blocked the DEX-induced downregulated expression levels of CHOP, cleaved-caspase-12 and cleaved-caspase-3. These results proved that DEX reversed H/R injury-induced oxidative stress and ER stress-dependent apoptosis of cardiomyocytes via SIRT1/CHOP signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liu X, Deng Y, Xu Y, Jin W, Li H (2018) MicroRNA-223 protects neonatal rat cardiomyocytes and H9c2 cells from hypoxia-induced apoptosis and excessive autophagy via the Akt/mTOR pathway by targeting PARP-1. J Mol Cell Cardiol 118:133–146. https://doi.org/10.1016/j.yjmcc.2018.03.018

    Article  CAS  PubMed  Google Scholar 

  2. Xing Y, Li L (2019) Gastrodin protects rat cardiomyocytes H9c2 from hypoxia-induced injury by up-regulation of microRNA-21. Int J Biochem Cell Biol 109:8–16. https://doi.org/10.1016/j.biocel.2019.01.013

    Article  CAS  PubMed  Google Scholar 

  3. Pasero D, Sangalli F, Baiocchi M, Blangetti I, Cattaneo S, Paternoster G, Moltrasio M, Auci E, Murrino P, Forfori F, Forastiere E, De Cristofaro MG, Deste G, Feltracco P, Petrini F, Tritapepe L, Girardis M (2018) Experienced use of dexmedetomidine in the intensive care unit: a report of a structured consensus. Turk J Anaesthesiol Reanim 46(3):176–183. https://doi.org/10.5152/tjar.2018.08058

    Article  PubMed  Google Scholar 

  4. Nii K, Hanada H, Hiraoka F, Eto A, Mitsutake T, Tsutsumi M (2018) Usefulness of consciousness sedation with dexmedetomidine and pentazocine during endovascular treatment for acute stroke. Neurol Med Chir 58(2):79–84. https://doi.org/10.2176/nmc.oa.2017-0188

    Article  Google Scholar 

  5. Li HJ, Li CJ, Wei XN, Hu J, Mu DL, Wang DX (2018) Dexmedetomidine in combination with morphine improves postoperative analgesia and sleep quality in elderly patients after open abdominal surgery: a pilot randomized control trial. PLoS ONE 13(8):e0202008. https://doi.org/10.1371/journal.pone.0202008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ibacache M, Sanchez G, Pedrozo Z, Galvez F, Humeres C, Echevarria G, Duaso J, Hassi M, Garcia L, Díaz-Araya G, Lavandero S (2012) Dexmedetomidine preconditioning activates pro-survival kinases and attenuates regional ischemia/reperfusion injury in rat heart. Biochim Biophys Acta 4:537–545. https://doi.org/10.1016/j.bbadis.2011.12.013

    Article  CAS  Google Scholar 

  7. Cheng XY, Gu XY, Gao Q, Zong QF, Li XH, Zhang Y (2016) Effects of dexmedetomidine postconditioning on myocardial ischemia and the role of the PI3K/Akt-dependent signaling pathway in reperfusion injury. Mol Med Rep 14(1):797–803. https://doi.org/10.3892/mmr.2016.5345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gallo M, Sapio L, Spina A, Naviglio D, Calogero A, Naviglio S (2015) Lactic dehydrogenase and cancer: an overview. Front Biosci 20:1234–1249. https://doi.org/10.2741/4368

    Article  CAS  Google Scholar 

  9. Khan AA, Allemailem KS, Alhumaydhi FA, Gowder SJT, Rahmani AH (2019) The biochemical and clinical perspectives of lactate dehydrogenase: an enzyme of active metabolism. Endocr Metab Immune Disord Drug Targets. https://doi.org/10.2174/1871530320666191230141110

    Article  PubMed  Google Scholar 

  10. Zhang YY, Yi M, Huang YP (2017) Oxymatrine ameliorates doxorubicin-induced cardiotoxicity in rats. Cell Physiol Biochem 43(2):626–635. https://doi.org/10.1159/000480471

    Article  CAS  PubMed  Google Scholar 

  11. Kida Y, Goligorsky MS (2016) Sirtuins, cell senescence, and vascular aging. Can J Cardiol 32(5):634–641. https://doi.org/10.1016/j.cjca.2015.11.022

    Article  PubMed  Google Scholar 

  12. Ye T, Wei L, Shi J, Jiang K, Xu H, Hu L, Kong L, Zhang Y, Meng S, Piao H (2019) Sirtuin1 activator SRT2183 suppresses glioma cell growth involving activation of endoplasmic reticulum stress pathway. BMC Cancer 19(1):706. https://doi.org/10.1186/s12885-019-5852-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Feng K, Chen Z, Pengcheng L, Zhang S, Wang X (2019) Quercetin attenuates oxidative stress-induced apoptosis via SIRT1/AMPK-mediated inhibition of ER stress in rat chondrocytes and prevents the progression of osteoarthritis in a rat model. J Cell Physiol 234(10):18192–18205. https://doi.org/10.1002/jcp.28452

    Article  CAS  PubMed  Google Scholar 

  14. Kim I, Xu W, Reed JC (2008) Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 7(12):1013–1030. https://doi.org/10.1038/nrd2755

    Article  CAS  PubMed  Google Scholar 

  15. Losada A, Berlanga JJ, Molina-Guijarro JM, Jimenez-Ruiz A, Gago F, Aviles P, de Haro C, Martinez-Leal JF (2019) Generation of endoplasmic reticulum stress and inhibition of autophagy by plitidepsin induces proteotoxic apoptosis in cancer cells. Biochem Pharmacol 172:113744. https://doi.org/10.1016/j.bcp.2019.113744

    Article  CAS  PubMed  Google Scholar 

  16. Cui W, Wang S, Wang Z, Wang Z, Sun C, Zhang Y (2017) Inhibition of PTEN attenuates endoplasmic reticulum stress and apoptosis via activation of PI3K/AKT pathway in Alzheimer’s disease. Neurochem Res 42(11):3052–3060. https://doi.org/10.1007/s11064-017-2338-1

    Article  CAS  PubMed  Google Scholar 

  17. Oyadomari S, Koizumi A, Takeda K, Gotoh T, Akira S, Araki E, Mori M (2002) Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes. J Clin Investig 109(4):525–532. https://doi.org/10.1172/jci14550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kang X, Yang W, Wang R, Xie T, Li H, Feng D, Jin X, Sun H, Wu S (2018) Sirtuin-1 (SIRT1) stimulates growth-plate chondrogenesis by attenuating the PERK-eIF-2α-CHOP pathway in the unfolded protein response. J Biol Chem 293(22):8614–8625. https://doi.org/10.1074/jbc.M117.809822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Groenendyk J, Michalak M (2005) Endoplasmic reticulum quality control and apoptosis. Acta Biochim Pol 52(2):381–395

    Article  CAS  PubMed  Google Scholar 

  20. Hitomi J, Katayama T, Taniguchi M, Honda A, Imaizumi K, Tohyama M (2004) Apoptosis induced by endoplasmic reticulum stress depends on activation of caspase-3 via caspase-12. Neurosci Lett 357(2):127–130. https://doi.org/10.1016/j.neulet.2003.12.080

    Article  CAS  PubMed  Google Scholar 

  21. Ye J, Liu Z, Wei J, Lu L, Huang Y, Luo L, Xie H (2013) Protective effect of SIRT1 on toxicity of microglial-derived factors induced by LPS to PC12 cells via the p53-caspase-3-dependent apoptotic pathway. Neurosci Lett 553:72–77. https://doi.org/10.1016/j.neulet.2013.08.020

    Article  CAS  PubMed  Google Scholar 

  22. Zhu M, Deng W, Di S, Qin M, Liu D, Yi B (2018) Gastrodin protects cardiomyocytes from anoxia/reoxygenation injury by 14-3-3η. Oxid Med Cell Longev 2018:3685391. https://doi.org/10.1155/2018/3685391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Han X, Shi H, Liu K, Zhong L, Wang F, You Q (2019) Protective effect of gastrodin on myocardial ischemia-reperfusion injury and the expression of Bax and Bcl-2. Exp Ther Med 17(6):4389–4394. https://doi.org/10.3892/etm.2019.7512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yuan M, Meng XW, Ma J, Liu H, Song SY, Chen QC, Liu HY, Zhang J, Song N, Ji FH, Peng K (2019) Dexmedetomidine protects H9c2 cardiomyocytes against oxygen-glucose deprivation/reoxygenation-induced intracellular calcium overload and apoptosis through regulating FKBP12.6/RyR2 signaling. Drug Des Devel Ther 13:3137–3149. https://doi.org/10.2147/dddt.s219533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gao JM, Meng XW, Zhang J, Chen WR, Xia F, Peng K, Ji FH (2017) Dexmedetomidine protects cardiomyocytes against hypoxia/reoxygenation injury by suppressing TLR4-MyD88-NF-κB signaling. Biomed Res Int 2017:1674613. https://doi.org/10.1155/2017/1674613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hescheler J, Meyer R, Plant S, Krautwurst D, Rosenthal W, Schultz G (1991) Morphological, biochemical, and electrophysiological characterization of a clonal cell (H9c2) line from rat heart. Circ Res 69(6):1476–1486. https://doi.org/10.1161/01.res.69.6.1476

    Article  CAS  PubMed  Google Scholar 

  27. Porter KE, Turner NA (2009) Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther 123(2):255–278. https://doi.org/10.1016/j.pharmthera.2009.05.002

    Article  CAS  PubMed  Google Scholar 

  28. Zhang W, Du JE (2016) Protective effect of dexmedetomidine on neurological function of patients with intravenous inhalational anesthesia and the possible molecular mechanism. J Hainan Med Univ 22(13):120–123

    Google Scholar 

  29. Arpino PA, Kalafatas K, Thompson BT (2008) Feasibility of dexmedetomidine in facilitating extubation in the intensive care unit. J Clin Pharm Ther 33(1):25–30. https://doi.org/10.1111/j.1365-2710.2008.00883.x

    Article  CAS  PubMed  Google Scholar 

  30. Peng K, Zhang J, Meng XW, Liu HY, Ji FH (2017) Optimization of postoperative intravenous patient-controlled analgesia with opioid-dexmedetomidine combinations: an updated meta-analysis with trial sequential analysis of randomized controlled trials. Pain Phys 20(7):569–596

    Google Scholar 

  31. Chen L, Cao J, Cao D, Wang M, Xiang H, Yang Y, Ying T, Cong H (2019) Protective effect of dexmedetomidine against diabetic hyperglycemia-exacerbated cerebral ischemia/reperfusion injury: an in vivo and in vitro study. Life Sci 235:116553. https://doi.org/10.1016/j.lfs.2019.116553

    Article  CAS  PubMed  Google Scholar 

  32. Zhang X, Li Y, Wang Y, Zhuang Y, Ren X, Yang K, Ma W, Zhong M (2020) Dexmedetomidine postconditioning suppresses myocardial ischemia/reperfusion injury by activating the SIRT1/mTOR axis. Biosci Rep. https://doi.org/10.1042/bsr20194030

    Article  PubMed  PubMed Central  Google Scholar 

  33. Oakes SA, Papa FR (2015) The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol 10:173–194. https://doi.org/10.1146/annurev-pathol-012513-104649

    Article  CAS  PubMed  Google Scholar 

  34. Schwarz DS, Blower MD (2016) The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol Life Sci 73(1):79–94. https://doi.org/10.1007/s00018-015-2052-6

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Q, Liu J, Chen S, Liu J, Liu L, Liu G, Wang F, Jiang W, Zhang C, Wang S, Yuan X (2016) Caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress. Apoptosis 21(4):432–442. https://doi.org/10.1007/s10495-016-1217-6

    Article  CAS  PubMed  Google Scholar 

  36. Zhang TH, Huang CM, Gao X, Wang JW, Hao LL, Ji Q (2018) Gastrodin inhibits high glucose-induced human retinal endothelial cell apoptosis by regulating the SIRT1/TLR4/NF-κBp65 signaling pathway. Mol Med Rep 17(6):7774–7780. https://doi.org/10.3892/mmr.2018.8841

    Article  CAS  PubMed  Google Scholar 

  37. Yao H, Yao Z, Zhang S, Zhang W, Zhou W (2018) Upregulation of SIRT1 inhibits H2O2induced osteoblast apoptosis via FoxO1/betacatenin pathway. Mol Med Rep 17(5):6681–6690. https://doi.org/10.3892/mmr.2018.8657

    Article  CAS  PubMed  Google Scholar 

  38. Mohammed ET, Hashem KS, Abdelazem AZ, Foda F (2020) Prospective protective effect of ellagic acid as a SIRT1 activator in iron oxide nanoparticle-induced renal damage in rats. Biol Trace Elem Res. https://doi.org/10.1007/s12011-020-02034-w

    Article  PubMed  Google Scholar 

  39. Chen HY, Li GH, Tan GC, Liang H, Lai XH, Huang Q, Zhong JY (2019) Dexmedetomidine enhances hypoxia-induced cancer cell progression. Exp Ther Med 18(6):4820–4828. https://doi.org/10.3892/etm.2019.8136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rozpedek W, Pytel D, Mucha B, Leszczynska H, Diehl JA, Majsterek I (2016) The role of the PERK/eIF2α/ATF4/CHOP signaling pathway in tumor progression during endoplasmic reticulum stress. Curr Mol Med 16(6):533–544. https://doi.org/10.2174/1566524016666160523143937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhao J, Xiang X, Zhang H, Jiang D, Liang Y, Qing W, Liu L, Zhao Q, He Z (2018) CHOP induces apoptosis by affecting brain iron metabolism in rats with subarachnoid hemorrhage. Exp Neurol 302:22–33. https://doi.org/10.1016/j.expneurol.2017.12.015

    Article  CAS  PubMed  Google Scholar 

  42. Shimoke K, Amano H, Kishi S, Uchida H, Kudo M, Ikeuchi T (2004) Nerve growth factor attenuates endoplasmic reticulum stress-mediated apoptosis via suppression of caspase-12 activity. J Biochem 135(3):439–446. https://doi.org/10.1093/jb/mvh053

    Article  CAS  PubMed  Google Scholar 

  43. Hu H, Tian M, Ding C, Yu S (2019) The C/EBP homologous protein (CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection. Front Immunol 9:3083. https://doi.org/10.3389/fimmu.2018.03083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fan TJ, Han LH, Cong RS, Liang J (2005) Caspase family proteases and apoptosis. Acta Biochim Biophys Sin 37(11):719–727. https://doi.org/10.1111/j.1745-7270.2005.00108.x

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Research Foundation of Department of Education in Anhui Province (KJ2019A0388).

Author information

Authors and Affiliations

Authors

Contributions

FJ conceptualized and designed the study. YZ wrote the paper. YZ, QZ and XL performed research and analyzed data. All authors have read and approved the final version of manuscript.

Corresponding author

Correspondence to Fuhai Ji.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhao, Q., Li, X. et al. Dexmedetomidine reversed hypoxia/reoxygenation injury-induced oxidative stress and endoplasmic reticulum stress-dependent apoptosis of cardiomyocytes via SIRT1/CHOP signaling pathway. Mol Cell Biochem 476, 2803–2812 (2021). https://doi.org/10.1007/s11010-021-04102-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04102-8

Keywords

Navigation